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8 
Evaluation of the Detailed Design Metrics and Heuristics 

The goal of this chapter is to evaluate the applicability and effectiveness of 

the detailed design metrics and heuristic rules in order to detect modularity-related 

design problems. In order to evaluate the heuristic rules, we carried out a study 

involving six systems (Section 8.1). Four of them are medium-sized academic 

prototypes and the other two are real-life software projects. We have analyzed 

both object-oriented and aspect-oriented designs of such systems, which 

encompass heterogeneous forms of crosscutting and non-crosscutting concerns. 

We also conducted a study in which students used different suites of detailed 

design metrics to identify some bad smells (Section 8.2). Then, we compared the 

performance of conventional and concern-driven metrics. 

 

8.1. 
Design Heuristic Rules Study 

This section introduces a systematic evaluation of the concern-sensitive 

heuristic rules (Section 5.4), which involved 22 distinct concerns addressed by the 

object-oriented and aspect-oriented design of six systems. These concerns were 

selected because they exercise different heuristic rules. Section 8.1.1 describes the 

target systems and concerns in more details. The heuristics rules empirical study 

was conducted under two dimensions: (i) evaluation of the rules accuracy to 

identify and classify crosscutting concerns as well as other modularity flaws in 

both OO and AO systems (Section 8.1.2), (ii) evaluation of the rules usefulness to 

detect bad smells in comparison with conventional heuristics (Section 8.1.3). We 

also discuss the applicability of the heuristic rules for addressing metrics 

limitations (Section 8.1.4). 

The whole study involved the following activities: 

• Mapping of the design elements of both AO and non-AO versions of 

the systems to the considered concerns. 
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• Computation of the detailed design metrics needed for the application 

of the design rules. The concern-driven metrics (Table 4) were 

manually computed, while the conventional metrics (Table 5) were 

computed with the AJATO tool support (Figueiredo et al., 2006). 

• Application of the design heuristic rules R1 to R12. The rules were 

manually applied. 

• Comparison of the results of rules R1 to R2 with specialist’s opinion 

and literature assertion (first dimension of evaluation) (Section 8.1.2). 

• Comparison of the results of the rules R11 and R12 with results of 

Marinescu’s rules (second dimension of evaluation) (Section 8.1.3). 

 

8.1.1. 
Target Systems 

Previous works (Cacho et al., 2006a; Filho et al., 2006, Garcia et al., 2006b; 

Garcia et al., 2004a; Greenwood et al., 2007a; Hannemann & Kiczales, 2002) 

applied modularity-related metrics (including some of our concern-driven ones) to 

a number of comparative empirical studies. We selected six of the systems used in 

those studies in order to apply and assess the accuracy of our detailed design 

metrics and heuristics rules. One of these systems is the Health Watcher (Soares et 

al., 2002; Greenwood et al., 2007a), already exploited in previous sections. 

Besides Health Watcher, the study also involved another real software system, 

namely Eclipse CVS plug-in (Eclipse Foundation, 2007b). The other four systems 

are academic prototypes carefully designed with modularity attributes as main 

drivers (Figueiredo et al., 2006, Cacho et al., 2006a; Garcia et al., 2004a; 

Hannemann & Kiczales, 2002). 

Table 23 provides a list of the systems and the concerns evaluated in each of 

them. The first system is, in fact, a design pattern library developed by 

Hannemann & Kiczales (2002) in Java and AspectJ (The AspectJ Team, 2007; 

Kickzales et al., 2001). Likewise the Hannemann & Kiczales’ work, in the study 

involving their library we treated each pattern role as a concern because the roles 

are the primary sources of crosscutting structures. The second system is a 

middleware system (Cacho et al., 2006a, 2006b) and the third one is the AJATO 

measurement tool (Figueiredo et al., 2006; Cacho et al., 2006a). In these systems 
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we consider each design pattern as a concern in other to investigate their 

compositions in those systems.  

Systems Nature of the Concerns Concerns 
Builder Director role 
Chain of Resp. Handler role 
Factory Method Creator role 

Observer role Observer Subject role 
Colleague role 

Hannemann & Kiczales’ 
design pattern library 
 

D
es

ig
n 

Pa
tte

rn
s 

Mediator Mediator role 
Fact. Method 
Observer 
Façade 

OpenOrb Middleware  
 

Singleton 
Prototype 
Interpreter AJATO Measurement 

tool 

Design patterns and their 
compositions. 

Proxy  
Exception Handling CVS core plugin Business 
Concurrency 
Distribution Health Watcher 

Recurring architectural concerns 

Persistence 
Adaptation 
Autonomy Portalware Domain-specific concerns 
Collaboration 

 

Table 23: Systems and concerns used in the evaluation study 

 

The following two systems in Table 23 are the Eclipse CVS core plugin 

(Eclipse Foundation, 2007b; Filho et al., 2006) and the Health Watcher (Soares et 

al., 2002; Greenwood et al., 2007a); in both we evaluate recurring widely-scoped 

concerns. Finally, the last target application is a multi-agent system (MAS) for 

managing Web portals, called Portalware (Garcia et al., 2004a). The focus here 

was specifically on MAS-domain concerns. These systems were selected for 

several reasons. First, they encompass both aspect-oriented (AO) and object-

oriented (OO) implementations. Second, a number of concern-oriented and 

conventional metrics have been previously used for assessing the design 

modularity of both implementations of these systems. This allowed us to evaluate 

to what extent concern-aware heuristics is helpful or not to enhance a design 

assessment exclusively based on metrics.  

The third reason is the heterogeneity of the concerns found in these systems 

(Table 23, column 2), which include widely-scoped architectural concerns, such 

as persistence and exception handling, and concern that only manifest themselves 

in the detailed design or implementation, such as design patterns. They encompass 
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different characteristics and different degrees of complexity. Forth, the systems 

are representatives of different application domains, ranging from simple design 

pattern instances to real-life Web-based applications, reflective middleware 

systems, and multi-agent systems. Finally, such systems also serve as effective 

benchmarks because they involve scenarios where it has been far from trivial to 

decide when “aspectizing” or not certain concerns (Cacho et al., 2006a; Filho et 

al., 2006, 2007; Garcia et al., 2004a; Greenwood et al., 2007a). 

 

8.1.2. 
Accuracy of the Heuristic Rules 

This section aims at evaluating the accuracy of the design heuristic rules for 

crosscutting concern analysis (rules R01 to R08) (Section 5.4.1), including also 

the rules which classify concerns as octopus and black sheep (rules R09 and R10) 

(Section 5.4.2). We evaluated the accuracy of these heuristics comparing their 

outcomes with specialists’ opinion or with literature assertion about the concerns 

involved in these studies (Cacho et al., 2006a; Filho et al., 2006, 2007;  Garcia et 

al., 2006b; Garcia et al., 2004a; Greenwood et al., 2007a; Hannemann & Kiczales, 

2002; Monteiro & Fernandes, 2005). Specialists are researchers that participated 

in development, maintenance and assessment of the systems and have documented 

their observations with respect to the concerns in these systems. 

We applied the rules R01 to R10 (Section 5.4.1 and Section 5.4.2) in order 

to assess and classify the 22 aforementioned concerns (Table 23) as: isolated, 

well-encapsulated, crosscutting, black sheep or octopus. In fact, we applied the 

rules 44 times: 22 times for the concerns in the object-oriented design of the 

systems, and 22 times for classifying the same instances of concerns in the aspect-

oriented designs.  Then, we count how many times the literature and/or specialists 

agreed with the heuristics results and how many times they did not agree.  
 

Table 24 describes how we confronted the specialists/literature opinion with 

the rules outcomes. First we classify the concerns according to 

literature/specialists opinion as “crosscutting” or “non-crosscutting” (column 1). 

A concern is classified as crosscutting, if the literature/specialists show evidences 

that: (i) if modularized based on object-oriented abstractions, the concern ends up 

scattered and tangled with other concerns, and (ii) the concern is better 
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modularizes by an aspect-oriented design, which eliminates its crosscutting 

nature. On the other hand a concern is classified as non-crosscutting, if the 

literature/specialists present evidences that the concern is well modularized by 

object-oriented abstractions and do not show a crosscutting nature. 
 

Table 24 also shows what classification is expected to be provided by the 

rules (column 2). The expected classification is based on the literature/specialists 

opinions and the version of the design where the rules are applied: object-oriented 

(OO) or aspect-oriented (AO). The last two columns described how the rules are 

evaluated based on the information the first two columns and the classification 

provided by the rules: 

• The rules succeed if the classification provided by them is one of the expected 

classifications. 

• The rules fail if the expected classification is crosscutting, black sheep or 

octopus and the rules classify the concern as isolated or well-encapsulated; 

this is considered an occurrence of “false negative”. 

• The rules also fail if the expected classification is isolated or well-

encapsulated and the rules classify the concern as crosscutting, black sheep or 

octopus; this is considered an occurrence of “false positive”. 
 

Specialists 
opinion 

Expected classification 
based on the version 

(OO or AO) 

Classification provided by 
the rules 

Rules 
Evaluation 

Crosscutting, black sheep or 
octopus 

Succeeded  

OO 

Crosscutting, black 
sheep or octopus 

Isolated or well-
encapsulated 

Failed (false 
negative) 

Crosscutting, black sheep or 
octopus 

Failed (false 
positive) 

Crosscutting 
concern 

AO 

Isolated or well-
encapsulated 

Isolated or well-
encapsulated 

Succeeded 

Crosscutting, black sheep or 
octopus 

Failed (false 
positive) OO 

Isolated or well-
encapsulated 

Isolated or well-
encapsulated 

Succeeded 

Crosscutting, black sheep or 
octopus 

Failed (false 
positive) 

Non-crosscutting 
concern 

AO 

Isolated or well-
encapsulated 

Isolated or well-
encapsulated 

Succeeded 

 

Table 24: Comparing the specialists opinion with the rules outcomes 

 

Table 25 provides an overview of the application of heuristic rules R01 to 

R10 (Section 5.4.1 and Section 5.4.2) to the object-oriented version of target 
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systems. The leftmost column lists the six applications. Note that the study related 

to Hannemann & Kiczales’ design pattern library (first study) is subdivided in 

terms of design patterns (column 2), and the assessed concerns are roles of those 

patterns (column 3). The third column shows all 22 concerns analysed in the 

respective studies. The forth column presents the classification of each concern 

according to specialists and literature claims (Cacho et al., 2006a; Filho et al., 

2006, 2007, Garcia et al., 2006b; Garcia et al., 2004a; Greenwood et al., 2007a; 

Hannemann & Kiczales, 2002; Monteiro & Fernandes, 2005). The two possible 

values are: “ccc”, which stands for “crosscutting concern”, and “non-ccc”, which 

stands for “non-crosscutting concern”.  As previously explained, this information 

is used to check whether the final concern classification provided by the rules 

failed or not. 

 
Heuristic Rules Systems Nature of the 

Concerns Concerns Special. 01 02 03 04 05 06 07 08 09 10 Results 

Builder Director role non-ccc n y y n y n     well-e. / hit 

Chain of Resp. Handler role ccc n y n y   y n   well-e. / FAIL 

Factory Method Creator role non-ccc n y n y   n y n n ccc / FAIL 

Observer role ccc n y n y   n y n y octopus / hit 
Observer 

Subject role ccc n y n y   n y n y octopus / hit 

Colleague role ccc n y n y   n y n y octopus / hit 

Hannemann & 
Kiczales’ 
design pattern 
library 

D
es

ig
n 

Pa
tte

rn
s 

Mediator 
Mediator role ccc n y n y   y n   well-e. / FAIL 

Fact. Method non-ccc n y y n y n     well-e. / hit 

Observer ccc n y y n n y   n y octopus / hit 

Façade non-ccc y n         isolated / hit 
OpenOrb 
Middleware 

Singleton ccc n y y n n y   y n b-sheep / hit 

Prototype ccc n y y n n y   y n b-sheep / hit 

Interpreter ccc n y y n n y   n y octopus / hit Measurement 
tool 

Design patterns and 
their compositions. 

Proxy  ccc n y y n n y   n n ccc / hit 

CVS plugin Exc. Handling ccc n y n y   n y n y octopus / hit 

Business non-ccc n y n y   y n   well-e. / hit 

Concurrency AO n y n y   n y n y octopus / hit 

Distribution AO n y n y   n y n y octopus / hit 
Health Watcher 

Recurring architectural 
concerns 

Persistence AO n y n y   n y n y octopus / hit 

Adaptation AO n y y n n y   n n ccc / hit 

Autonomy AO n y y n n y   n n ccc / hit Portalware Domain-specific 
concerns 

Collaboration AO n y n y   n y n y octopus / hit 
 

Table 25: Results of the heuristics application in the object-oriented version of the 

systems 
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The columns labeled with 01 to 10 present if each rule was satisfied or not. 

When we say that a rule was satisfied, we mean that the condition part of the rule 

(Section 5.3) was satisfied. If the rule was satisfied the cell is filled with “y”, 

which stands for “yes”. If the rule was not satisfied, the corresponding cell is 

filled with “n”, which stands for “no”. Blank cells mean that the rule is not 

applicable. 

Finally, the last column indicates: (i) how the heuristics classify each 

concern, and (ii) if the classification matches with the specialists’ opinion (‘hit’) 

or not (‘FAIL’). The possible classifications are isolated, well-encapsulated 

(‘well-e.’), crosscutting concern (‘ccc’), octopus and black sheep (‘b-sheep’). For 

instance, the “y” label in the forth row (related to the Observer role concern) and 

the column before the last indicates that the R10 rule was satisfied when applied 

to the Observer role concern. As the R10 rule classifies the concerns as octopus, 

the last column of this row is labeled with “octopus/hit”, which also indicates that 

this classification matches with specialists’ opinion. Table 26 presents the general 

results for the application of the heuristic rules in the aspect-oriented 

implementation of each system.  

Table 27 provides overviews of the hits, false positives and false negatives 

of the rules for the 44 concern instances involved in this study (22 in the OO 

version and 22 in AO version). The rows of Table 27 are organized in three parts: 

the object-oriented instances (OO), the aspect-oriented instances (AO) and the 

general data for both paradigms (OO + AO). Each row describes the absolute 

number and the percentage in relation to the total of concerns. 

Table 27 shows that the heuristics failed in 15.9% of the cases (5 false 

positives and 2 false negatives). In the object-oriented designs, there were one 

false positive and two false negatives. The false positive occurs with the creator 

role of the Factory Method pattern (Table 25). In this pattern, the class which 

plays the creator role has a lot of elements (mainly methods) related to other 

concern. This made the rules interpret that concern as the dominant concern of the 

class, instead of the creator role concern. As a consequence, the creator role was 

classified as crosscutting, when there is no problem with its design modularity. 
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Heuristic Rules Systems Nature of the 
Concerns Concerns Special. 01 02 03 04 05 06 07 08 09 10 Results 

Builder Director role non-ccc n y y n y n     well-e. / hit 

Chain of Resp. Handler role ccc n y y n y n     well-e. / hit 

Factory Method Creator role non-ccc n y n y   y n   well-e. / hit 

Observer role ccc n y y n n y   n n ccc / FAIL 
Observer 

Subject role ccc n y y n n y   n y octopus/FAIL 

Colleague role ccc n y y n n y   n n ccc / FAIL 

Hannemann & 
Kiczales’ 
design pattern 
library 

D
es

ig
n 

Pa
tte

rn
s 

Mediator 
Mediator role ccc n y y n n y   n n ccc / FAIL 

Fact. Method non-ccc y n         isolated / hit 

Observer ccc y n         isolated / hit 

Façade non-ccc y n         isolated / hit 
OpenOrb 
Middleware 

Singleton ccc y n         isolated / hit 

Prototype ccc y n         isolated / hit 

Interpreter ccc y n         isolated / hit Measurement 
tool 

Design patterns and 
their compositions. 

Proxy  ccc y n         isolated / hit 

CVS plugin Exc. Handling ccc n y n y   n y n y octopus / hit6 

Business non-ccc n y n y   y n   well-e. / hit 

Concurrency AO y n         isolated / hit 

Distribution AO n y y n y n     well-e. / hit 
Health Watcher 

Recurring architectural 
concerns 

Persistence AO n y n y   y n   well-e. / hit 

Adaptation AO y n         isolated / hit 

Autonomy AO y n         isolated / hit Portalware Domain-specific 
concerns 

Collaboration AO y n         isolated / hit 
 

Table 26: Results of the heuristics application in the aspect-oriented version of the 

systems 
 
 

Versions Hits (%) False Positives (%) False Negatives (%) Total (%) 

OO 19 (86.4) 1 (4.5) 2 (9.1) 22 (100) 

AO 18 (81.8) 4 (18.2) 0 (0.0) 22 (100) 

OO + AO 37 (84.1) 5 (11.4) 2 (4.5) 44 (100) 
 

Table 27: Statistics about the application of the heuristic rules 
 

The heuristics have presented two occurrences of false negatives in the 

assessment of the object-oriented designs: (i) Chain of Responsibility pattern, and 

(ii) Mediator role of the Mediator pattern (Table 25). The Chain of Responsibility 

pattern was not detected as a crosscutting concern because the pattern instance 

                                                 
6 The exception handling concern was not totally aspectized in the CVS plugin. Therefore, 

we did not consider that the rules failed for classifying this concern as octopus in the aspect-

oriented version of this system. 
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provided by Hannemann & Kiczales (2002) is too simple (due to its library 

nature) in order to expose the pattern’s crosscutting nature. In fact, classes playing 

the Handler role have only three members: one attribute, one method and one 

constructor. The first two members realize the Chain of Responsibility pattern. 

Because of this the heuristics erroneously consider the Chain of Responsibility 

concern as the main purpose of those classes, i.e., the dominant concern, instead 

of identifying it as secondary to this classes, and, as a consequence, crosscutting.  

A similar situation occurs in the Mediator pattern (Gamma et al., 1995) (Table 

25).  

Table 27 presents four false positives in the heuristic assessment of the 

aspect-oriented designs. These false positives occurred when a pattern defines 

more than one role. This was the case of Observer pattern (Subject and Observer 

roles) and Mediator pattern (Mediator and Colleague roles) (Table 26). When 

applying the metrics to Hannemann & Kiczales (2002) library, we considered 

each role as a separate concern, as stated before and shown in Table 26. Although 

each of these patterns was successfully modularized using aspects, their roles are 

tangled to each other in the aspects. As a result, the rules classified than as 

crosscutting. We considered that the rules failed in this case, because the patterns 

as a role are well modularized and it does not make sense to separate their roles 

from each other. 

 

8.1.3. 
Detection of Specific Design Flaws 

We also evaluated the usefulness of our heuristic rules in order to detect 

specific design flaws. In particular, we applied rules R11 to R12 (Section 5.4.3) to 

identify Shotgun Surgery and Feature Envy bad smells (Fowler, 1999) in the 

object-oriented design of the target systems. We also applied the conventional 

heuristic rules proposed by Marinescu (2002) for detecting the same bad smells 

and compared the results from the two suites of rules. 

In order to perform this comparison, we proceeded with the following steps. 

First we applied each suite of rules to the same systems independently. The 

application of the rules pointed out design fragments suspect of having one of the 

two aforementioned bad smells. After that, we undertook a manual investigation 
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in which we inspected all the suspect design fragments. In circumstances when it 

was not clear about the existence of a bad smell, we contacted professionals and 

researchers with long-term experience on the development and assessment of the 

target case studies. The manual investigation allowed us to verify whether the 

suspect design fragments were indeed affected by the design flaw suggested by 

the heuristic rules. 

After the inspection, the total number of suspects for each bad smell were 

classified in two categories: (i) “Hits”, which contains those suspect fragments 

that have confirmed to be affected by the bad smell that the heuristic rule claims 

to find, and (ii) “False Positive”, which includes those suspect fragments that 

revealed not to be affected by the bad smell supposed to be captured by the rule. 

Table 28 summarizes the results of applying both concern-sensitive and 

conventional design heuristics rules. This table also shows the total number of hits 

and false positives for each bad smell and the percentage that this value represents 

from the total number of suspect fragments (under brackets).  

It is important to bear in mind that the results in Table 28 are given in 

different points of view. The values for concern-driven rules represent number of 

concerns, since rules R11 and R12 classify concerns (Section 5.4.3). While the 

values for the conventional rules represent number of classes (Shotgun Surgery) 

or operations (Feature Envy). Therefore, when we say that the number of hits for 

the concern-driven rules for identifying Shotgun Surgery was eight, we mean that 

these rules identified eight concerns affected by this bed smell. While when we 

say that the conventional rules had nine hits while seeking for Shotgun Surgery, 

we mean that these rules identified nine classes affected by this bed smell. 
 

Concern-driven Rules Conventional Rules 
Bad Smell 

Hits (%) False Positive (%) Hits (%) False Positive (%) 

Shotgun Surgery 8 (89%) 1 (11%) 9 (56%) 7 (44%) 

Feature Envy 3 (100%) 0 (0%) 1 (17%) 5 (83%) 
 

Table 28: Concern-driven vs. Conventional heuristic rules: statistics about the application 

of the heuristic rules for detecting bed smells 
 

We can see from Table 28 that the concern-driven heuristics presented 

superior accuracy than the conventional rules for detecting the two studied bad 

smells. The former presented no more than 20% of false positives, whereas the 
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latter pointed out very high number of false positives. We could verify by means 

of manual inspection that this advantage in favor of our rules was mainly caused 

by the fact that they are concern sensitive. For instance, many of the false 

positives of the conventional rule for Shotgun Surgery occurred because this 

metric does not distinguee coupling between classes of the same concerns and 

classes with different concerns. 

 

8.1.4. 
Solving Measurement Shortcomings 

This section discusses problems that affect not only conventional metrics 

but also the use of metrics in general, including concern-driven metrics. We 

discuss here drawbacks related to the use of concern-driven metrics, and how 

these drawbacks motivate the use of these metrics in the context concern-driven 

heuristics rules. We classify the limitations into three categories: (i) false 

crosscutting warnings, (ii) hiding concern-sensitive flaws, and (iii) controversial 

outcomes from concern measures. 

 

False crosscutting warnings 

The problem of false crosscutting warnings occurs when the concern-driven 

metrics erroneously warn the developer of a possible crosscutting concern. 

However, a subsequent careful analysis of the design shows that the concern is 

well encapsulated. Figure 61 presents an example of this problem category in an 

instance of the Factory Method pattern (Gamma et al., 1995). Consider the 

Factory Method pattern as the assessed concern and apply the Concern Diffusion 

over Components metric (CDC) (Section 5.3.1). The obtained result shows that 

the Factory Method concern is spread over six components (CSC = 6). In 

addition, the Lack of Concern-based Cohesion metric shows that there are two 

concerns in both MetaObjEncapsule and MetaObjComposite classes. As one of 

these concerns is the Factory Method, this indicates that it is tangled with another 

concern in these components.  

Analyzing the results of these two metrics, the designer could conclude that 

the Factory Method concern is crosscutting, because it is scattered over multiple 

components and tangled with another concern. However, this is a false warning. 
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In fact, the object-oriented abstractions provide adequate means of modularizing 

the Factory Method: the main purpose of the classes which implement this pattern 

is to realize it. In this case, the false warning was a result of methods related to the 

Observer pattern in the classes of the Factory Method pattern. Therefore, this is 

not a problem related to the Factory Method pattern design at all. Our studies 

indicate that shortcomings of this category are ameliorated with the support of 

concern-sensitive heuristic rules. For instance, the Factory Method example just 

discussed does not produce a false warning when the heuristic rules are applied 

(Table 25). 
 

createMetaObject()

<<interface>>
MetaObjFactory

createMetaObject()

<<interface>>
MetaObjFactory

createMetaObject()

FactoryEncapsule

createMetaObject()

FactoryEncapsule

createMetaObject()

FactoryComposite

createMetaObject()

FactoryComposite

createMetaObject()

FactoryComposite

refresh()

<<interface>>
MetaObserver

refresh()

<<interface>>
MetaObserver state

getInstanceName()

MetaObject
state
getInstanceName()
state
getInstanceName()

MetaObject

addObserver()
removeObserver()
notifyObservers()

<<interface>>
MetaSubject

addObserver()
removeObserver()
notifyObservers()

<<interface>>
MetaSubject

addObserver()
removeObserver()
notifyObservers()

<<interface>>
MetaSubject

refresh()

nextPreHandler
nextPosHandler
addPreMethod()
addPostMethod()
handlePreMethods()
handlePostMethods()

MetaObjEncapsule

graph
createGraph()
rebind()
refresh()

MetaObjComposite

graph
createGraph()
rebind()
refresh()

MetaObjComposite

graph
createGraph()
rebind()
refresh()

MetaObjComposite

observers
...
addObserver()
removeObserver()
notifyObservers()

ConcreteBind

observers
...
addObserver()
removeObserver()
notifyObservers()

ConcreteBind

observers
...
addObserver()
removeObserver()
notifyObservers()

Component

observers
...
addObserver()
removeObserver()
notifyObservers()

Component

Legend:
Observer pattern

Factory Method pattern

Legend:
Observer pattern

Factory Method pattern

 
Figure 61: Observer and Factory Method patterns used in the design of an OpenOrb-

compliant middleware system (Cacho et al., 2006a, 2006b, 2007) 
 

Hiding concern-sensitive flaws 

Sometimes design flaws are omitted in the measurement outcomes just 

because the metrics are not able to reveal an existing modularity problem. We 

illustrate this limitation in the light of a partial class diagram presented in Figure 

62. This figure shows shadowed elements to highlight that they implement the 

Singleton and Façade patterns. Besides, it also presents the results of three 

concern-driven metrics for these patterns: Concern Diffusion over Components 

(CDC) (Section 5.3.1), Number of Concern Attributes (5.3.5) and Number of 

Concern Operations (NCO) (Section 5.3.5). Note that the values for NCA and 

NCO in Figure 62 represent the sum of the values for all the classes with the 

concerns. 

Although Singleton has an average metric value lower than Façade, the 

former presents a crosscutting nature and the latter does not. Therefore, the 

measurement results in this example are not indicative to warn the developer 
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about the crosscutting phenomena relative to Singleton (Cacho et al, 2006a; 

Garcia et al., 2006b). Again, the application of concern-driven heuristics (Table 

25) overcomes this measurement shortcoming and correctly classifies the 

Singleton pattern as black sheep (Section 5.4.3), which is a specialized category of 

crosscutting concern. 
 

...
instance
getCapsuleInstance()
server()
...

CapsuleImplLegend:
Facade Pattern

Singleton Pattern

Part of the Singleton

112Singleton
651Façade

NCONCACDCPattern

112Singleton
651Façade

NCONCACDCPattern

compLocalCapsule
endPointManager
dispatcherFactory
protocolFactory
metamodel
init()
createReceptacle()
localbind()
component()
composite()
getMetaObject()

OpenOrb

 
Figure 62: Concern-driven metrics for Façade and Singleton 

 

Controversial outcomes from concern measures. A problem of this 

category occurs if the results of different metrics do not converge to the same 

outcome, hindering the designer’s interpretation. We have identified some 

occurrences of this problem in our studies. For instance, applying the concern-

driven metrics to adaptation concern in the Portalware system, the value for the 

Concern Diffusion over Components metric is 3 (indicating low scattering) while 

other concern metrics present high values (e.g. Number of Concern Attributes = 

10 and Number of Concern Operations = 22). Hence, the concern metric results 

are contradictory in the sense that it is hard to conclude whether adaptation is or 

not a crosscutting concern. The concern heuristic rules address this category of 

shortcomings in a number of cases. For instance, although the adaptation concern 

has contradictory results for the concern metrics, the application of concern-driven 

heuristics (Table 25) has successful identified it as an octopus (Section 5.4.2), 

which also means that it is a crosscutting concern. 

 

8.2. 
Detailed Design Metrics Study 

The goal of this study is to evaluate the effectiveness of our concern-driven 

detailed design metrics to detect design flaws when they are applied by 
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independent subjects. In particular, the purpose of this study is to compare 

concern-driven and conventional measurement in order to learn which technique 

is the most effective to support the detection of two specific bad smells: shotgun 

surgery and divergent change (Fowler, 1999). These two bad smells are typically 

associated with crosscutting concerns (Monteiro & Fernandes, 2005). The first 

bad smell was the same used in our heuristics assessment study (Section 8.1). 

Divergent Change occurs when one class is commonly changed in different 

ways for different reasons. Fowler (1999) say about Divergent Change: “If you 

look at a class and say, ‘Well, I will have to change these three methods every 

time I get a new database; I have to change these four methods every time there is 

a new financial instrument’, you likely have a situation in which two classes are 

better than one.” On the other hand, Shotgun Surgery as explained in previous 

sections is encountered when every time you make a change to a class, you have 

to make a lot of little changes to a lot of different classes. 

 

8.2.1. 
Study Format and Procedures 

This study involved eight master students attending an Aspect-Oriented 

Software Development course at Lancaster University. The students were grouped 

in pairs. Each pair worked with different metrics in order to identify classes that 

were suspect of having one of the two bad smells in the object-oriented design of 

the Health Watcher system (Soares et al., 2002). Two groups worked only with 

conventional metrics, one group only with concern-driven metrics, and the forth 

group with both conventional and concern-driven metrics (hereafter referred as 

hybrid metrics group). 

We estimated each student’s relative ability from our previous knowledge of 

them and background questionnaire they answered regarding the scope of their 

previous experience, particularly with regards to object-oriented programming (in 

Java) and design, class diagram, and software metrics. Then the pairs were formed 

to balance abilities. All the students had previous experience with object-

orientation and class diagrams in academy. Two of them had experience with 

these techniques in the industry context. None of them had previous experience 

with software metrics. 
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The conventional metrics group worked with the following metrics: 

Coupling Between Object Classes (CBO), Lack of Cohesion in Methods (LCOM), 

Weighted Methods per Class (WMC), described in (Section 2.4), as well as the 

metrics Number of Attributes (NOA) and Number of Methods (NOO), which 

merely count the number of attributes and methods of each class, respectively. 

The concern-driven metrics group worked with the metrics Concern Diffusion 

over Classes (CDC), Concern Diffusion over Operations (CDO) and Lack of 

Concern-based Cohesion (LCC) (Sections 5.3.1 and 5.3.3). The hybrid metrics 

group worked with all these metrics. The study was preceded by a training session 

in order to allow the participants to familiarize themselves with these metrics and 

the target bad smells. 

 At the beginning of the study execution, the participants were then given a 

document containing: (i) a partial view of the Health Watcher object-oriented 

design (class diagram), (ii) an introduction Health Watcher functionalities and 

non-functional requirements, (iii) a brief explanation of the design, and (iv) a brief 

description of the concerns involved in the Health Watcher design, namely 

graphical user interface (GUI), business, concurrency, distribution, exception 

handling, and persistence. This document also described steps and guidelines the 

students should follow to conduct the study, the questions they should answer and 

information they should register. Appendix B presents the mentioned document. 

In addition, we provided the students with the results of the metrics 

application. Each group only had access to the results referent to the metrics they 

were assigned to work with. Appendix B presents tables of the results of all used 

metrics. Each group was asked to perform the following steps: 

• Read the description of the Health Watcher design; 

• Based on the metrics results, identify the classes with the highest 

probability of having the bad smell Divergent Change; and 

• Based on the metrics results, identify the classes with the highest 

probability of having the bad smell Shotgun Surgery. 

The time spent on each of these tasks was registered by each group. In order 

to identify the classes with bad smells, we asked them to reason about the metrics 

and identify which of them (one, some, or all) are relevant indicators based on the 

bad smell description. Also, we asked each group to explain which metrics they 

used for detecting the bad smell and which ones were not useful at all. 
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8.2.2. 
Hypothesis and Results 

The hypothesis we wanted to test in this study was that the hybrid metrics 

suite is the most effective to support detection of design bad smells. The basic 

intuition behind this hypothesis is that the more metrics we can use, the more 

equipped you are to identify the design flaws. In order to test this hypothesis, we 

compared the actual instances of the bad smells with the classes identified by each 

group as the strongest candidates of having the bad smells. Before the study was 

executed, we played the oracle role to determine which classes were affected by 

the bad smells, based on our extensive knowledge of the HealthWatcher system 

and its releases. In order to do that, we checked out the source code of 

HealthWatcher and observed comments and changes made by real developers 

while refactoring the Java to AspectJ version of this system. We identified twelve 

classes affected by Divergent Change and eight by Shotgun Surgery. 
 

Table 29 shows for each group and each bad smell: (i) the time spent on the 

identification of the bad smell, and (ii) the number and percentage of hits, and the 

number and percentage of false positives. A hit occurs when the group identified a 

class which was in our list of classes affected by the bad smell. A false positive 

occurs when the group identified a class which was not in our list. The percentage 

of hits is calculated dividing the number of hits by the number of classes in our 

list: 12 for Divergent Change, and 8 for Shotgun Surgery. The percentage of false 

positives is calculated dividing the number of false positives by the total number 

of classes identified by the group. 
 

 Conventional 
Metrics 

Conventional 
Metrics 

Concern-driven 
Metrics 

Hybrid Metrics 

Divergent Change Identification 
Time 
(minutes) 9 10 21 31 

Hits 2 (17%) 2 (17%) 12 (100%) 9 (75%) 
False positives 1 (33%) 2 (50%) 7 (36%) 0 (0%) 

Shotgun Surgery Identification 
Time 
(minutes) 6 10 13 35 

Hits 1 (12%) 1 (12%) 6 (75%) 1 (12%) 
False 
positives 3 (75%) 2 (33%) 11 (64%) 3 (75%) 
 

Table 29: Results - identification of Divergent Change and Shotgun Surgery 
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As far as the identification of classes affected by Divergent Change is 

concerned, we can observe in Table 29 that the two groups with conventional 

metrics performed significantly worse than the others. Both only obtained two hits 

(17%). Besides, 33% and 50% of the classes they indicated as suspects were false 

positives. Both conventional metrics groups reported that the most useful metric 

for identifying Divergent Change was Lack of Cohesion in Methods (LCOM) 

(Section 2.4). As a consequence, this result is in line with studies in the software 

metrics literature which states that LCOM is a problematic metric sometimes 

because it leads to a number of false positives and false negatives (Fenton & 

Pfleeger, 1999). This metric presented high values for classes with no design 

problems.  

Still regarding the Divergent Change bad smell, the group working with 

concern-driven metrics had 100% of hits, however 36% of false positives. In fact, 

we did not limit the number of classes to be listed by the groups. So the concern-

driven metrics group indicated a high number of classes as having Divergent 

Change (19 classes). Nevertheless, as shown in the study guideline form 

(Appendix B), we asked the students to rank their list of classes with the ones with 

highest probability of having the bad smell coming first. The twelve first classes 

in the list of the concern-driven group were exactly the same of our list. This 

group reported that they used the Lack of Concern-based Cohesion (LCC) metric 

to identify Divergent Change. The group working with the hybrid suite of metrics 

also performed well. This group had 75% of hits and none false positive. Lack of 

Concern-based Cohesion (LCC) and Lack of Cohesion in Methods (LCOM) were 

the metrics considered useful by this group. However, in this case, the presence of 

LCC was efficient to minimize the limitations of LCOM. 

We can also observe from Table 29 that the group working with 

conventional metrics did not perform well regarding the identification of the 

Shotgun Surgery bad smell either. They had just 12% of hits. Besides, one of the 

groups had 75% of false positives and the other 33%. Differently from the 

analysis of Divergent Change, the performance of the hybrid metrics group was 

not good for Shotgun Surgery identification: 12% of hits and 75% of false 

positives. Apparently the reason for the low performance of these three groups is 

the same: some conventional metrics (in general, size metrics) might have 

introduced “noise” in the design assessment. Metrics such as Number of 
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Operations (NOO), Number of Attributes (NOA) and Weighted Methods per 

Class (WMC) presented high values for classes not affected by the Shotgun 

Surgery bad smell. The group working with concern-driven metrics had again a 

high number of hits (75%), however an expressive number of false positives 

(65%). The reason for the high number of false positives was again the high 

number of listed classes. But again the correctly indentified classes were listed as 

having the highest probability of having the bad smell. This group reported that 

they used the Concern Diffusion over Components (CDC) metric to identify 

Shotgun Surgery. 

The study results partially contradict our hypothesis that the hybrid metrics 

suite would be the most effective to support detection of design bad smells. This 

occurred mainly because of the results associated with the Shotgun Surgery bad 

smell. In spite of the high number of false positives, the concern-driven metrics 

suite was the most effective for identifying the assessed bad smells. Apparently 

the high number of metrics hindered the analysis made by the hybrid metrics 

group. As we can see in Table 29, the group working with these metrics took the 

longest time to finish their tasks. This might be because they spent too much time 

analyzing non-useful measures for the bad smells under assessment. 

 

8.3. 
Study Constraints 

This section discusses some constraints related to the studies regarding 

detailed design metrics and heuristic rules. Similarly to the studies about 

architectural metrics, the conclusions obtained here are restricted to the assessed 

software systems and analyzed concerns. Results regarding advantages and 

drawbacks in using concern-driven metrics and heuristic rules obtained in these 

studies should not be directly generalized to other contexts. However, these 

studies allowed us to make useful evaluations on whether the use of concern-

driven metrics and heuristic rules for assessing design modularity would be worth 

studying further.   

The studies in this section involve concern-driven metrics, thus they suffer 

from limitations related to the fact that the process of assigning concerns to design 

elements directly impacts on the measurement results. In order to make this 
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process more systematic, we took here the same measures we took in the studies 

with architectural metrics (Section 7.5): (i) “pair mapping”, where the assignment 

of concerns to design elements was done by two people assisting each other, (ii) 

consultation of the actual system developers, when possible, and (iii) we followed 

the “remove concern – remove design element” guideline (Section 7.1). 

Other issue that limits the conclusions from the studies about detailed design 

metrics and heuristic rules is the fact that we played the role of the oracle while 

deciding which classes and aspects were affected by the design flaws. This could 

have biased the results mainly because the assessed concern-driven metrics were 

proposed by us. In order to minimize this issue, we consulted and observed 

comments of the real developers of the assessed systems as well as changes made 

by them to improve the design, especially during aspect-oriented refactoring.  

The evaluation studies showed that concern-driven metrics and heuristic 

rules are promising means of modularity flaws detection, and are usable in 

practice. However, it is clear that the number of systems used in the study is by no 

means statistically relevant. Besides, we have not used rigorous statistical 

methods in the empirical evaluation. Nonetheless, we are considering the sample 

representative of the population due to the heterogeneity of systems and concerns 

involved in this study. We have recently replicated this study with four other 

groups of undergraduate and master students (total of 30 students) at the Lancaster 

University and the results were similar with the ones presented here. We also 

included other bad smells (e.g. God Class (Riel, 1996)) in these new studies. 
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