
 152

7
Evaluation of the Architectural Metrics

The goal of this chapter is to evaluate the proposed concern-driven

architecture metrics in terms of their usefulness to assess design modularity. It is

also our goal to analyze to what extent concern-driven measurement is effective to

cope with the limitations of conventional measurement approaches. To this end,

we undertook three studies involving four systems (Sections 7.2, 7.3 and 7.4). We

have used the concern-driven architectural metrics (Section 4.3) to perform

modularity comparisons of two different architecture alternatives for each of the

four target systems.

 One of the alternatives is always an aspect-oriented (AO) architecture,

while the second alternative is based on one or more specific architectural styles

(Buschmann et al., 1996), herein referred as non-aspectual (non-AO) architecture.

The AO architecture versions are also based on a hybrid composition of other

conventional styles, which define the high-level design rules for the non-

crosscutting concerns in the architecture design. In two of these studies (Sections

7.3 and 7.4), we also evaluated the usefulness of the metrics in order to quantify

the impact of evolution changes in the modularity of the AO and non-AO

architectures. The main fundamental reasons for consistently comparing AO and

non-AO architectures are to:

• analyze to what extent the expected superiority of AO architectures in

terms of separation of concerns can, in fact, be observed (or not) at the

architectural stage based on our metrics suite;

• identify if architecturally-relevant crosscutting concerns, observed in

typical architectural styles – such a publish-subscribe and layered

architectures, can be effectively detected with our concern-driven

metrics suite;

• detect the efficacy of our concern-sensitive metrics suite to detect

inappropriate architectural decompositions using aspect-oriented

mechanisms; and

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 153

• observe the positive and negative impacts that the obtained separation of

concerns have in other equally-important modularity attributes in early

design stages, such as architectural coupling, intra-component cohesion,

and interface simplicity.

7.1.
Study Procedures

This section describes some procedures that were executed to configure our

empirical studies. The procedures presented here are common to the configuration

of most of the studies. Procedures specific to each study will be presented in the

preamble of the respective section describing the study. Before applying the

metrics two major steps had to be done: (i) conception of architecture description

whenever it was not available, and (ii) mapping of concerns to architecture

elements. The second step was also executed in the study about detailed design

metrics and heuristic rules (Chapter 8). In the following, we describe some

procedures involved in these two activities.

Describing the architectures.

This step consisted of defining and describing the architecturally-relevant

components, interfaces and operations that form the backbone of the architecture

designs. Both AO and non-AO architectures in the three studies were conceived

based on existing documentation and source code of the systems. First, we defined

the components based on existing information about the design provided by the

system’s documentation. For instance, the documentation of the Health Watcher

system contains a number of diagrams and natural language descriptions defining

that the non-AO version of this system is structured around four layers: user

interface, communication, business rules and data management (Soares et al.,

2002). Therefore, we initially described the Health Watcher architecture

consisting of four architectural components, each of them corresponding to a

layer. After analyzing class diagrams and source code, we also included

components for representing the transaction and concurrency control mechanisms.

In order to define the interfaces, operations and connections among them,

we relied on class diagrams and source code. Based on these artifacts, we checked

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 154

which classes and aspects were responsible to implement each component. Then,

we searched for classes and aspects forming the boundaries of each architectural

component, i.e. classes and aspects either used by or using classes of other

components; and aspects affecting classes and aspects of other components. In

order to define the interfaces and operations of an architectural component, we

used the following criteria:

• Methods of classes or aspects in an architectural component c invoked by

classes or aspects in an architectural component c’ are described as operations

of a provided interface of c and a required interface of c’. In addition these

interfaces are connected to each other.

• Pieces of advice of an aspect within an architectural component c which are

executed when methods of classes or aspects in an architectural component c’

are described as operations of a provided interface of c. This provided

interface is connected to the interface of c’ which encompasses the operation

representing the affected method. The connection is represented by means of

an aspectual connector (Section 3.2).

Operations derived from methods or pieces of advice of the same class or

aspect were usually grouped in the same interface. However, this is not a strict

rule. Therefore, operations derived from different classes and aspects can be

grouped in the same interface, if it makes sense. Besides, operations derived from

the same class or aspect can be separated in distinct interfaces.

Assigning design elements to concerns.

The process of assigning design elements to concerns is critical to the

success of the proposed measurement approach. In order to make the concern

assignment task more systematic and facilitate the task of reliably deciding which

design elements a concern should be assigned to, we followed a specific guideline

in our empirical studies: assign a concern to a design element if the complete

removal of the concern requires with certainty the removal or modification of the

element. This guideline is inspired on the guidelines proposed by Eaddy et al

(2007).

In addition, we undertook other procedures in order to support the concern-

to-design mapping: (i) the activity of assigning design elements to concerns was

done by two people assisting each other; we call this procedure as “pair mapping”,

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 155

and (ii) when possible, we consulted the actual developers of the systems

whenever we were unsure about the mapping. We executed these procedures and

followed the aforementioned guideline in the studies involving architectural

metrics and also in the studies with design heuristic rules.

We are aware that variations in the assignment may imply variations in the

measurement results. However, it is out of the scope of this work investigating

approaches to support the designer on deciding which design elements are related

to a concern. We plan to investigate this issue in the future (Section 9.2). Also,

this should not influence much our key research questions as we need to primarily

understand the extent that concern-based metrics and heuristics are useful

compared with conventional metrics.

7.2.
AspectT and MobiGrid study

The first study involved two systems, called AspectT (Garcia & Lucena,

2008; Garcia et al., 2004b, 2004c; Garcia, 2004) and MobiGrid (Barbosa &

Goldman, 2004; Lobato et al., 2008). In this study, we performed a pair-wise

comparison about the modularity of an aspect-oriented (AO) and a non-aspectual

(non-AO) architectural solution of the two systems. The goal of this study is to

evaluate how useful the concern-driven architectural metrics were in order to

point out modularity-related differences between the two solutions. Thus, this

study aims at verifying whether the metrics were able to show modularity-related

improvements and drawbacks brought by the aspect-oriented solution in

comparison to the non-AO one.

The assessment in this study included a subset of the metrics available in

our current suite. It involved metrics for concern diffusion, concern-based

cohesion, coupling between components (except Concern-Sensitive Coupling),

and interface complexity (Section 4.3). The concern-sensitive coupling metric and

the metrics for interaction between concerns were not used in this study as these

metrics were defined based on the actual experience obtained in this first study.

One of the systems used in this first study, named AspectT, is an aspect-

oriented agent framework (Garcia & Lucena, 2008; Garcia et al., 2004b, 2004c;

Garcia, 2004) for implementing different kinds of software agents, such as,

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 156

information and user agents. This framework have been used in the

implementation of two instance applications: (i) Portalware – a Web-based system

for the development of e-commerce portals (Garcia et al., 2004c), and (ii)

ExpertCommittee – a multi-agent system (MAS) for conference management

(Garcia et al., 2004b). Two versions of AspectT have been implemented using the

AspectJ (Kiczales et al., 2001, The AspectJ Team, 2007) and Java programming

languages.

The other system involved in this first study is called MobiGrid (Barbosa &

Goldman, 2004; Lobato et al., 2008). It is a mobile agent system within a grid

environment system. In this system, the agents can migrate whenever the local

machine is requested by its user. Mobigrid has also two versions implemented in

AspectJ and Java programming languages. Both versions encompass the usage of

common multi-agent platforms and frameworks, such as JADE (Bellifemine et al.,

1999), and Aglets (Lange & Mitsuru, 1998).

In the AspectT case, seven concerns were considered in the assessment

process. Six are agent-specific behavioral properties, namely adaptation,

interaction, autonomy, collaboration, mobility, and learning. The seventh concern,

called kernel, consists of the core functionalities of a software agent. These

concerns were chosen because these are the properties that should be reusable and

easily (un)plugged from the software architecture. As in the MobiGrid system the

architectural design was much more focused on modularising mobility-specific

issues, the code mobility property and the MobiGrid application were the

concerns considered in the assessment of this system’s architectures.

In this context, both systems were ideal for our investigation due to several

reasons. First, the chosen systems have stringent modularity requirements due to

the demand for producing adaptable and evolvable architectures. Hence, all the

system versions were developed with modularity principles as main driving

design criteria, thereby motivating the exploitation of aspect-oriented software

architectures. Second, the original non-AO architecture of each system was built

in different contexts, laboratories and groups of developers (Garcia & Lucena,

2008; Barbosa & Goldman, 2004). Finally, they are systems that involve emphasis

on uncommon crosscutting concerns, such as mobility, learning, autonomy, and

their distinct compositions. As a consequence, there was no guarantee when the

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 157

architectural choices were made that either the AO or non-AO architectural

solutions were superior with respect to modularity requirements.

The non-AO architectural designs of AspectT and MobiGrid are presented

in the following sections based on the UML 2.0 notation (OMG, 2005), while the

aspect-oriented architectures are described based on AOGA (Section 3.2.1).

Because of the use of the AOGA notation, we have to slightly adapt the definition

of our architectural metrics. The adaptation was needed because our metrics take

into account only provided and required interfaces (Section 4.2.1). AOGA

includes an additional type of interface, namely crosscutting interface. As

mentioned in Section 4.2.1, we consider only provided and required interfaces in

definition of our metrics, because these are the most common types of interfaces

in architecture description approaches, including aspect-oriented one. This makes

our metrics more generic and easier to adapt to different architecture description

languages.

The metrics adaptation merely consisted in treating crosscutting interfaces

as provided interfaces in the metrics computation. This is because crosscutting

interfaces plays a role very similar to the function played by provided interfaces:

they are responsible for externalizing services provided by aspectual components.

In fact, in some aspect-oriented architectural approaches, such as AO Visual

Notation and AspectualACME (Section 3.2), the externalization of services

provided by an aspectual component is done by a conventional provided interface.

These approaches do not include a different type of interface for components

playing the role of aspect.

Table 7 summarizes the configuration of the study presented in this section.

Sections 7.2.1 and 7.2.2 focus on describing the main AO and non-AO

architectural choices for both AspectT and MobiGrid systems. Section 7.2.3

presents measurement results, and Section 7.2.4 discusses them.

7.2.1.
The AspectT Architectures

Figure 46 shows the AspectT framework architecture described with the

AOGA graphical notation (Section 3.2.1). It defines a set of aspectual components

that address different agent concerns, such as interaction, autonomy, mobility, and

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 158

learning. Crosscuts relationships (Section 3.2.1) connect aspectual components

and the components they affect. Figure 47 shows a partial view of the operations

in the interfaces of three components: Kernel, Interaction and Adaptation.

Similarly to traditional interfaces in UML, a crosscutting interface is represented

by a rectangle with an extra compartment in the bottom of it (Figure 47). This

extra compartment represents the events and operations observed by the interface.

The first compartment represents operations to be executed when an observed

event is raised or observed operation is executed. This representation is inspired

on the ASideML modeling language (Chavez & Lucena, 2001; Chavez et al.,

2005). Following we describe the main components of the aspect-oriented

architecture and their respective relationships.

Study goal
Analyze the usefulness of the metrics in order to point out modularity-
related differences in the comparison of AO and conventional (non-
AO) architectures of the same system.

Study Activities

1. Conception of the architecture descriptions, according to the
procedure described in Section 7.1;

2. Mapping of architectural elements to the concerns, according to the
procedure described in Section 7.1;

3. Metrics application (manually);
4. Analysis of the measurement results, comparing the modularity of

the AO and non-AO architectures.
Target architectures AO and non-AO architectures of AspectT and Mobigrid systems.

Arch. description
approaches

UML 2.0 (OMG, 2005) for non-AO architectures;
AOGA (Section 3.2.1) for AO architectures.

Considered concerns
AspectT: adaptation, interaction, autonomy, collaboration, mobility,
and kernel;
MobiGrid: mobility agent property, and MobiGrid application.

Used Metrics

Concern Diffusion over Architectural Components (CDAC);
Concern Diffusion over Architectural Interfaces (CDAI);
Concern Diffusion over Architectural Operations (CDAO);
Lack of Concern-based Cohesion (LCC);
Architectural Fan-in (AFI);
Architectural Fan-out (AFO);
Number of Interfaces (NI);
Number of Operations (NO).

Metrics Adaptation Crosscutting interfaces in AOGA are regarded as provided interfaces
in the computation of the metrics

Table 7: AspectT and MobiGrid study configuration

The aspect-oriented architecture has the Kernel component as a central

element. This component defines four interfaces: (i) KnowledgeUpdating – used

to update the agent knowledge (belief, goal and plan), (ii) Services – which

allows exposing the agent services, (iii) PlanExecution – which exposes events

related to the execution of agents’ plans, and (iv) LearningKnowledge – used to

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 159

update the agent domain-specific knowledge based on machine learning

techniques. KnowledgeUpdating is a provided interface which defines operations

such as addBelief(), setGoal(), addPlan() and removePlan() (Figure 47). These

operations are called by other components, such as Adaptation and Autonomy in

order to update the agents’ knowledge (Figure 46).

Agent
Instantiation

Knowledge
Updating

Behavior
Adaptation

Kernel
Services

Knowledge
Adaptation

Travel

Message
Reception

Interaction

Adaptation

Execution
Autonomy

Autonomy

Binding

Collaboration

Message
Sending

Environment

Knowledge

Sensory

Information
Gathering

Learning
Knowledge

Learning

Decision
Making

Plan
Execution

Domain
Knowledge

Mobility
Behavior

Collaboration
Behavior

Legend:

component

provided interface
required interface

crosscutting interface

aspectual component

crosscuts relationship

Mobility

Figure 46: The AspectT architecture

A set of aspectual components are used to address different crosscutting

agent concerns. Each of them either introduces new behavior in other components

or refines the components’ behavior by observing specific services’ execution.

The Interaction aspectual component is used to modularize the crosscutting impact

on the use of communication architectures, such as JADE (Bellifemine et al.,

1999). The Interaction aspectual component specifies crosscutting interfaces for

message receiving (MessageReception) and for message sending

(MessageSending). For instance, the MessageSending interface observes events

raised by other components (outgoing message events) in order to know when it is

time to send a message.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 160

KernelServices
Domain

Knowledge

KnowledgeUpdating

addBelief()
setGoal()
addPlan()
removePlan()
…

KnowledgeUpdating

addBelief()
setGoal()
addPlan()
removePlan()
…

PlanExecution

planFail_event()
planFinish_event()
…
…

PlanExecution

planFail_event()
planFinish_event()
…
…

Interaction
Sensory

<<crosscutting_interface>>
MessageReception

receiveMessage()

incomingMessage_()

<<crosscutting_interface>>
MessageSending

sendMessage()
…

outgoingMessage_()

Adaptation

<<crosscutting_interface>>
KnowledgeAdaptation

adaptBelief()

newMessage_()
…

<<crosscutting_interface>>
BehaviourAdaptation

adaptBehavior()
…

failedPlan_()
finishedPlan_()

KnowledgeUpdating

addBelief()
setGoal()
addPlan()
removePlan()
…

KnowledgeUpdating

addBelief()
setGoal()
addPlan()
removePlan()
…

Legend:

component

provided interface
crosscutting interface

aspectual component

realization relationship
dependence relationship

Figure 47: Details of AspectT interfaces

Messages are sent by means of the execution of the SendMessage()

operation (Figure 47). For example, the MessageSending interface observes the

execution of the Mobility component; when an agent is about to move from the

current environment, the Mobility component raises an event by means of its

MobilityBehavior interface. Then, the Interaction component detects this event and

sends a message to the other agents informing them that an agent is leaving the

environment.

The Adaptation component intercepts the MessageReception interface of

the Interaction component by means of the KnowledgeAdaptation crosscutting

interface. By means of the KnowledgeUpdating required interface, it updates the

agent beliefs when new external messages are received. For instance, when a new

message about a moving agent is received, the Adaptation component detects it.

Then it uses the adaptBelief() operation in its KnowledgeUpdating interface

(Figure 47) to require the Kernel component to adapt the other agents’ belief,

making them aware about the moving agent.

The Autonomy aspectual component defines two crosscutting interfaces: (i)

DecisionMaking – affects the Interaction component to create new goals when

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 161

new external messages are received, and (ii) ExecutionAutonomy – associates the

agent with its own thread of control and also makes it possible the concurrent

execution of agent plans. The Collaboration, Mobility and Learning components

encompass crosscutting agent properties that are necessary only on specific agent

architectures. The Collaboration component contains two crosscutting interfaces:

(i) Knowledge – introduces new knowledge associated with roles to be played by

the agent, and (ii) Binding – affects specific services from the Kernel component

in order to instantiate new roles and attach them to the agent according to certain

conditions. It also contains a provided interface – CollaborationBehavior – which

raises collaboration events. The Interaction aspectual component observes these

events in order to know when it is time to send a message.

The Mobility aspectual component is used to overcome the crosscutting

nature of mobility concerns caused by the direct use of existing mobility platforms

(Lange & Mitsuru, 1998). The Mobility component uses the Travel interface to

introduce mobility capacities to the agent and to determine the execution points in

which the agent can be moved. Finally, the Learning component is responsible for

collecting information to execute its learning algorithms (InformationGathering

interface). It also introduces new learning-specific knowledge associated with

these algorithms (LearningKnowledge interface).

The AspectT framework has been developed as an alternative to an

equivalent non-aspectual mediator-based architecture, presented in Figure 48. The

latter defines a central component which mediates all the communication between

the other ones. The Kernel component plays this central role. In our evaluation

study involving AspectT, we used our metrics suite to assess the modularity of

AspectT architecture (Figure 46) in comparison with its equivalent non-AO

architecture (Figure 48)5.

7.2.2.
The MobiGrid Architectures

The original MobiGrid architecture ((Barbosa & Goldman, 2004) was

defined based on the object-oriented mobility framework provided by the Aglets

5 In both Figure 46 and Figure 48, each required interface is named the same as the

provided interface it is connected to.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 162

platform (Lange and Mitsuru, 1998), and follows a publisher-subscriber pattern

(Buschmann et al., 1996). Lobato et al (2008) extended the original MobiGrid so

as to make it flexible in the sense that not only Aglets, but also any other platform

could be used to provide mobility capabilities to the agents. To this end, they built

two versions of the MobiGrid system, an aspect-oriented (AO) and an object-

oriented (which we call non-AO), which modularized and separate the mobility

concern by means of different mechanisms. The former version used aspects and

the latter used the publisher-subscriber pattern. In our evaluation study, we

compared the modularity of the two versions.

MessageSending

RoleKnowledgeDecisionMaking

GoalCreation

Collaboration

Knowledge
Adaptation

Kernel

Knowledge
Updating Services

Interaction

Message
Sending

MessageReception

Sensory

MessageReception
Environment

Events

LearningMobility

RoleBinding

Traveling

Learning
Knowledge

Information
Gathering

Behavior
Adaptation

ExecutionAutonomy

Autonomy

Adaptation

Legend:

component

provided interface

required interface

Figure 48: Non-AO mediator-based architecture equivalent to AspectT architecture

In both solutions, the separation of the mobility concern and the integration

between MobiGrid and distinct mobility platforms respectively resulted in the

conception of two architectural components: MobilityProtocol and

MobilityManagement. Figure 49 illustrates the non-AO architecture, and Figure 50

presents the aspect-oriented one.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 163

ILifeCycle
Subscribe

IReference
Table

MobilityPlatformMobilityManagementMobilityManagement

IPlatform
Runtime

IReference
Observer

MobilityProtocolMobilityProtocol

IDestruction
Event

IPlatform
ServicesIMobileAgent

MobiGridIProtocol
Services

IMobileAgent
Protocol

IReference
MobileAgent

Legend:

component
provided interface
required interface

ILifeCycle
Publisher

IReference
Subscriber

IPlatform
Subscribe

IPlatform
Publisher

IApplication
Agent

IMobilityLifeCycle
Observer

IDestruction
Propagator

IInitialization
Event

IInitialization
Propagator

IMigration
Event

IInstantiation
Event

IInstantiation
Propagator

IMigration
Propagator

IMobilityLifeCycle
Subscriber

Figure 49: The non-AO MobiGrid architecture

IMobile
Element

IApplication
Agent

IDestruction
Event

MobiGrid

IReference
MobileAgent

IInitialization
Event

IMigration
Event

IInstantiation
Event

Legend:

component

provided interface

required interface

crosscutting interface

aspectual component

crosscutting relationship

MobilityProtocol

IReference
Table MobilityPlatform

IPlatform
Services

IMobileAgent

IPlatform
EventsIReference

Observer

IPlatform
RuntimeMobilityManagement

IMobileAgent
Protocol

Figure 50: The AO MobiGrid architecture

In both cases, the MobiGrid architecture is composed of four kinds of

components: (i) MobiGrid component, which modularises the basic concerns of an

agent-based application, (ii) MobilityProtocol component, which modularises the

mobility protocol execution – i.e., the instantiation, migration, remote

initialisation, and destruction of MobiGrid agents, (iii) MobilityManagement

component, which provides a flexible integration between MobiGrid and distinct

mobility platforms, and (iv) MobilityPlatform, which represents a specific mobility

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 164

platform being used, such as Aglets (Lange and Mitsuru, 1998) or JADE

(Bellifemine et al., 1999).

In both architectures, the main purpose of the MobilityProtocol component is

the explicit separation of the mobility concerns from the MobiGrid component. In

addition, the MobilityManagement component connects the MobiGrid with the

MobilityPlatform component, which modularises and externalises the platform

services.

The AO architecture in Figure 50 uses the crosscutting interface abstraction

(Section 3.2.1) to make it possible a clean modularization of the mobility concern

in the MobiGrid system. The MobilityProtocol component now implements a

generic mobility protocol in order to prevent the explicit invocations of the

mobility services by the MobiGrid component. Such explicit invocations happen in

the non-AO architecture due to the interaction constraints imposed by the

publisher-subscriber pattern. Therefore, we invert the way in which access to the

mobility services is typically designed in mobile agent systems.

To do that, the IMobileElement crosscutting interface is used to determine

when and how a mobile agent is instantiated on a platform to represent a specific

agent on the MobiGrid. This interface also triggers the agent migration to other

environments, since the mobile agent may have to migrate whenever elements of

the MobiGrid are called or executed. That is, the IMobileElement interface is used

to affect well-defined mobility join points in order to determine when MobiGrid

agents should move. Thus, the IMobileElement interface allows an explicit

separation of mobility issues from the other MobiGrid non-crosscutting concerns.

7.2.3.
Results

This section presents the results of the measurement process involving the

AspectT and MobiGrid architectures. The results presentation is broken in three

parts. The first part presents the results for the concern diffusion metrics. The

second part presents the results for the coupling and cohesion metrics. Finally, the

last part presents the results for the interface complexity metrics. The results are

shown by means of tables that put side-by-side the values of the metrics for the

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 165

AO and non-AO architectures of each system. For all the employed metrics, a

lower value implies a better result.

Concern Diffusion

In the quantitative evaluation of the AspectT framework, the data collected

for both AO and non-AO architectures show favorable results for the AO version

for most of the metrics. Table 8 presents the complete data collected for the

AspectT architectures considering the concern diffusion metrics. These metrics

count the total number of components, interfaces and operations dedicated to

realize a concern (Section 4.3.1).

Concern Diffusion over
Architectural
Components

(CDAC)

Concern Diffusion over
Architectural Interfaces

(CDAI)

Concern Diffusion over
Architectural Operations

(CDAO) Concerns

non-AO AO non-AO AO non-AO AO

Interaction 2 1 9 3 22 10

Adaptation 2 1 6 2 34 5

Autonomy 2 1 7 3 80 31

Collaboration 2 1 6 4 87 37

Mobility 2 1 3 3 35 20

Learning 2 1 4 2 16 6

Kernel 1 1 2 4 14 68

Table 8: AspectT: concern diffusion measures

We can observe differences between the AO and non-AO versions for all

the concern diffusion metrics. Table 8 shows that the non-AO architecture, which

follows the mediator pattern (Gamma et al., 1995), requires two components to

address each of the system concerns (CDAC metric), except for the kernel

concern. It happens because the Kernel component needs to inevitably embody

functionalities from the different concerns in addition to kernel-specific

functionalities. It occurs because the Kernel component plays the mediator role

and, as a consequence, propagates information relative to every concern to the

‘colleague’ components. For example, besides the Interaction component, the

interaction concern is also present in the Kernel component; the latter realizes an

interface, named MessageSending (Figure 48), exclusively dedicated to

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 166

cooperate with the Interaction component in order to send messages to the agent’s

surrounding environment.

On the other hand, the design of the Kernel component and its interfaces are

not affected by other concerns in the AO architecture. This occurs because the

Kernel component does not require or pass any information to the other

components. It only exposes events related to its basic functionalities which are

observed by the aspectual components affecting it. For instance, the Adaptation

aspectual component observes the execution of plans by means of the aspectual

connection between its BehaviourAdaptation crosscutting interface and Kernel’s

PlanExecution provided interface. When a plan is executed, Adaptation obtains

information about the executed plan and updates the agent knowledge.

We can also observe in Table 8 that the AO version requires fewer

interfaces (CDAI metric) and operations (CDAO metric) for most of the system

concerns with exception of the kernel concern. The kernel concern in the AO

version is represented by the Kernel component. This component needs to expose

new interfaces in the AO version to enable the aspectual components to observe

and get information about events related to its functionalities. However, all these

additional interfaces are part of the kernel concern and, therefore, separation of

architectural concerns is not hindered.

Table 9 shows the results for the concern diffusion metrics for both

MobiGrid architecture options. Again, the AO architecture performed better than

the non-AO one, which follows the publisher-subscriber pattern. As shown in

Table 9, the mobility concern is scattered over fewer architectural components in

the AO architecture (CDAC metric). This concern is present in four components

in the non-AO architecture, whereas it crosscuts only three components in the AO

architecture. This occurs because, in the non-AO architecture, the MobiGrid

component encompasses two mobility-related interfaces –

IMobilityLifeCycleObserver and IMobilityLifeCycleSubscriber – for explicitly

processing of mobility life cycle events. These events are captured by the

IMobileElement crosscutting interface in the AO architecture. Although this

difference does not seem to be significant, the AO architecture makes the

mobility-related interfaces unnecessary in the MobiGrid component.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 167

Concern Diffusion over
Architectural
Components

(CDAC)

Concern Diffusion over
Architectural Interfaces

(CDAI)

Concern Diffusion over
Architectural Operations

(CDAO) Concerns

non-AO AO non-AO AO non-AO AO

Mobility 4 3 23 13 407 326
Application
(MobiGrid) 1 1 1 1 18 18

Table 9: MobiGrid architectures: concern diffusion measures

The concern diffusion metrics also showed better results for the AO

architecture in terms of number of interfaces (CDAI metric) – 13 versus 32 – and

number of operations (CDAO metric) – 326 versus 407. This is mainly caused

because the MobilityProtocol and MobilityManagement aspectual components need

fewer interfaces and operations for handling events. This will be further discussed

in Section 7.2.4.

Architectural coupling and concern-based cohesion

Table 10 and Table 11 present the measurement for architectural coupling

and concern-based cohesion metrics considering, respectively, the AspectT and

MobiGrid architectures. The tables in this subsection also put side-by-side the

metrics values for the AO and non-AO architectures. However, as the values here

are per component (component point of view), the bottom of the tables also

provides the total values (sum of all the component measures) that represent the

results for the overall architecture point of view. The table bottom presents the

tally of all the component measures: the rows labeled ‘Total’ indicate the tally for

the system architecture, while rows labeled ‘Diff’ indicate the difference (in

percentage) between the AO and non-AO architectures for the system point of

view relative to each metric. A positive value means that the non-AO architecture

fared better, whereas a negative value indicates that the AO architecture exhibited

better results.

As we can observe in Table 10, there is an expressive coupling increase in

the non-AO AspectT architecture considering the number of requiring

components (Architectural Fan-in metric). The fan-in is 12 in the mediator-based

architecture, while it is nine in the AO architecture, representing a difference of

25% in favor of the latter. This occurs because the services of several aspectual

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 168

components in the AO version (e.g., Adaptation, Autonomy, and Learning) are not

requested by other components. This phenomenon is granted to the dependency

inversion promoted by AO architectures.

Lack of Concern-
based Cohesion (LCC)

Architectural Fan-out
(AFO)

Architectural Fan-in
(AFI) Components

non-AO AO non-AO AO non-AO AO

Kernel 7 1 6 0 5 5

Interaction 1 1 2 3 2 2

Adaptation 1 1 1 2 1 0

Autonomy 1 1 1 2 1 0

Collaboration 1 1 1 1 1 1

Mobility 1 1 1 2 1 1

Learning 1 1 0 1 1 0

Total 13 7 12 11 12 9
Diff –46.2% –8.3% –25.0%

Table 10: AspectT architectures: coupling and cohesion measures

Lack of Concern-
based Cohesion (LCC)

Architectural Fan-out
(AFO)

Architectural Fan-in
(AFI) Components

non-AO AO non-AO AO non-AO AO

Mobility Platform 1 1 1 0 1 1

Mobility Manager 1 1 2 1 2 1

Mobility Protocol 1 1 2 2 2 0

MobiGrid 2 1 1 0 1 1

Total 5 4 6 3 6 3
Diff –20.0% –50.0% –50.0%

Table 11: MobiGrid architectures: coupling and cohesion measures

As stated in Section 4.3.3, we assess the lack of cohesion of a component

counting the number of distinct concerns addressed by it, which is captured by the

Lack of Concern-based Cohesion (LCC) metric. LCC measurement resulted in

better results for the AO version (13 versus 7 = 46.2%). This superiority is

justified by the fact that in the mediator-based architecture the Kernel component,

besides realizing the kernel concern, needs to implement required interfaces

associated with the other six concerns. Hence, there is an explicit architectural

tangling in the Kernel component.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 169

The AO architecture of the MobiGrid system presented better outcomes in

terms of the two coupling metrics and in terms of the cohesion metric as well

(Table 11). The non-AO architecture exhibited architectural fan-out 50% higher

than the AO architecture. This difference is a consequence of the reduction of fan-

out in both MobiGrid and MobilityManagement components in the AO version,

since they do not have to explicitly call the MobilityProtocol component for

notifying events. Being an aspectual component, MobilityProtocol captures the

events by means of crosscutting interfaces.

MobilityPlatform also contributes for decreasing the fan-out, because it does

not need to be connected to the MobilityManagement component in order to notify

events. In this case, the aspectual MobilityManagement component observes the

events by means of its IReferenceObserver crosscutting interface. For the same

reasons, the architectural fan-in metric also showed worse results for the

publisher-subscriber version of the architecture (50% higher). In this case the fan-

in reduction is observed in the MobilityProtocol and MobilityManagement

components.

Interface Complexity

Table 12 and Table 13 show the results for the interface complexity metrics

for the AspectT and MobiGrid architectures, respectively. Regarding the AspectT

system (Table 12), the metrics demonstrate the modularity benefits obtained in the

AO version compared to the non-AO one. There was a bigger difference in the

number of interfaces specified for each version (37 versus 22 = 40.5%) which

favors the AO version. This difference is mainly due to the additional interfaces of

the Kernel component, but it is also thanks to the values collected for other

components. The increase in the number of interfaces metric for the mediator

version is also reflected in the number of operations. Table 12 shows that the

number of operations is 38.5% higher in the non-AO version. Again, it happens

because the Kernel component plays the mediator role and, as a consequence, it

has additional interfaces and operations to propagate information relative to every

concern to the other ‘colleague’ components.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 170

Number of Interfaces
(NI)

Number of Operations
(NO) Components

non-AO AO non-AO AO

Kernel 16 4 115 68

Interaction 5 3 13 10

Adaptation 4 3 29 5

Autonomy 4 3 49 31

Collaboration 4 4 47 37

Mobility 2 3 19 20

Learning 2 2 16 6

Total 37 22 288 177
Diff –40.5% –38.5%

Table 12: AspectT architectures: interface complexity measures

Number of Interfaces
(NI)

Number of Operations
(NO) Components

non-AO AO non-AO AO

Mobility Platform 4 3 185 176

Mobility Manager 9 4 155 124

Mobility Protocol 8 6 61 26

MobiGrid 3 1 24 18

Total 24 14 425 344
Diff –41.7% –19.1%

Table 13: MobiGrid architectures: interface complexity measures

The use of aspects had a strong positive influence in the interface

complexity of the MobiGrid architectural components, as shown in Table 13. For

the non-AO architecture, the number of interfaces was more than 40% higher than

in the AO solution. Also, the number of operations was higher in the non-AO

solution (19.1%). The main reason for this result is the decrease on the number of

required interfaces of the MobilityManagement aspect. In the non-AO solution, the

conventional component has four required interfaces to propagate four mobility

events relative to the initialization, migration, destruction and instantiation of

agents. These events are observed by the IReferenceObserver interface and

propagated to the MobilityProtocol component.

On the other hand, in the AO solution, the aspectual component

MobilityProtocol affects the IReferenceObserver interface and directly observes

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 171

the events when MobilityPlatform notifies them. Hence, the required interfaces to

propagate them are not necessary. Moreover, the inferiority of the non-AO version

in the number of interfaces is granted to the fact that it needs additional pairs of

subscription interfaces involving the collaboration of the components

MobilityManagement and MobilityPlatform, and the components MobilityProtocol

and MobiGrid components.

7.2.4.
Discussion

This section provides a more general analysis with respect to the results

previously presented and discusses how the metrics were useful to point out

modularity anomalies. The use of the architectural metrics allowed us to observe:

(a) modularity-related differences in the investigated architectures, (b) the

manifestation of certain crosscutting concerns in the architectural stage, and (c)

when AO architectures are well designed, they can also affect positively other

equally-important modularity attributes in addition to separation of concerns.

Moreover, the results show that the joint use of concern-driven and conventional

metrics is a promising approach to improve architecture modularity assessment.

We also discuss some limitations observed in the study as well. In fact, the issues

discussed here inspired us to define new metrics such as Concern-Sensitive

Coupling (Section 4.3.4) and Number of Concern Interfaces (Section 4.3.5),

which are used in the next study. Our observations are classified into three main

categories: (a) crosscutting concerns, (b) bidirectional architectural coupling, and

(c) architectural interface bloat.

Crosscutting concerns

A crosscutting concern is a concern scattered over multiple design modules

and tangled with other concerns (Tarr et al., 1999). The concern diffusion

measures supported the identification of scattered concerns. For instance, the

results of the Concern Diffusion over Architectural Components metric showed

that the interaction property is scattered over two components in the non-AO

AspectT architecture (Table 8). In addition, the results of the Lack of Concern-

based Cohesion metric showed that the Kernel component embodies seven

concerns in the non-AO AspectT architecture.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 172

Checking the concerns addressed by the Kernel component, we see that one

of these concerns is the interaction property. Therefore, the interaction property

may be considered as a crosscutting concern, since it is spread over multiples

components and tangled with other concerns. Thus, the joint use of Concern

Diffusion over Architectural Components and Lack of Concern-based Cohesion

metrics seems promising to identify crosscutting concerns. Nevertheless, it still

requires checking the components with more than one concern to identify the

concerns tangled in each component. This limitation motivates us to define

metrics for quantifying interaction between concerns (Section 4.3.2), which are

used in the study presented in the next section.

Bidirectional architectural coupling

After a careful joint analysis of the MobiGrid and AspectT architectures, we

observed that both non-AO options – i.e., the mediator-based and the publisher-

subscriber designs – imposed some undesirable bidirectional couplings. In the

mediator architecture, all the ‘colleague’ components need to inevitably have

references to the ‘mediator’ component and vice-versa. Similarly, in publisher-

subscriber architecture, all the ‘subscriber’ components need to know the

‘publisher’ components and vice-versa.

Even though these architectural solutions overcome the problem of direct

couplings between colleagues and between subscribers, the AO architectural

solutions for both MobiGrid and AspectT systems have reduced even more the

overall architecture couplings by making almost all the inter-component

relationships unidirectional (aspectual components affect the components). For

example, the Kernel component has the fan-out zero in the AO version of the

AspectT architecture, against six in the non-AO version (Table 10). The use of

aspectual components removed the agent properties (interaction, adaptation, etc.)

from the Kernel component and, as a consequence, removed the coupling imposed

by these concerns to the component.

This phenomenon is observed mostly from the Architectural Fan-in and

Architectural Fan-out measures (Table 10 and Table 11), which showed the

decrease on the degree of coupling, and the Lack of Concern-based Cohesion

metric, which showed the decrease on the number of concerns in the Kernel

component. However, grasping that the decrease of coupling is related to the

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 173

decrease on the number of concerns is not straightforward. In order to reduce this

limitation, we proposed the Concern-Sensitive Coupling metric (Section 4.3.4),

which quantifies the contribution of each concern to the coupling of a component.

Architectural interface bloat

The inter-component interaction constraints defined by the mediator-based

and publisher-subscriber architectures did not scale respectively in the AspectT

and MobiGrid systems, causing a complexity increase in the component

interfaces. Such constraints have influenced the definition of extra operations and

additional interfaces for the sake of realizing certain agent concerns, such as

mobility and learning issues. For example, the evidence of interface bloat can be

observed in several parts of both non-AO architectures. As discussed in Section

7.2.3, the Kernel component in the AspectT design (Table 12) and the MobiGrid

component (Table 13) had clearly much ‘wider boundaries’ respectively due to

their needs of mediating inter-component conversations and handling event

subscriptions and notifications.

In the particular case of MobiGrid, the event propagation is an issue that

crosscuts the modularity of all the four architectural components. Again, the joint

analysis of the results of interface complexity metrics and the Lack of Concern-

based Cohesion metric showed that the realization of certain concerns imposed an

increase on the interface size of certain components. Based on this observation,

we proposed the Number of Concern Interfaces metric (Section 4.3.5), which

quantifies the contribution of each concern to the number of interfaces of a

component.

7.3.
Health Watcher study

This study involved a typical Web-based information system, called Health

Watcher, and consisted of a pair-wise comparison about the modularity of AO and

non-AO architectural designs of the system. Similarly to the study with AspectT

and MobiGrid (Section 7.2), the goal of this study is to evaluate the usefulness of

the concern-driven architectural metrics in order to find out modularity-related

differences between the two solutions. However, in the assessment of Health

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 174

Watcher architectures, we included new metrics not used in the previous study,

namely the concern-sensitive coupling metric and metrics for interaction between

concerns.

This study also included a step where we used the metrics for analyzing the

modularity of the Health Watcher architectures in the context of evolutionary

scenarios. A series of changes was undertaken in the implementation of both AO

and non-AO versions of Health Watcher (Greenwood, 2007a), and we applied the

metrics before and after these changes. The goal of this step was to analyze how

the metrics performed in order to assess the impact of evolution changes in the

architecture modularity. We further describe the procedures of this step in the last

part of Section 7.3.2.

Health Watcher is a Web-based information system that supports the

registration and management of complaints to the public health system. This

system was selected because it met a number of relevant criteria for our intended

evaluation. First, it is a real system with existing Java and AspectJ

implementations (each around 4000 lines of code). The first Health Watcher

release of the Java implementation was deployed in 2001 by the Public Health

System in Recife, a city located in the north of Brazil (Soares et al, 2002). Since

then, a number of incremental and perfective changes have been addressed in

posterior Health Watcher releases.

Second, this system has been served as a kind of benchmark for the

assessment of contemporary modularization techniques, such as AOSD (Filho et

al., 2007; Greenwood et al., 2007a; Pinto et al., 2007; Kulesza et al., 2006;

Sampaio et al., 2007; Silva et al., 2007; Soares et al., 2002). In addition, the

Health Watcher was suggested as the target system for case studies in the

submissions to the Early Aspects at ICSE: Workshop in Aspect-Oriented

Requirements Engineering and Architecture Design (Early Aspects at ICSE,

2007). Third, both object-oriented and aspect-oriented designs of the Health

Watcher system were developed with modularity-driven requirements, such as

reusability and maintainability, as main driving design criteria.

The concerns considered in the measurement process of this study were

concerns typically found in information systems: graphical user interface (GUI),

distribution, business rules, concurrency, persistence and exception handling.

Table 14 summarizes the configuration of the study presented in this section.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 175

Section 7.3.1 focuses on describing the main AO and non-AO architectural

choices for Health Watcher system. The architectures are described based on

UML 2.0 (OMG, 2005) and AO Visual Notation (Section 3.2.2). The metrics

definitions are compliant with the abstractions introduced by these two

architecture specification approaches, thus it was not necessary to adapt them.

Section 7.2.3 presents measurement results, and Section 7.2.4 discusses them.

Study goals

Analyze the usefulness of the metrics in order to: (i) point out
modularity-related differences in the comparison of AO and
conventional (non-AO) architectures of the same system, and (ii) assess
the differences on the impact of evolution changes in the modularity of
both architecture versions.

Study Activities

1. Conception of the architecture descriptions, according to the
procedure described in Section 7.1;

2. Mapping of architectural elements to the concerns, according to the
procedure described in Section 7.1;

3. Metrics application (manually);
4. Analysis of the measurement results, comparing the modularity of

the AO and non-AO architectures;
5. Implementation of six change scenarios in both AO and non-AO

versions;
6. Update of the architecture description in order to reflect the changes;
7. Update the concern-to-design mapping;
8. Application of the metrics (manually);
9. Analysis of the measurement results, assessing the impact of changes

in the architecture modularity.
Target architectures AO and non-AO architectures of the Health Watcher system.

Arch. description
approaches

UML 2.0 (OMG, 2005) for the non-AO architecture;
AO Visual Notation (Section 3.2.2) for the AO architecture.

Considered concerns Graphical user interface (GUI), distribution, business, concurrency,
persistence and exception handling.

Used Metrics

Concern Diffusion over Architectural Components (CDAC);
Concern Diffusion over Architectural Interfaces (CDAI);
Concern Diffusion over Architectural Operations (CDAO);
Component-level Interlacing Between Concerns (CIBC);
Interface-level Interlacing Between Concerns (IIBC);
Operation-level Overlapping Between Concerns (OOBC)
Lack of Concern-based Cohesion (LCC);
Concern-Sensitive Coupling (CSC);
Number of Interfaces (NI);
Number of Operations (NO).

Metrics Adaptation Not necessary

Table 14: Health Watcher study configuration

7.3.1.
The Health Watcher Architectures

Figure 51 illustrates a graphical representation of non-AO architecture of the

Health Watcher system based on UML 2.0 notation (OMG, 2005). Figure 52

presents the aspect-oriented version of the Health Watcher architecture based on

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 176

the AO Visual Notation (Section 3.2.2). Both the non-AO and AO architectural

designs are mainly determined by the conjunctive application of both client-server

and layered architectural styles (Buschmann et al, 1996).

Six main architectural concerns were considered in the Health Watcher

architectural design: graphical user interface (GUI), distribution, business,

persistence, concurrency and exception handling. The first four are represented by

layers in the non-AO solution (Figure 51); however the distribution concern has

been aspectized and is no longer a layer in the AO version (Figure 52). Table 15

briefly explains the Health Watcher’s architecture elements correlating them to

the concern they address. Figure 51 and Figure 52 also show how the concerns are

spread over the architecture as already described in Section 6.3.2.

GUI_ELEMENTS

DISTRIBUTION_
MANAGER

ManageDistributedInfo InitConnection

DATA_MANAGER

PersistenceMechanism

TransactionControl

CONCURRENCY_
CONTROL

Complaint
Repository

Disease
Repository

Symptom
Repository

Employee
Repository

HealthUnit
Repository

Speciality
Repository

SyncControl

Distribution
GUI

Business

Persistence
Concurrency

G
D
B
P
C

P

C

G

D

C

P

Address
Repository

TRANSACTION_
CONTROL

P P

Exception HandlingE

P

PPPPPPP

D

E

E E E E E E E E

E E E E E E E E

P
E

P
E

E

E

P
D

E
ConnectionDistributedInfoServices

InfoServices

ManageInfo

UseTransaction
Control

InitPersistenceMechanism

UseSync
Control

C
on

ce
rn

s

Manage
Complaint

Manage
Disease Manage

Symptom

Manage
Employee Manage

HealthUnit

Manage
Speciality Manage

Address

Legend:

E

E

BUSINESS_RULESB
E

BUSINESS_RULESB
E

Timestamp
Control

UseTimestamp
Control

C

Figure 51: Non-AO architecture of the Health Watcher system

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 177

Address
RepositoryTransaction

Control

Complaint
Repository

Disease
Repository

Symptom
Repository

Employee
Repository

HealthUnit
Repository

Speciality
Repository

BUSINESS_RULES

DATA_MANAGER

Persistence
Mechanism

Client DistributionClient DistributionClient DistributionDISTRIBUTION_
MANAGER

CONCURRENCY_
CONTROL

Timestamp
Control

GUI_ELEMENTS

ManageInfo InitConnection

InfoServices Connection

Manage
Address

Manage
Complaint

Manage
Disease

Manage
Symptom

Manage
Employee

Manage
HealthUnit

Manage
Speciality

ConcurrencyControl

Distribution
Services

Distribution

GUI

Business

Persistence
Concurrency

G
D
B
P
C

Exception
Handling

E

C
on

ce
rn

s
P P P P P P P

P

E E E E E E E

B

G

D

C

E

E

Exception
Handling

E

TRANSACTION_
CONTROL

TRANSACTION_
CONTROL

P

E

E

Legend:
component

provided interface

required interface

aspectual connector

Figure 52: Aspect-oriented architecture of the Health Watcher system

Concern Description
GUI The GUI_Elements component provides a Web interface for

the system.
Distribution The Distribution_Manager component externalizes the system

services at the server side and support their distribution to the
clients

Business The Business_Rules component defines the business
elements and rules

Persistence The Data_Manager and Transaction_Control components
address the persistency concern by storing the information
manipulated by the system and providing transaction control,
respectively.

Concurrency The Concurrency_Control component provides control for
avoiding inconsistency in the information manipulated by the
system

Exception
Handling

Exceptional events are raised and handled by the components.

Table 15: Health Watcher architectural concerns

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 178

In the Health Watcher system, complaints are registered, updated and

queried through a Web client represented by the GUI_Elements component. These

services are provided by the Business_Rules component by means of the

InfoServices interface. In the non-AO version, the GUI_Elements component

accesses the Business_Rules’ services through the Distribution_Manager

component. This component allows client (GUI_Elements) and server

(Business_Rules) to be distributed in different computers and supports the remote

communication between them. In the AO version, Distribution_Manager is an

aspectual component, which makes the remote access to the Business_Rules

component transparent to GUI_Elements.

The Data_Manager and Transaction_Control components address the

persistence concern which includes data storage, connection and transaction

control. In the non-AO version, the Business_Rules component invokes the

Transaction_Control’s services, such as begin transaction and commit transaction,

when a data-related operation is executed in its InfoServices interface. In the AO

solution, Transaction_Control is an aspectual component which affects the

InfoServices interface and executes the transaction control services when an

operation is executed in that interface.

The concurrency concern is addressed by the Concurrency_Control

component which, similarly to Transaction_Control, is invoked by the

Business_Rules component in the non-AO architecture, and affects its interfaces

in the AO solution. The Concurrency_Control deals with different facets of

concurrency, including the timestamp. Timestamp is a technique used to avoid

object inconsistency. This problem can occur when two copies of an object are

retrieved by different requests before one of them can update its version. The

technique uses a timestamp field to avoid object updating if there is a newer

version of it stored in the persistence mechanism.

7.3.2.
Results and Discussion

This section presents the results of the measurement process involving the

Health Watcher architectures and discusses how the concern-driven metrics tackle

the limitations of conventional architecture metrics. The results presentation is

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 179

broken in five parts. The first four parts present the results about the comparison

between the AO and non-AO architectures and discuss how they support

overcoming the limitations of conventional metrics (Section 1.2). The last part

describes the application of the metrics in different releases of both versions of the

architecture (evolution scenarios). Most of the results are shown by means of

tables that put side-by-side the values of the metrics for the AO and non-AO

architectures of each system.

Identification of non-localized concerns

Table 16 presents the measures for concern diffusion relative to the AO and

non-AO versions of the Health Watcher architectures. The results show that most

of the concerns are spread over more architecture elements in the non-AO

solution. For instance, in the non-AO architecture, the persistence concern affects

more components (CDAC metric) – 5 vs. 2, more interfaces (CDAI metric) – 22

vs. 10 – and more operations (CDAO metric) – 154 vs. 46. This occurs mainly

because in the AO solution the persistence-specific exceptional events are

modularized within the Transaction_Control aspectual component and, as a

consequence, do not need to be addressed by the interfaces of Business_Rules,

Distribution_Manager and GUI_Elements components as in the non-AO solution.

Concern Diffusion
over Architectural

Components (CDAC)

Concern Diffusion
over Architectural
Interfaces (CDAI)

Concern Diffusion
over Architectural

Operations (CDAO) Concerns

non-AO AO non-AO AO non-AO AO

GUI 1 1 2 2 14 14

Distribution 2 1 4 1 51 16

Business 1 1 8 9 57 57

Persistence 5 2 22 10 154 46

Concurrency 2 1 4 2 8 4

Exception
Handling 5 4 22 11 156 52

Table 16: Health Watcher: concern diffusion measures

The exception handling concern is scattered over five components in the

non-AO architecture against four in the AO version (CDAC metric). Although

this difference does not seem to be significant, the difference in terms of

interfaces and operations is much higher in favor of the AO solution: 22 vs. 11

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 180

interfaces (CDAI), and 154 vs. 46 operations (CDAO). This happens because the

only component from where the exception handling concern is totally removed in

the AO solution is the Business_Rules. However, this is the component with the

higher number of interfaces and operations, and almost all of them are affected by

the exception handling concern in the non-AO solution.

Similar situation occurs in the case of the distribution concern. The

difference in favor of the AO architecture is only high in terms of interfaces and

operations. This reason for that is because the Distribution_Manager component

needs three interfaces in the non-AO solution and only one in the AO version.

Moreover, a number of operations in the ManageDistributedInfo interface

(GUI_Elements component) deals with distribution-related exception, which is no

longer necessary in the AO architecture.

Identification of dependencies between architectural concerns

Table 17 presents the outcomes for interaction between concerns (CIBC,

IIBC and OOBC metrics). The results show that modularizing some concerns with

aspectual components decreases the interlacing between concerns at the

component level in the AO architecture. For instance, note that the business

concern is interlaced with three concerns at the component level (CIBC metric) in

the non-AO architecture against none in the AO version.

Component-level
Interlacing Between

Concerns (CIBC)

Interface-level
Interlacing Between

Concerns (IIBC)

Operation-level
Overlapping Between

Concerns (OOBC) Concerns

non-AO AO non-AO AO non-AO AO
GUI 3 1 3 0 0 0
Distribution 3 1 3 1 1 1
Business 3 0 2 0 0 0
Persistence 5 1 4 1 1 1
Concurrency 3 0 0 0 0 0
Exception
Handling 5 2 4 2 2 2

Table 17: Health Watcher: interaction between concerns measures

Checking the architecture description (Figure 51) and concern templates

(Section 6.3), we can see that one of these three concerns is the persistence

concern. One of the causes of this interlacing is the TransactionControl required

interface (Figure 51), which is related to the persistence concern, in the

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 181

Business_Rules component. This interface is not necessary in the AO

architecture, because the Transaction_Control aspectual component provides the

transaction control service by capturing the requisitions to the data-related

services directly in the InfoServices provided interface (Figure 52).

The CIBC results for the business concern (Table 17) complement the

results provided by the concern diffusion metrics (Table 16). The latter say that

the business concern is localized in only one component in both versions. The

former say that, although well localized, the business concern interacts with three

other concerns in the non-AO architecture (Table 17). This occurs because the

Business_Rules component, which is mainly responsible for addressing the

business concern, has some parts (interfaces and operations) affected by these

other three concerns (persistence, concurrency and exception handling) in the non-

AO architecture.

The interaction related to interface-level interlacing is also lower in the AO

solution (Table 17). For instance, the persistence concern is interlaced with four

other concerns at the interface level in the non-AO architecture, against only one

concern in the AO solution (IIBC metric). This is due the fact that persistence-

specific exceptional events are spread over interfaces of the Business_Rules,

Distribution_Manager and GUI_Elements components in the non-AO architecture.

On the other hand, in the AO solution, these events are handled by the

Transaction_Control aspectual component which captures them directly in the

provided interfaces of the Data_Manager component (Figure 52).

Finally, the results regarding the metric for operation-level overlapping

(OOBC) show that the AO solution for the Health Watcher architecture was not

able to reduce this kind of concern interaction (Table 17). In both AO and non-AO

architectures the exception handling concern are overlapped with the persistence

and distribution concerns due to the exceptional events specific to these two

concerns. Even though these two concerns are modularized within aspectual

components, the interfaces of these components still have to include the

exceptional events.

Identification of unstable components

The results for the Lack of Concern-based Cohesion metric (LCC) (Table

18), which counts the number of concerns per component, says that there are four

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 182

concerns in the Business_Rules component in the non-AO architecture against

only one in the AO solution. Therefore, this component is more instable in the

non-AO architecture in the sense that it is subject to the influence of more

concerns in this version of the architecture. Changes relative to business,

persistence, concurrency and exception handling may cause changes in the

Business_Rules component. Note that unlike the results for the metrics in the

previous tables of this section, the results for the metrics on Table 18 are gathered

per component.

Lack of Concern-based
Cohesion (LCC) Components

non-AO AO

GUI_Elements 4 2

Distribution_Manager 3 2

Concurrency_Control 1 1

Business_Rules 4 1

Transaction_Control 2 2

Data_Manager 2 2

Table 18: Health Watcher: concern-based cohesion measures

The architectural fan-out metric (AFO) (Section 4.3.6) is a conventional

metric which quantify a dominant attribute, namely coupling. Fan-out metrics are

usually used to quantify the instability of a component (Martin, 1997). Its value

for the Business_Rules component (AFO = 3) would suggest that this component

is one of the most unstable in the non-AO architecture, since it is coupled to three

other components: Transaction_Control, Concurrency_Control and

Data_Manager. Changes in these components would ripple effects to the

Business_Rules. However, this metric is not able to suggest that the

GUI_Elements is also one of the most unstable components in the non-AO

architecture. This component is coupled to only one component

(Distribution_Manager); nevertheless it may be changed because of changes

relative to three concerns besides the GUI concern: persistence, distribution and

exception handling. This information can be obtained by means of the Lack of

Concern-based Cohesion metric.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 183

Breaking the tyranny of the dominant architectural modularity attributes

Table 19 presents the results for the Number of Interfaces (NI) and Number

of Operations (NO) metrics. Analyzing the results for these conventional metrics,

we can see that two components, namely Distribution_Manager and

Business_Rules, have more complex interfaces in the non-AO architecture. For

instance, the Business_Rules component has more interfaces (12 vs. 9) and more

operations (66 vs. 57) in the non-AO architecture. GUI_Elements has the same

number of interfaces, but it has a slightly higher number of operations.

Number of Interfaces (NI) Number of Operations (NO)
Components

non-AO AO non-AO AO

GUI_Elements 2 2 17 14
Distribution_Manager 3 1 34 16
Concurrency_Control 2 2 4 4

Business_Rules 12 9 66 57
Transaction_Control 2 3 5 6

Data_Manager 7 7 40 40

Total 28 24 166 137

 Diff –14.3% –17.5

Table 19: Health Watcher: interface complexity measures

Although this information is important, concentrating the analysis only on

interface complexity attribute does not give us any clue about the reasons for that

difference. In this way, the results for the Lack of Concern-based Cohesion metric

(LCC) (Table 18) can complement this information in the sense that it shows that

those components which have more complex interfaces also have more concerns

affecting them in the non-AO solution. Therefore, these concerns can be one of

the causes for the higher interface complexity.

Nevertheless, the joint use of the metrics Lack of Concern-based Cohesion,

Number of Interfaces and Number of Operations still limits the modularity

analysis: it requires verifying in the architecture whether the difference in

interface complexity is really due to the difference in number of concerns. This

limitation can be overcome by using the Number of Concern Interfaces metric

(NCI) (Section 4.3.5), as shown in Figure 53.

Figure 53 presents the results of the Number of Concern Interfaces and

Concern-Sensitive Coupling metrics for the Business_Rules component in both

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 184

versions of the architecture. Each bar shows how each concern contributes to the

total value of the metric. The numbers in the bars represent the absolute value for

each concern. It is important to remember that the Number of Concern Interfaces

metric does not distingue between provided and required interfaces; and the

Concern-Sensitive Coupling metric takes into account only the fan-out type of

coupling, i.e., the coupling related to the “uses” relationship (Section 4.3.4)

The results for Number of Concern Interfaces metric clearly show that one

third of interfaces in Business_Rules are dedicated to other concerns (persistence

and concurrency) apart from the business concern in the non-AO architecture

(Figure 53 – first bar). This may indicate that removing persistence and

concurrency from this component would reduce the number of interfaces in 33%.

The number of interfaces was, in fact, reduced from 12 to 9 (25%) in the AO

version of the architecture (Figure 53), because an additional interface related to

the business concern was required in the this solution.

Business_Rules Component

8

9

1

1

2

1

2
1

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

non-AO AO non-AO AO

Number of
Concern
Interface

Number of
Concern
Interface

Concern-
Sensitive
Coupling

Concern-
Sensitive
Coupling

Concurrency

Persistence

Business

Number of Concern
Interfaces

Concern-Sensitive
Coupling

Figure 53: Business_Rules component: Number of Concern Interfaces and Concern-

Sensitive Coupling measures

Similar analysis can be done for the Concern-Sensitive Coupling metric. As

shown in Figure 53, concurrency and persistence concerns contributes to two

thirds of the coupling (fan-out) of the Business_Rules component in the non-AO

solution. This means that removing these concerns from the component, the

coupling might be reduced in the same proportion. In fact, these concerns no

longer exist in the Business_Rules component in the AO solution and, as a result,

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 185

the coupling (fan-out) is reduced from 3 two 1. This kind of analysis cannot be

done based only on conventional coupling metrics.

Applying the metrics in the context of evolution scenarios

We present here the results of using the metrics in the context of an

evolution scenario involving the Health Watcher system. This phase of the study

involved the implementation of a series of changes in both Health Watcher

versions (available from Greenwood et al. 2007c). The selected changes applied to

the Health Watcher system vary in terms of the types of modifications performed.

Some of them add new functionality, some improve or replace functionality, and

others improve the system structure for better reuse or maintainability. The

purpose was to expose the non-AO and AO implementations to distinct

maintenance and evolution tasks that are recurring in incremental software

development.

The changes originated from a variety of sources: the experience of the

original developers of Health Watcher including changes they would like to

implement (that were actually necessary) and changes from previous empirical

studies (Kulesza et al., 2006; Filho et al.; 2006). The remaining changes were

created by the students and researchers involved in this study, where certain

extensions and improvements that could be applied were identified. This ensured

a variety of change sources was used and, as a result, it would not artificially bias

the results in favor of one paradigm or another. Before the changes were applied,

the original developers of HW were consulted to confirm whether these changes

were valid. Each of the change scenarios is summarized in Table 20.

Having implemented the changes, we updated the architecture specification

in order to reflect the changes made in the code. Then we applied the concern-

diffusion metrics in both non-AO and AO architectures obtained with the changes.

The goal was to analyze the impact of the evolution changes in the architecture

modularity. The scenario which changes impact most in the architecture was

scenario 6 (Table 20). This occurred because this scenario demanded the addition

of a number of operations in the interfaces between each connected pair of

components. Thus, scenario 6 impacted the boundaries of almost every

component in the non-AO and AO architecture. In the non-AO architecture, it

affected the ManageDistributedInfo, DistributedInfoServices, ManageInfo and

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 186

InfoServices interfaces (Figure 51). In the AO architecture, the change affected

the ManageInfo, InfoServices and ServicesDistribution interfaces (Figure 52).

Scenario Change Impact
1 Applying the Command design pattern (Gamma, 1995) in

order to improve extensibility and ease the process of adding
new GUIs.

GUI_Elements

2 Ensure the complaint state cannot be updated once closed to
protect complaints from multiple updates.

Business_Rules

3 Encapsulate update operations to improve maintainability
using common software engineering practices.

Business_Rules

4 Improve the encapsulation of the distribution concern for
better reuse and customization.

GUI_Elements,
Distribution_Manager

5 Generalize the persistence mechanism to improve reuse and
extensibility.

Business_Rules,
Data_Manager

6 New functionality added to support querying of more data
types.

GUI_Elements,
Distribution_Manager,
Business_Rules,
Data_Manager

Table 20: Summary of the change scenarios

The measures showed that the persistence concern is more stable in the AO

architecture. As the persistence concern is not well modularized in the non-AO

architecture (as stated earlier), every operation added in scenario 6 had to address

the persistence concern. Each new operation had to consider the persistence-

specific exceptional events. The Concern Diffusion over Architectural Operations

metric (CDAO) (Chapter 4) highlighted that the number of operations containing

the persistence concern in the non-AO architecture increased 38 (from 154 to 192)

in the version produced after applying scenario 6. In comparison, the increase that

occurred in the AO architecture was just one operation.

7.4.
Mobile Media Study

This study involved a software product line (Clements & Northrop, 2002;

Pohl et al., 2005), called Mobile Media (Young & Murphy, 2005; Young, 2005).

The goal of this study is to evaluate the usefulness of the concern-driven

architectural metrics in order to assess the modularity degeneration of the Mobile

Media architecture along a series of evolution scenarios. To this end, changes

have been undertaken in both AO and non-AO versions of Mobile Media

architecture. Architectural metrics have been applied before and after these

changes so as to assess the impact of the changes in the architecture modularity.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 187

Mobile Media (Young & Murphy, 2005; Young, 2005) is a software product

line (Clements & Northrop, 2002; Pohl et al., 2005) for applications that

manipulate photo, music, and video on mobile devices, such as mobile phones. It

has about 3 KLOC and was developed based on a previous software product line

called Mobile Photo (Young & Murphy, 2005; Young, 2005), conceived at

University of British Columbia. In fact, in order to implement Mobile Media, the

developers extended the core implementation of Mobile Photo including new

mandatory, optional and alternative features.

The features addressed by a software product line are usually described by

means of feature models (Pohl et al., 2005). Figure 54 presents a simplified view

of the feature model of Mobile Media. In fact, this feature model represents the

Mobile Media features after the realization of all change scenarios, i.e. the

features addressed by the last release taken into account during this study. The

alternative features are just the types of media supported: photo, music, and/or

video. Examples of core features are: create/delete media, label media, and

view/play media. In addition, some optional features are: transfer photo via SMS,

count and sort media, copy media and set favorites. The core features of Mobile

Media are applicable to all the mobile devices that are JavaME enabled (Sun

Microsystems, 2007). The optional and alternative features are configurable on

selected devices depending on the provided API support. Mobile Media was

developed for a family of 4 brands of devices, namely Nokia, Motorola, Siemens,

and RIM (Young & Murphy, 2005; Young, 2005).

Video

Media

Music

Copy
Media

SMS
Transfer

Media
Management

Mobile
Media

Create/
Delete

Label
Media

View/Play
Media

Favourites

Photo

Figure 54: Simplified Mobile Media feature model

The study is divided in four phases: (i) implementation of change scenarios

which generated eight successive releases, (ii) definition of the aspect-oriented

and conventional architectures of the implemented releases, (iii) mapping of the

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 188

concerns to architectural elements in the architecture of each release, and (iv)

application of concern-driven architectural metrics. In the first phase, an

independent group of five post-graduate students was responsible for

implementing successive evolution scenarios in both AspectJ and Java versions of

the Mobile Media. A total of seven change scenarios were incorporated to the

base release of Mobile Media, which led to eight releases, available from

(Figueiredo et al., 2008c). Each new release was created by modifying the

previous one.

Table 21 summarizes the changes made in order to produce each release.

The scenarios comprise different types of changes involving mandatory, optional,

and alternative features, as well as non-functional concerns. Table 21 also presents

which types of change each release encompassed. Besides, in order to involve

typical changes in product line designs, the scenarios were selected based on the

consultation with professionals and researchers with long-term experience on the

development of software product lines.

Release Description Type of Change
R1 Mobile Photo core (Young & Murphy, 2005; Young, 2005)

R2 Exception handling included (in the AspectJ version, exception
handling was implemented according to (Filho et al., 2006, 2007)).

Inclusion of non-
functional requirement.

R3
New feature added to count the number of times a photo has been
viewed and sorting photos by highest viewing frequency.
Label feature changed in order to allow editing the photo’s label.

Inclusion of optional
feature.

Modification of
mandatory feature.

R4 New feature added to allow users to specify and view their favourite
photos.

Inclusion of optional
feature.

R5 New feature added to allow users to keep multiple copies of photos. Inclusion of optional
feature.

R6 New feature added to send photo to other users by SMS. Inclusion of optional
feature.

R7

New feature added to store, play, and organize music. The
management of photo (e.g. create, delete and label) was turned into an
alternative feature. All extended functionalities (e.g. sorting,
favourites and SMS transfer) were also provided.

Changing one mandatory
feature into two

alternative features.

R8 New feature added to manage videos. Inclusion of alternative
feature.

Table 21: Summary of the evolution scenarios implemented in Mobile Media

The second, third and forth phases of the study were undertaken according

to the procedures described in Section 7.1. The measurement process included

different types of concerns, such as optional features, mandatory features,

architectural pattern roles and non-functional concerns. Optional features were

selected because they are the locus of variation in software product lines and,

therefore, they have to be well modularized. The other type of concerns constitute

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 189

the core of the Mobile Media product line and also need to be investigated in

order to assess the impact of changes on them. Table 22 summarizes this study

configuration.

Study goals
Analyze the usefulness of the metrics in order to assess the differences
of the impact of evolution changes in the modularity of both AO and
non-AO architecture versions.

Study Activities

1. Implementation of change scenarios which generated eight releases
of both AO and non AO versions of the system;

2. Conception of the architecture description of the implemented
releases, according to the procedure described in Section 7.1;

3. Mapping of architectural elements to the concerns, according to the
procedure described in Section 7.1;

4. Metrics application (manually);
5. Analysis of the measurement results, assessing the impact of changes

in the architecture modularity.
Target architectures AO and non-AO architectures of the Mobile Media system.

Arch. description
approaches

UML 2.0 (OMG, 2005) for non-AO architectures;
AO Visual Notation (Section 3.2.2) for AO architectures.

Considered concerns

Sorting media, copying media and setting favorite media (optional
features).
Labeling media (mandatory feature).
Controller role of MVC pattern (Buschmann et al., 1996) (architectural
pattern role)
Exception Handling (non-functional concern)

Used Metrics

Concern Diffusion over Architectural Components (CDAC);
Concern Diffusion over Architectural Interfaces (CDAI);
Concern Diffusion over Architectural Operations (CDAO);
Component-level Interlacing Between Concerns (CIBC);
Interface-level Interlacing Between Concerns (IIBC);
Operation-level Overlapping Between Concerns (OOBC)
Lack of Concern-based Cohesion (LCC);

Metrics Adaptation Not necessary

Table 22: Mobile Media study configuration

7.4.1.
Mobile Media Architectures

Both non-AO and AO architecture of Mobile Media are mainly determined

by the use of the Model-View-Controller (MVC) architectural pattern

(Buschmann et al., 1996). Figure 55 presents the non-AO architecture of the

eighth release of Mobile Media. Different components realize the three roles of

the MVC pattern, namely model, view, and controller. The components whose

names end with “Screen” realize the view role. The components whose names end

with “Controller” realized the controller role. The other components realize the

model role.

Figure 56 presents the AO architecture of the eighth release. In addition to

the components realizing MVC pattern, the AO architecture includes a number of

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 190

aspectual components, namely FavouriteMedia, MediaSorting,

ExceptionHandling, SMS, MediaCopy, MediaCapture, PhotoAspect, MusicAspect

and VideoAspect. Note that these components are connected to the other

components by means of at least one aspectual connector (Section 3.2). The

aspectual components do not belong to a specific role of the MVC pattern, since

they affects classes in more than one MVC role. The aspectual components were

used to modularize optional and alternative features since they are the locus of

variability in software product lines. The goal is to enhance the (un)pluggabily of

these features by means of aspects. In addition, exception handling was also

modularized with aspects, once it is a recurring crosscutting concern.

The eighth release of Mobile Media comprises three alternative features:

photo, video, and music. For instance, in the non-AO architecture, the video

feature is realized by the components PlayVideoScreen, PlayVideoController,

AlbumVideoData and VideoAccessor (Figure 55). Besides these components, the

aspectual component VideoAspect contribute to the realization of the video

feature in the AO architecture (Figure 56). One of the optional features addressed

by the eighth release is SMS transfer. This feature is addressed by the components

NetworkScreen and SMSController, and the provided interface ManageSMS of

the PhotoViewScreen component in the non-AO solution. In the AO solution, this

feature is realized by the same components plus the SMS aspectual component.

The ManageSMS interface is not necessary in the AO version.

Other optional features, such as sorting media, copying media and setting

favorite media, are not addressed by any specific component in the non-AO

architecture. They are addressed by operations and interfaces of the components

whose main purpose is to realize other concerns. However, in the AO architecture

these features are addressed by specific aspectual components. For instance, the

favorite media feature is realized by the FavouriteMedia aspectual component.

The copying media feature is realized by the MediaCopy aspectual component and

the ControlCopy interface of the components PhotoViewController,

PlayVideoController, and PlayMusicController. The graphical descriptions of all

eight releases of both non-AO and AO architecture are presented in Appendix A.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 191

Figure 55: Non-AO architecture of the Mobile Media product line

M
an

ag
e

Al
bu

m
Li

st
M

an
ag

eM
ed

ia
M

an
ag

eL
ab

el
M

an
ag

e
M

ed
ia

Li
st

M
an

ag
eI

m
ag

e

H
an

dl
e

C
om

m
an

d
H

an
dl

e
C

om
m

an
d

H
an

dl
e

C
om

m
an

d

H
an

dl
e

C
om

m
an

d

M
an

ag
eS

M
S

M
an

ag
e

N
et

w
or

k
M

an
ag

eM
us

ic C
on

tro
l

M
us

ic
C

on
tro

lS
M

S
C

on
tro

l
C

op
y

C
on

tro
l

M
ed

ia
Li

st
C

on
tro

l
Al

bu
m

C
on

tro
lM

ed
ia

Al
bu

m
C

on
tro

lle
r

M
ed

ia
Li

st
C

on
tro

lle
r

P
ho

to
V

ie
w

S
cr

ee
n

P
ho

to
V

ie
w

S
cr

ee
n

Ad
dM

ed
ia

To
A

lb
um

S
cr

ee
n

Ad
dM

ed
ia

To
A

lb
um

S
cr

ee
n

N
ew

La
be

l
Sc

re
en

N
ew

La
be

l
Sc

re
en

M
ed

ia
Li

st
S

cr
ee

n
M

ed
ia

Li
st

S
cr

ee
n

Ba
se

C
on

tro
lle

r
Ba

se
C

on
tro

lle
r

N
et

w
or

k
S

cr
ee

n
N

et
w

or
k

S
cr

ee
n

M
ed

ia
C

on
tro

lle
r

M
ed

ia
C

on
tro

lle
r

Al
bu

m
Li

st
Sc

re
en

Al
bu

m
Li

st
Sc

re
en

C
on

tro
l

C
op

y

Pl
ay

M
us

ic
C

on
tro

lle
r

Pl
ay

M
us

ic
C

on
tro

lle
r

Pl
ay

M
us

ic
S

cr
ee

n
Pl

ay
M

us
ic

S
cr

ee
n

M
an

ag
eV

id
eo C

on
tro

l
Vi

de
o

M
an

ag
eC

ap
tu

re C
on

tro
l

C
ap

tu
re

C
ap

tu
re

M
ed

ia
Sc

re
en

C
ap

tu
re

M
ed

ia
Sc

re
en

Al
bu

m
Ph

ot
oD

at
a

Al
bu

m
Ph

ot
oD

at
a

Im
ag

e
A

cc
es

so
r

Im
ag

e
A

cc
es

so
r

M
an

ag
eM

ed
ia

In
fo

Pe
rs

is
tP

ho
to

Al
bu

m
M

us
ic

D
at

a
Al

bu
m

M
us

ic
D

at
a

M
an

ag
eM

ed
ia

In
fo

M
us

ic
A

cc
es

so
r

M
us

ic
A

cc
es

so
r

P
er

si
st

M
us

ic

Al
bu

m
Vi

de
oD

at
a

Al
bu

m
Vi

de
oD

at
a

M
an

ag
eM

ed
ia

In
fo

V
id

eo
Ac

ce
ss

or
V

id
eo

Ac
ce

ss
or

Pe
rs

is
tV

id
eo

P
ho

to
V

ie
w

C
on

tro
lle

r
P

ho
to

V
ie

w
C

on
tro

lle
r

Pl
ay

V
id

eo
S

cr
ee

n
Pl

ay
V

id
eo

S
cr

ee
n

C
on

tro
l

C
op

y

SM
S

C
on

tro
lle

r
SM

S
C

on
tro

lle
r

Pl
ay

V
id

eo
C

on
tro

lle
r

Pl
ay

V
id

eo
C

on
tro

lle
r

C
ap

tu
re

M
ed

ia
C

on
tro

lle
r

C
ap

tu
re

M
ed

ia
C

on
tro

lle
r

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 192

Figure 56: AO architecture of the Mobile Media product line

A
lb

um
M

us
ic

D
at

a
A

lb
um

M
us

ic
D

at
a

M
us

ic
A

cc
es

so
r

M
us

ic
A

cc
es

so
rC

on
tro

l
A

lb
um

M
an

ag
e

A
lb

um
Li

st
M

an
ag

e
M

ed
ia

M
an

ag
eL

ab
el

M
an

ag
e

M
ed

ia
Li

st

C
on

tro
lM

ed
ia

C
on

tro
l

C
op

y

M
an

ag
eM

ed
ia

In
fo

M
an

ag
eI

m
ag

e

H
an

dl
e

C
om

m
an

d
H

an
dl

e
C

om
m

an
d

H
an

dl
e

C
om

m
an

d

H
an

dl
e

C
om

m
an

d

B
as

e
C

on
tro

lle
r

B
as

e
C

on
tro

lle
r

C
on

tro
l

M
ed

ia
Li

st

M
ed

ia
Li

st
C

on
tro

lle
r

M
ed

ia
Li

st
C

on
tro

lle
r

A
lb

um
Li

st
S

cr
ee

n
A

lb
um

Li
st

S
cr

ee
n

M
ed

ia
Li

st
S

cr
ee

n
M

ed
ia

Li
st

S
cr

ee
n

N
ew

La
be

l
S

cr
ee

n
N

ew
La

be
l

S
cr

ee
n

A
dd

M
ed

ia
To

A
lb

um
S

cr
ee

n

A
dd

M
ed

ia
To

A
lb

um
S

cr
ee

n

M
ed

ia
C

on
tro

lle
r

M
ed

ia
C

on
tro

lle
r

A
lb

um
C

on
tro

lle
r

A
lb

um
C

on
tro

lle
r

M
ed

ia
S

or
tin

g

S
or

t
P

ho
to

C
ou

nt
P

ho
to

V
ie

w

E
xc

ep
tio

n
H

an
dl

in
g

H
an

dl
e

E
xc

ep
tio

ns

Fa
vo

ur
ite

M
ed

ia

M
an

ag
e

Fa
vo

ur
ite

M
an

ag
eC

op
y

In
itP

ho
to

V
ie

w

C
on

tro
lS

M
S

M
an

ag
eS

M
S

M
an

ag
e

N
et

w
or

k

N
et

w
or

k
S

cr
ee

n
N

et
w

or
k

S
cr

ee
n

P
ho

to
V

ie
w

S
cr

ee
n

P
ho

to
V

ie
w

S
cr

ee
n

S
en

dS
M

S

R
ec

ei
ve

S
M

S

Pr
oc

es
si

ng
P

ho
to

E
ve

nt
s

P
ho

to
V

ie
w

C
on

tro
lle

r
P

ho
to

V
ie

w
C

on
tro

lle
r

S
M

S
S

M
S

A
lb

um
P

ho
to

D
at

a
A

lb
um

P
ho

to
D

at
a

M
an

ag
eM

ed
ia

In
fo

Im
ag

e
A

cc
es

so
r

Im
ag

e
A

cc
es

so
r

S
M

S
C

on
tro

lle
r

S
M

S
C

on
tro

lle
r

C
on

tro
l

M
us

ic

P
la

yM
us

ic
S

cr
ee

n
P

la
yM

us
ic

S
cr

ee
n

M
an

ag
eM

us
ic

C
on

tro
l

C
op

y

In
itM

us
ic

S
cr

ee
n

M
us

ic
A

sp
ec

t
P

ho
to

A
sp

ec
t

P
la

yM
us

ic

Vi
ew

Ph
ot

o

P
la

yM
us

ic
C

on
tro

lle
r

P
la

yM
us

ic
C

on
tro

lle
r

M
an

ag
e

V
id

eo C
on

tro
l

V
id

eo

M
an

ag
e

C
ap

tu
re C

on
tro

l
C

ap
tu

re

C
ap

tu
re

M
ed

ia
S

cr
ee

n
C

ap
tu

re
M

ed
ia

S
cr

ee
n

P
la

yV
id

eo
S

cr
ee

n
P

la
yV

id
eo

S
cr

ee
n

C
on

tro
l

C
op

y

C
ap

tu
re

M
ed

ia
P

la
yV

id
eo

P
er

si
st

Ph
ot

o
P

er
si

st
M

us
ic

A
lb

um
V

id
eo

D
at

a
A

lb
um

V
id

eo
D

at
a

V
id

eo
A

cc
es

so
r

V
id

eo
A

cc
es

so
r

M
an

ag
eM

ed
ia

In
fo

Pe
rs

is
tV

id
eo

In
itC

ap
tu

re
M

ed
ia

M
ed

ia
C

ap
tu

re
M

ed
ia

C
ap

tu
re

In
itV

id
eo

S
cr

ee
n

C
ap

tu
re

M
ed

ia
C

on
tro

lle
r

C
ap

tu
re

M
ed

ia
C

on
tro

lle
r

P
la

yV
id

eo
C

on
tro

lle
r

P
la

yV
id

eo
C

on
tro

lle
r

V
id

eo
A

sp
ec

t
V

id
eo

A
sp

ec
t

M
ed

ia
C

op
y

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 193

7.4.2.
Results

This section presents the results of the measurement process involving Mobile

Media architectures. The non-AO and AO architectures are compared by means of

graphics that show the values for each metric along the eight releases. Again,

lower values imply better results. From the analysis of concern diffusion (Section

4.3.1) and interaction between concerns (Section 4.3.2) measures, three groups of

features naturally emerged with respect to which type of modularization paradigm

performed better.

AO architecture succeeded for optional features

This group encompasses the analyzed optional features: sorting media

(hereafter referred as sorting), copying media (hereafter referred as copy), and

setting favorite media (hereafter referred as favorite). A common characteristic of

these features is that the modularity of their design is stable in both AO and non-

AO architectures, in the sense that it did not degenerated because of the

undertaken changes. Figure 57 shows the results of concern diffusion and

interaction between concerns metrics for the favorite feature as a representative of

this group. We can observe from this figure that the number of architectural

elements affected by the favorite feature does not vary along the eight releases in

both AO and non-AO architectures. In addition, the number of concerns with

which the favorite feature interacts is not expressively impacted by the changes.

Although both AO and non-AO solutions presented similar degree of

modularity stability, the AO solution performed better in terms of scattering and

tangling (Figure 57). The favorite feature is spread over fewer components and

interfaces (CDAC and CDAI) and tangled with fewer concerns in the AO

architecture (CIBC and IIBC). This occurred because the AO mechanisms

effectively transferred all the elements in charge of realizing this feature from

conventional components (MediaListScreen, MediaController and

PhotoViewController) (Figure 55) to only one aspectual component

(FavouriteMedia) (Figure 56). This almost totally separated this feature from the

other concerns. The only concern still interacting with this feature is the exception

handling concern. The reason for that is because the aspectization of exception

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 194

handling was not able to modularize all the elements related to this concern and,

as a consequence, exceptional events are still handled by some operations in the

FavouriteMedia component.

Favorite Feature
CDAC = Concern Difusion over Architectural

Components

0
1
2
3
4
5

1 2 3 4 5 6 7 8
Releases

of

 c
om

po
ne

nt
s

non-AO
AO

CDAI = Concern Diffusion over Architectural
Interfaces

0
1
2
3
4
5

1 2 3 4 5 6 7 8
Releases

of

 in
te

rfa
ce

s

non-AO
AO

CIBC = Component-level Interlacing Between
Concerns

0

2

4

6

1 2 3 4 5 6 7 8
Releases

of

 c
on

ce
rn

s

non-AO
AO

IIBC = Interface-level Interlacing Between
Concerns

0

2

4

6

1 2 3 4 5 6 7 8
Releases

of

 c
on

ce
rn

s

non-AO
AO

Figure 57: Concern Diffusion and Interaction between Concerns metrics for favorite

feature

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 195

AO solution was harmful to modularity of Exception Handling

Exception handling tended to present slightly superior modularity stability

in the non-AO architecture. Figure 58 shows metrics results for the exception

handling concern. We observe that the modularity of this concern is more stable in

the non-AO version, since this feature is spread over fewer components (CDAC)

in this solution. Besides, the difference increases throughout the releases due to

the rising of CDAC in the AO solution. The CDAI and CDAO results show the

same trend.

Although, exception handling was aspectized by means of the

ExceptionHandling aspectual component (Figure 56), this aspectization did not

completely localize and separate the exception handling from the other concerns.

The aspect-oriented solution was not able to eliminate the interaction among

exception handling and the other concerns, including optional and alternative

features. This can be observed by the last graphic in Figure 58, which shows the

results for the Component-level Interaction between Concerns metric. Note that

the degree of interaction between the exception handling and other concerns is the

same in both AO and non-AO architectures. Therefore, as new optional and

alternative features were included over the different releases, the number of

components that contains exception handling increased.

The reason for this difference in favor of the non-AO solution is that the

number of architecture elements included over the releases is higher in the AO

version. Adding optional or alternative features (releases 4 to 8) required the

introduction of more components, interfaces and operations in the AO version

because new aspectual components have to be included in addition to the

conventional components realizing the features. For instance, the introduction of

the optional SMS feature (release 6) in the non-AO required the inclusion of the

NetworkScreen and SMSController components (Figure 55). Both components

encompass elements related to exception handling. In the AO version, in addition

to these same two components, it was also necessary to add the SMS aspectual

component. The SMS aspectual component also encompasses exception handling

elements. As a consequence, the number of components encompassing the

exception handling concern increased more in the AO version than in the non-AO

one. As a conclusion, the results of this group indicate that using aspects to

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 196

modularize exception handling, optional and alternative features in the

investigated product line negatively impacted on the modularity of exception

handling.

CDAI = Concern Diffusion over Architectural Interfaces

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8

Releases

of

 in
te

rf
ac

es

non-AO

AO

CDAC = Concern Difusion over Architectural Components

0

5

10

15

20

25

1 2 3 4 5 6 7 8

Releases

of

 c
om

po
ne

nt
s

non-AO

AO

CIBC = Component-level Interlacing Between Concerns

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8

Releases

of

 c
on

ce
rn

s

non-AO

AO

Exception Handling

CDAO = Concern Difusion over Architectural Operations

0

50

100

150

200

1 2 3 4 5 6 7 8

Releases

of

 o
pe

ra
tio

ns

non-AO

AO

Figure 58: Concern Diffusion and Component-level Interlacing between Concerns metrics

for the exception handling concern

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 197

AO improved tangling of mandatory features

Mandatory features, which form the core of software product lines, were not

aspectized in this study. As mentioned before, aspect-oriented mechanism had

been used in the Mobile Media software product line in order to modularize

optional and alternative features. As a consequence, the degree of scattering of

each of the assessed mandatory features evolved in a similar way in both AO and

non-AO architectures. This can be observed from graphics shown in Figure 59.

CDAC = Concern Difusion over Architectural
Components

0

5

10

15

1 2 3 4 5 6 7 8
Releases

of

 c
om

po
ne

nt
s

non-AO
AO

CDAI = Concern Diffusion over Architectural
Interfaces

0

5

10

15

20

1 2 3 4 5 6 7 8
Releases

of

 in
te

rfa
ce

s

non-AO
AO

Label Media

IIBC = Interface-level Interlacing Between
Concerns

0
1
2
3
4
5

1 2 3 4 5 6 7 8
Releases

of

 c
on

ce
rn

s

non-AO
AO

Figure 59: Concern Diffusion and Interface-level Interlacing between Concerns metrics for

the label media mandatory feature

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 198

The first two graphics present the results of concern diffusion metrics for

the label media mandatory feature. These graphics show that the number of

components and interfaces realizing the label media feature is the same in both

AO and non-AO architecture. Besides, this number evolves in the same way

throughout the eight releases. However, the last graphic in Figure 59 shows that

the AO solution was able to decrease the tangling of the label media feature with

other concerns. This graphics shows that this feature is interlaced with fewer

concerns in the AO architecture. This is shown by means of the Interface-level

Interlacing between Concerns metric, but the results for component-level interlace

are similar. Another concern which results show the same trend of label media is

the controller role, which also forms the core of the Mobile Media product line.

This section presented the third study for evaluating the usefulness of the

concern-driven architectural metrics. Together with the studies presented in

previous section, the evaluation involved four systems: MobiGrid, AspectT,

Health Watcher and Mobile Media. These studies showed evidences that concern-

driven architectural metrics represent a promising mechanism for complementing

conventional metrics and improving modularity quantitative assessment.

7.4.3.
Discussion

In the previous section, we presented the results of the concern-driven

measurement process for the Mobile Media architecture. Here, we discuss some

specific issues and lessons learned during this study. Some of these issues are also

related to results obtained in the other presented studies.

Complementary metrics

The study with Mobile Media showed that concern diffusion and interaction

between concerns metrics complement each other in order to identify the

crosscutting nature of concerns. The concern diffusion metrics assess the degree

of scattering of a given concern, while the metrics for interaction between

concerns measure the degree of tangling of a concern. For instance, the Concern

Diffusion over Architectural Components (CDAC) and Concern Diffusion over

Architectural Interfaces (CDAI) metrics showed that the label media feature has

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 199

the same degree of scattering in both AO and non-AO Mobile Media architecture

(Figure 59). The Interface-level Interlacing between Concerns metric complement

this information showing that, in spite of having the same degree of scattering in

both architectures, label media feature is tangled with more concerns in the non-

AO architecture. This confirmed similar results obtained in the study involving

the Health Watcher system (Section 7.3). The information about tangling can also

be obtained by the Lack of Concern-based Cohesion (LCC) metric (Section 4.3.3).

However, since this metric provides the results per component, each component

has to be checked in order to compute the tangling of a concern.

Concern Diffusion over Interfaces and Operations

Based on the results gathered in the two first studies, which involved the

MobiGrid, AspectT and Health Watcher systems, it seemed that it was enough to

use either the Concern Diffusion over Architectural Interfaces metric or the

Concern Diffusion over Architectural Operations metric. This is because in those

studies the results of these metrics showed that every time a concern was spread

over a high number of interfaces, it was also spread over a high number of

operations, and vice-versa. Table 16 (Section 7.3.2) showed, for instance that four

concerns (distribution, concurrency, persistence and exception handling) are

scattered over more interfaces in the non-AO architecture than in the AO solution.

All these concerns are spread over more operations in the non-AO architecture as

well. The other two concerns GUI and business are scattered over the same (or

nearly the same) number of interfaces in both AO and non-AO architectures. The

amount of operations where these concerns are spread over is the same in both

solutions as well (Table 16 - Section 7.3.2).

Nevertheless, the Mobile Media study contradicted this observation. This

study showed that there are cases in which, although spread over few interfaces, a

concern can be spread over a high number of operations. This can be observed

from the results for the favorite feature. The second graphic in Figure 57 shows

that the number of interfaces where the favorite feature is scattered over is twice

higher in the non-AO architecture than in the AO one. However, this same feature

is spread over slightly more operations in the AO architecture, as shown in Figure

60. This occurred because the aspectual component which encapsulates the

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 200

favorite feature comprises additional operations to capture the context of the other

components affected by it.

CDAO = Concern Difusion over Architectural
Operations

0

2

4

6

8

1 2 3 4 5 6 7 8
Releases

of

 o
pe

ra
tio

ns

non-AO
AO

Figure 60: Concern Diffusion over Architectural Operations metric for the favorite feature

7.5.
Study Constraints

This section discusses some constraints related to the studies presented in

this chapter. First, we should also emphasize that the conclusions obtained from

our studies are restricted to the specific assessed systems, chosen architecture

alternatives and analyzed concerns. In other words, results regarding advantages

and drawbacks in modularizing certain concerns with aspect-oriented abstractions

may not be directly generalized to other contexts. However, these studies allowed

us to make useful assessments of whether the use of aspects for the

modularization of architectural concerns would be worth studying further. In

addition, the studies also allowed us to make useful evaluation about the

applicability and usefulness of the architectural metrics.

Another issue that limits the conclusions is the fact that the process of

assigning concerns to design elements, required for the concern-driven metrics

computation, directly impacts on the measurement results. Variations on this

process could lead to variations on the measurement outcomes. As mentioned in

Section 7.1, in order to make this process more systematic, we followed a

guideline which states that assign a concern to a design element if the complete

removal of the concern requires with certainty the removal or modification of the

element. Also, we have consistently observed in our studies that, as expected,

mapping concerns to architecture elements is easier and less time-consuming than

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 201

mapping to elements of detailed design and source code due to the higher level of

abstraction in architecture descriptions.

In addition, we took some measures to support the mapping of concern to

design elements, such as: (i) “pair mapping”, where the assigning of concerns to

design elements was done by two people assisting each other, and (ii) consultation

of the actual system developers, when possible. These procedures are in line with

the procedures followed by other researchers working on concern-based analysis

(e.g. Eaddy et al (2007)). Assessing the impact of these issues on the reliability of

the concern assignment is out of the scope of this thesis. It would demand more

controlled experiments with different nature of the ones we undertook.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

