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5 
Concern-Driven Design Heuristic Rules 

The main issue in working with metrics is how we should deal with 

measurement results (Lanza & Marinescu, 2006). How can all those numbers help 

us improve the quality of our software? Usually a metric alone cannot help very 

much in answering this question and therefore metrics should be used in 

combination to provide relevant information. The question is: how should we 

combine metrics in order to make them serve our purposes? 

In Section 2.5, we introduced the concept of design heuristic rules as a 

means to support the interpretation of design metrics and, as a consequence, 

increase their usefulness. Heuristic rules provide the engineer with information 

that is useful in the context of an investigation goal, in particular, an investigated 

design flaw. The main goal of design heuristic rules is to provide the engineers 

with a mechanism that allows them to work with metrics in a way conceptually 

much closer to the real intentions in using metrics.  

A design heuristic rule is a logical expression based on metrics by means of 

which design fragments presenting specific problems can be detected. One of the 

main goals of this work is to propose design heuristic rules to support the 

detection of modularity-related problems in object-oriented or aspect-oriented 

detailed design. These rules will help software engineers to find the design 

fragments that are negatively affected by the poor modularization of concerns.  

Currently, conventional object-oriented metrics (Section 2.4) are the basis 

upon which existing design heuristics rules are defined (Section 2.5). However, 

these metrics are limited by the fact that they are not driven by the system 

concerns.  As a consequence, modularity assessment based on existing rules is 

impaired by limitations similar to the ones presented by conventional metrics 

(Section 1.2).  

In this context, we propose a suite of concern-sensitive design heuristic 

rules that aims at supporting the modularity assessment of both object and aspect-

oriented detailed design. In addition to concern-driven metrics, the detailed design 
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assessment process was enhanced with more expressive heuristic rules. The main 

reason for that is because our previous experience in design measurement 

(Sant’Anna et al., 2003, 2004; Kulesza et al., 2006; Garcia et al., 2004a, 2005, 

2006; Figueiredo et al., 2008b; Greenwood et al., 2007a; Cacho et al., 2006a) has 

shown that the data set obtained by applying concern-sensitive metrics to detailed 

design artifacts is usually large. This occurs due to the high number of detailed 

design elements (classes, aspect, methods, attributes, and so forth), when 

compared to the number of high-level elements defined in the architectural design. 

Therefore, mechanisms to support results interpretation, such as heuristic rules, 

are even more important in detailed design assessment.  

This chapter defines our suite of concern-driven design heuristic rules. First, 

we point out the limitations of related work (Section 5.1). Section 5.2 depicts the 

model of concern representation, upon which the detailed design metrics are 

defined. Section 5.3 presents the suite of metrics used in the definition of the 

proposed rules. It includes concern-driven metrics and conventional metrics. 

Finally, Section 5.4 describes the proposed concern-driven design heuristic rules. 

 

5.1. 
Limitation of Conventional Heuristic Rules 

To the best of our knowledge there is no suite of heuristic rules based on 

concern-driven metrics so far. Thus, within the area of software measurement, the 

most closely related work to ours is heuristic rules based on conventional object-

oriented metrics, herein called as conventional heuristic rules, such as the ones 

proposed by Marinescu (2002, 2004).  

In order to synthesize the main point of our criticism about conventional 

heuristic rules, we point out the limitations of one of Marinescu’s rules 

(Marinescu, 2002, 2004). To this end, we analyze the effectiveness of the rule in 

the light of the detailed design showed in Figure 14. This figure presents a partial 

representation of the object-oriented design of an OpenOrb-compliant middleware 

system (Cacho et al, 2006a, 2006b, 2007), used in the evaluation of our rules 

(Section 8.1). Figure 14 also shows the design elements related to the Observer 

design pattern (Gamma, 1995). The Observer pattern is the concern analyzed in 

the example. 
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The analyzed rule aims at detecting a specific kind of modularity flaws, 

namely Shotgun Surgery bad smell (Fowler, 1999). Bad Smells are proposed by 

Kent Beck in Fowler’s book (Fowler, 1999) to diagnose symptoms that may be 

indicative of something wrong in the design. According to Fowler (1999), the 

Shotgun Surgery bad smell is encountered when every time you make a kind of 

change, you also have to make a lot of little changes to a lot of different classes. 

When the changes are all over the place, they are hard to find, and it is easy to 

miss an important change. Thus, this design flaw strongly affects the design 

modularity. 

The reason for choosing Shotgun Surgery as illustrative is because it is 

believed to be a symptom of design flaws caused by a poor modularization of 

concerns (Monteiro & Fernandes, 2005). Therefore, it might be avoided with the 

use of aspects. Monteiro & Fernandes (2005) claim that Shotgun Surgery is a 

symptom of crosscutting concern that can be solved by using the aspect-oriented 

refactoring Extract Feature into Aspect proposed in their work. 
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Figure 14: Design slice of an OpenOrb-compliant middleware system (Cacho et al, 

2006a, 2006b, 2007). 

 

In Section 2.5, we already presented the definition of Marinescu’s heuristic 

rule for detecting Shotgun Surgery. We repeat it here in order to facilitate 

referring to it during the following discussion. This rule is based on two 

conventional coupling metrics. It is defined as follows (Marinescu, 2002): 

 

Shotgun Surgery := ((CM, TopValues(20%)) and (CC, HigherThan(5)), 
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where CM stands for the Changing Method metric (Marinescu, 2004), which 

counts the number of distinct methods that access an attribute or call a method of 

the given class. CC stands for the Changing Classes metric (Marinescu, 2002), 

which counts the number of classes that access an attribute or call a method of the 

given class. TopValues and HigherThan are filtering mechanisms parameterized 

with a value representing the threshold. Therefore, the Shotgun Surgery heuristic 

states that a class is suspect of having shotgun surgery whether it presents one of 

the 20% highest values for CM and has CC value higher than five. Note that this 

rule must be applied for each class in the design. 

Applying CC and CM to the design in Figure 14, we obtain CC = 0 and CM 

= 15 for the MetaSubject interface (Figure 14). Based on these values and 

computing Marinescu’s heuristic for Shotgun Surgery, this interface is not 

regarded as a suspect of a bad smell. This occurs because CC is 0, as no class in 

the system directly accesses MetaSubject. Nevertheless, this interface can be 

clearly considered as Shotgun Surgery because changes on its methods would 

trigger many other changes in every class implementing it and potentially in 

classes calling its overridden methods. For instance, a rename of the 

addObserver() method in the MetaSubject interface causes updates to the classes 

Component and ConcreteBind (Figure 14) and to several other classes which call 

addObserver(). 

This example aims at showing how conventional heuristic rules are limited 

to point out the overall influence of a concern – the Observer design pattern in this 

case – in other parts of the design. In particular, Marinescu’s rule was not able to 

detect that a significant number of classes include design elements related to the 

Observer pattern and, as a consequence, that they could be affected due to a 

change in this concern. Hence, Marinescu’s rule could not highlight the complete 

impact of the Observer pattern because it considers only measures based on class 

and method abstractions. 

 

5.2. 
Concern Representation at Detailed Design 

The metrics presented here are also rooted at a concern-to-design mapping 

in the same way as the architectural concern-driven metrics (Chapter 4). However, 
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instead of being mapped to architectural design elements, here the concerns are 

assigned to detailed design elements, such as classes, aspects, methods, attributes, 

and pieces of advice. It is important to bear in mind that the metrics can be applied 

to both object-oriented and aspect-oriented designs. Therefore, the concern 

representation is defined upon the set of aspect-oriented detailed design 

abstractions, as it also encompasses all the object-oriented abstractions. 

 

5.2.1. 
Detailed Design 

Before defining the metrics, we describe in this section the abstractions and 

composition mechanisms we consider as detailed design elements in this thesis. 

We will focus only on the elements which are essential to the definition of our 

metrics. 

 

Components, Attributes and Operations 

An aspect-oriented detailed design of a system consists of a set of classes 

and aspects. For generality purposes, the classes and aspects of a detailed design S 

are called as components and denoted by C(S). Each component c consists of a set 

of attributes, denoted as A(c), and a set of operations, represented as O(c). In 

classes, operations are methods, and, in aspects, operations represent methods and 

pieces of advice. For notational convenience, we also define: 

(i) the members of a component c, represented as )()()( cOcAcM U= , 

(ii) the set of all attributes of a system, represented as U
)(

)()(
SCc

cASA
∈

= , 

(iii) the set of all operations of a system, represented as U
)(

)()(
SCc

cOSO
∈

= . 

It is important to highlight that although the term component is used at both 

architectural and detailed design representations, it represents different 

abstractions in each context. In the detailed design context, a component is either 

a class or an aspect. In architectural design, a component is an abstraction of the 

component-and-connector viewtype, as described in Section 4.2.1. Similar 

reasoning applies to the term operation, which represents either a method or a 

piece of advice in the detailed design context. 
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Inter-component Connections 

In Section 2.4, we have described a list of possible types of connections 

between classes summarized by Briand et al (1999). Our concern-sensitive 

coupling metrics (Section 5.3.4) take into account two of those connections: (i) a 

method of class d references an attribute of class c, and (ii) a method of class d 

invokes a method of class c. Actually, our metrics take into account versions of 

these type of connections tailored to aspect-oriented design: (i) an operation 

(method or advice) of a component (class or aspect) d references an attribute of 

component c, and (ii) an operation of a component d invokes a method of 

component c.    

We define, therefore, the set of components which have an attribute 

referenced by a given operation o as RC(o). Let S be the detailed design of a 

system, c ∈ C(S) be a component of S, o ∈ O(c) be an operation of c. Then c’ ∈ 

RC(o) ⇔ c’ ∈ C(S) – {c} ∧ ∃a ∈ A(c’) such as o references a. 

We also define the set of components which have a method invoked by an 

operation o as IC(o). Let S be the detailed design of a system, c ∈ C(S) be a 

component of S, o ∈ O(c) be an operation of c. Then c’ ∈ IC(o) ⇔ c’ ∈ C(S) – 

{c} ∧ ∃o’ ∈ O(c’) such as o invokes o’. These two sets will be used in the 

definition of our concern-sensitive coupling metrics (Section 5.3.4). 

 

Intra-component Connections 

One of our concern-sensitive couplings is defined upon intra-component 

connections, which represent connections between internal members of a 

component. This metric takes into account two types of intra-component 

connections: (i) an operation o of a given component references an attribute of the 

same component, and (ii) an operation o of a given component invokes a method 

of the same component. 

In this context, we define the set of attributes referenced by a given 

operation o as RA(o). Let S be the detailed design of a system, c ∈ C(S) be a 

component of S, o ∈ O(c) be an operation of c. Then a ∈ RA(o) ⇔ a ∈ A(c) and o 

references a. 
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We also define the set of operations invoked by a given operation o as 

IO(o). Let S be the detailed design of a system, c ∈ C(S) be a component of S, o ∈ 

O(c) be an operation of c. Then o’ ∈ IO(o) ⇔ o’ ∈ O(c) – {o} and o invokes o’. 

 

Design Concern 

With the definition of the detailed design elements that is considered in our 

approach, it is possible to define the notion of concern representation in detailed 

design (or simply, design concern). A design concern con consists of a list of 

detailed design elements assigned to it. These elements can be components 

(classes or aspects), operations (methods or pieces of advice), or attributes. A 

design element can be responsible for totally or partially realizing more than one 

concern. Therefore, a design element can be assigned to more than one concern. 

Let S be the detailed design of a system, for each c ∈ C(S), the set of 

concerns to which c is assigned is denoted as Con(c). Let o ∈ O(c) be an operation 

of c, the set of concerns to which o is assigned is denoted as Con(o). Let a ∈ A(c) 

be an attribute of c, the set of concerns to which a is assigned is denoted as 

Con(a). Con(S) is the set of all concerns in the design and is represented as: 

UU U UU
)()( )(

)()()()(
SAaSCc SOo

aConoConcConSCon
∈∈ ∈

=  

Let S be the detailed design of a system, for each con ∈ Con(S), the set of 

components assigned to con is denoted as: 

)}()(|{)( cConconSCccconC ∈∧∈= . 

Similarly, the set of operations assigned to con is denoted as: 

)}()(|{)( oConconSOooconO ∈∧∈= . 

The set of attributes assigned to con is denoted as: 

)}()(|{)( aConconSAaaconA ∈∧∈= . 

Finally, the set of members assigned to con is denoted as: 

)()()( conOconAconM U= . 

 

5.3. 
Concern-Driven Metrics for Detailed Design 

The concern-driven heuristics are based on the combination of concern-

driven metrics and conventional metrics. This section presents the definition of 
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the concern-driven metrics used in the definition of the proposed suite of 

heuristics (Section 5.4). Similarly to the architectural metrics, the used detailed 

design metrics quantify different facets of relations involving concerns and design 

elements which include: 

• concern diffusion, 

• interaction between concerns, 

• concern-based cohesion, 

• concern-sensitive coupling, and 

• concern-sensitive size. 

 

In the following sections, each metric is presented in terms of an informal 

definition, a formal definition, and an example. We do not discuss here the 

motivation behind the detailed design metrics, because the motivation behind 

detailed and architectural metrics in the same category is the same, and have 

already been discussed in Section 4.3. The examples are given in terms of a slice 

of an OpenOrb-compliant middleware system (Cacho et al., 2006a, 2006b, 2007) 

(Figure 15). Figure 15 also highlights the design elements related to two design 

patterns, namely Observer and Factory Method (Gamma, 1995), which are the 

assessed concerns in this example. Table 4 Error! Reference source not 

found.presents a summary of the detailed design metrics suite. 
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Figure 15: Observer and Factory Method patterns used in the design of an OpenOrb-

compliant middleware system (Cacho et al., 2006a, 2006b, 2007). 
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Attribute Metric Definition 

Concern 
Diffusion 

Concern Diffusion over  
Components (CDC) 

It counts the number of components (classes and 
aspects) which contributes to the realization of a 
given concern. 

Interaction 
Between 
Concerns 

Component-level 
Interlacing Between 
Concerns (CIBC) 

It counts the number of other concerns with which a 
given concern shares at least a component. 

Concern-
based 

Cohesion 

Lack of Concern-based 
Cohesion  (LCC) 

It counts the number of concerns addressed by a 
given component. 

Concern-Sensitive 
Coupling (CSC) 

It counts the number of components used by a given 
component by means of operations entirely assign to 
a given concern. Concern-

Sensitive 
Coupling Intra-component 

Concern-Sensitive 
Coupling (ICSC) 

It counts the number of attributes and operations of a 
given component accessed by operations related to a 
given concern in the same component. 

Number of Concern 
Operations (NCO) 

It counts the number of operations of a given 
component related to a given concern. Concern-

Sensitive Size Number of Concern 
Operations (NCA) 

It counts the number of attributes of a given 
component related to a given concern. 

 

Table 4: Summary of the suite of concern-driven detailed design metrics 

 

5.3.1. 
Concern Diffusion 

Our suite of design heuristic rules uses one metric for concern diffusion: 

Concern Diffusion over Components (CDC) (Sant’Anna, 1993). This metric is 

similar to the Concern Diffusion over Architectural Components metric (CDAC), 

defined in Section 4.3.1. In fact, CDC inspired the definition of CDAC. As 

CDAC, CDC considers components whose purpose is to totally or partially 

contribute to the realization of a particular concern, enabling the designer to assess 

the degree of concern scattering. 

CDC for a given concern con counts the number of components (classes and 

aspects) in the system design entirely assigned to con. The counting also includes 

the number of components where there is at least one attribute assigned to con, 

and the number of components where there is at least one operation assigned to 

con. 

Formal Definition of CDC: Let S be the detailed design of a system, and con 

∈ Con(S) be a concern in S, CDC can be represented as: 

U)()( conCconCDC =  
         ( ){ }UI ∅≠∧∈ )()()(| conOcOSCcc  
         ( ){ }∅≠∧∈ )()()(| conAcASCcc I  
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Example: Figure 15 shows that the Factory Method pattern is present in six 

components: MetaObject, MetaObjFactory and respective subclasses. Therefore, 

the value of the CDC metric for the Factory Method concern is six. 

 

5.3.2. 
Interaction between Concerns 

The metric for interaction between concerns used in our heuristic rules is 

Component-level Interlacing between Concerns (CIBC). This metric is very 

similar to the architectural metric with the same name (Section 4.3.2). Both 

metrics have the same goal which is quantifying interaction between concerns 

which are not introduced by the dependence between components. Hence, CIBC 

indicates for a given concern the level of tangling in terms of how many concerns 

it interlaces with. 

CIBC for a concern con counts the number of other concerns with which 

con is interlaced at the component level. A concern con is interlaced at the 

component level with another concern con’ if con and con’ have one or more 

components in common. At the detailed design level, this situation occurs in one 

of the following ways: 

(i) a component is assigned to both con and con’, or 

(ii) a component is assigned to con, and at least one member (attribute or 

operation) of the same component is assigned to con’, or 

(iii) at least one member of a component is assigned to con, and at least one 

member of the same component is assigned to con’. 

 

Formal Definition of CIBC. In order to represent that two concerns are 

interlaced at the component-level, we define the Boolean function 

ComponentInterlaced(con, con’), where con ∈ Con(S) and con’ ∈ (Con(S) – con),  

as: 

∨∈∈∃⇔ ))'(:)(()',( conCcconCcconconnterlacedComponentI  

∨∈∈∃∈∃ ))'(:)(:)(( conMmcMmconCc  

))'(':)(:)(':)(:)(( conMmconMmcMmcMmSCc ∈∈∈∃∈∃∈∃ . 
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Let S be the detailed design of a system, and con ∈ Con(S) be a concern in 

S, CIBC can be represented as:   

{ })',(}{)('|')( conconnterlacedComponentIconSConconconconCIBC ∧−∈= . 

 

Example: Figure 15 shows that the CIBC value is 1 for both Factory Method 

and Observer design patterns because these two concerns only interlace with each 

other. Component-level interlacing between Observer and Factory Method occurs 

in the classes Component, ConcreteBind, MetaObjEncapsule, and 

MetaObjComposite. 

 

5.3.3. 
Concern-based Cohesion 

Another metric used in our suite of design heuristic rules is Lack of 

Concern-based Cohesion (LCC). The definition of LCC is similar to the definition 

of the architectural metric with the same name (Section 4.3.4). The goal of this 

metric is to support designers on the observance of intra-component tangling 

degree. Thus, it counts for a given component the number of concerns it totally or 

partially implements.  

LCC for a component c counts the number of concerns which c is assigned 

to, plus the number of distinct concerns which the operations of c are assigned to, 

plus the number of distinct concerns which the attributes of c are assigned to. 

 

Formal Definition of LCC. Let S be the detailed design of a system, c ∈ 

C(S) be a component in S, LCC can be represented as:   

U UUU
)( )(

)()()()(
cOo cAa

aConoConcConcLCC
∈ ∈

= . 

 

Example: The value of LCC for the MetaObjComposite is two (Figure 15), 

since this component encompasses the concerns of both Factory Method and 

Observer patterns. 
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5.3.4. 
Concern-Sensitive Coupling 

Our detailed design rules encompasses two metrics for concern-sensitive 

coupling: Concern-Sensitive Coupling (CSC), and Intra-Component Concern-

Sensitive Coupling (ICSC). Analogously to the architectural metric with the same 

name, CSC aims at quantifying the contribution of a given concern to the coupling 

of a given component with other components. This metric is based on the 

assumption that if a component c has a method entirely related to a concern con, 

and that method calls a method or references an attribute of another component c’, 

the coupling between c and c’ is due to the presence of the concern con in the 

component c. Again, it is important to note that the values for this metric are 

gathered per a pair of component and concern. 

Therefore, CSC for a component c and a concern con counts the number of 

distinct components which have a method invoked or an attribute referenced by c 

by means of an operation entirely assign to con. 

 

Formal Definition of CSC. Let S be the detailed design of a system, c ∈ 

C(S) be a component in S, and con be a concern in Con(S), CSC can be 

represented as: 

UU U
),(),(

)()(),(
concCOoconcCOo

oRCoICconcCSC
∈∈

= , where ).()(),( conOcOconcCO I=  

The sets IC(o) and RC(o) are defined in Section 5.2.1 and represent the 

components which have an operation invoked and an attribute referenced by an 

operation o, respectively.  

 

Example: In the design of Figure 15, the value of CSC for the class 

ConcreteBind and the concern Observer (CSC(ConcreteBind, Observer)) is one. 

This occurs because the MetaObserver interface is the only component accessed 

by methods of ConcreteBind related to the Observer pattern: the notifyObservers() 

method of ConcreteBind invokes the method refresh() of MetaObserver. 

Sequence diagrams or source code are needed for applying CSC, as well as ICSC. 

In the case of this example, we used the source code. 

 

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA



 109 

The metric Intra-Component Concern-Sensitive Coupling (ICSC) is targeted 

at quantifying how different concerns are coupled to each other within a given 

component. The intra-component coupling of a given concern con within a given 

component c is measured in terms of the amount of operations and attributes 

related to other concerns within c are invoked and referenced by operations 

assigned to con. 

The assumption behind this metric is that the higher the coupling of a 

concern to other concerns within a component, the harder it is to remove that 

concern from that component. A concern with a high intra-component coupling 

indicates that changing the design in order to remove that concern from the 

component could lead to a worse design alternative. This could occur because the 

concern strongly depends on information about other concerns within the 

component. 

ICSC for a component c and a concern con counts the number of internal 

operations and attributes related to other concerns are invoked and referenced by 

operations assigned to con. 

 

Formal Definition of ICSC. Let S be the detailed design of a system, c ∈ 

C(S) be a component in S, and con be a concern in Con(c), ICSC can be 

represented as: 

+∉∧∈=
∈
U

),(

)},(')('|'{),(
concCOo

concCOooIOooconcICSC  

 U
),(

)},()({
concCOo

concCAaoRAa
∈

∉∧∈ , 

where )()(),( conOcOconcCO I= and )()(),( conAcAconcCA I=  

The sets IO(o) and RA(o) are defined in Section 5.2.1 and represent the 

internal operations and attributes accessed by an operation o, respectively. 

 

Example: In the design of Figure 15, the value of ICSC for the class 

MetaObjComposite and the concern Observer (ICSC(MetaObjComposite, 

Observer)) is one. The reason for that value is because only one attribute of 

MetaObjComposite not related to the Observer pattern is referenced by methods 
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assigned to this pattern: the refresh() method of ConcreteBind references the 

attribute graph.  

 

5.3.5. 
Concern-Sensitive Size 

Two metrics for concern-sensitive size are used in our suite of design 

heuristic rules: Number of Concern Operations (NCO), and Number of Concern 

Attributes (NCA). The goal of these metrics is to quantify the contribution of a 

given concern to the size of a given component in terms of number of operations 

and attributes. Therefore, NCO and NCA count the number of operations and 

attributes, respectively, responsible for realizing a given concern.  

NCO for a component c and a concern con counts the number of operations 

in c assigned to con. Similarly, NCA for a component c and a concern con counts 

the number of attributes in c assigned to con. The motivation for using these 

metrics is that a concern that comprises only few operations and attributes in a 

component might not be localized in that component. 

 

Formal Definition of NCO. Let S be the detailed design of a system, c ∈ 

C(S) be a component in S, and con be a concern in Con(S), NCO can be 

represented as: 

)()(),( conOcOconcNCO I= . 

 

Formal Definition of NCA. Let S be the detailed design of a system, c ∈ 

C(S) be a component in S, and con be a concern in Con(S), NCA can be 

represented as: 

)()(),( conAcAconcNCA I= . 

 

Example: In the design of Figure 15, the value of the NCO metric for the 

class ConcreteBind and the concern Observer (NCO(ConcreteBind, Observer)) is 

3, since there are three methods related to the Observer pattern on this class: 

addObserver(), removeObserver(), and notifyObservers(). The value of NCA for 

the same class and concern ((NCO(ConcreteBind, Observer)) is one, since there is 
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only the observers attributed related to the Observer pattern in the ConcreteBind 

class. 

 

5.4. 
Concern-Driven Design Heuristic Rules 

This section defines design heuristic rules as mechanisms for supporting 

concern-sensitive modularity analysis. These rules are defined in terms of 

combined information collected from concern-driven metrics (Section 5.3) and 

conventional metrics. Table 5 presents the conventional metrics which are used by 

the proposed heuristics. The heuristic rules provide developers with 

complementary high-level assessment means rather than exclusively working with 

metrics. As such, each heuristic expression embodies knowledge about the 

modular realizations of concerns in a design. The motivation of concern-sensitive 

heuristics is to minimize the shortcomings of conventional metrics-based 

heuristics discussed in Section 5.1.  
 

Metrics Definitions 

Number of Components (NC) It counts the number of components (classes and aspects) of a 
system’s design. 

Number of Attributes (NOA) It counts the number of attributes of a given component. 

Number of Operations (NOO) It counts the number of operations (methods and advice) of a 
given component. 

Coupling Between 
Components (CBC) 

It counts the number of components from which a given 
component invokes a method or references an attribute. 

 

Table 5: Conventional metrics used in the definition of the heuristic rules 

 

All the heuristic rules defined in this section are expressed using conditional 

statements in the following form (Tekinerdoğan & Akşit, 1998): 

IF <condition> THEN <consequence>. 

The condition part encompasses one or more outcomes of metrics related to 

the design concern under analysis. As we will see, the heuristic rules classify each 

concern into categories which describe the way it is modularized. Examples of 

categories that will be described in the following sections are: isolated concern, 

tangled concern, high scattered concern, and so forth. The following rule, for 

instance, is based on the outcomes of CDC and NC metrics, and classifies a 

tangled concern as a highly scattered concern, if the condition holds. 

    IF CDC / NC of Concern ≥ 0.5 THEN Tangled Concern is Highly Scattered 
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 The heuristic rules are structured in such a way that the classification is 

systematically refined into a more specialized category. If the condition is not 

satisfied, then the concern analysis is concluded and the concern classification is 

not refined. If the condition holds, the role of the consequence part is to describe a 

change or refinement of the target concern classification. Some categories, such as 

isolated concern, indicate a well modularized concern. Other categories, such as 

highly scattered concern, warn about poorly modularized concern. The generated 

warnings encompass information that helps the designers to concentrate on certain 

concerns or parts of the design which are potentially problematic. The proposed 

concern heuristics suite is structured in two major parts: (i) crosscutting concern 

analysis (Sections 5.4.1 and 5.4.2), and (ii) detection of specific design flaws 

(Section 5.4.3). 

 

5.4.1. 
Crosscutting Concern Analysis 

This section presents a suite of design heuristic rules to classify concerns in 

terms of the degree of tangling and scattering. These rules classify a concern into 

six categories: isolated, tangled, little scattered, highly scattered, well-

encapsulated, and crosscutting. Figure 16 presents a diagram which defines the 

relationship between heuristic rules and concern categories. The ellipses represent 

concern categories, and the labeled arrows represent the heuristic rules. Each 

heuristic rule is a transition relationship between two concern classifications. The 

definitions of the rules are presented in Figure 17. Figure 16 also shows the order 

in which the heuristics should be applied. 

A tangled concern is a concern which is interleaved with other concerns in 

one particular component (class or aspect). If the concern is not tangled in any 

component, it is considered as isolated. A concern is isolated if it is the only 

concern in all components that realize it. 

A scattered concern is a concern which is spread over multiple components. 

Our classification makes a distinction between highly scattered and little scattered 

concerns based on the number of affected components. A highly scattered concern 

is a concern spread over many components. A little scattered concern is concern 

spread over few components. 
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Tangled

R01 R02

R03 R04

R05 R06 R07 R08

CrosscuttingWell
Encapsulated
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Highly
Scattered

Little
Scattered

Concern
Bad symptomsGood symptoms

 
 

Figure 16: Concern classification 

 

A well-encapsulated concern is a concern that is the dominant concern in all 

the components where it is. We define dominant concern of a component as the 

concern that is assigned to most of the attributes and operations of that concern. 

The reasoning behind this classification is that a concern is not harmful to the 

classes or aspects in which it is dominant, and, therefore, it does not need to be 

removed from them.  

Note that there is a difference between isolated and well-encapsulated 

concerns. An isolated concern is also dominant in every component where it is 

present. However, it is the only concern in those components. On the other hand, 

in spite of being dominant in all components where it is, a well-encapsulated 

concern is tangled with other concerns that are present in at least one of those 

components. These other concerns are realized by less attributes and operation 

than the dominant concern. These are the concerns classified as crosscutting. 

Crosscutting concerns generate warnings of inadequate separation of 

concerns and, consequently, opportunities for refactoring (Fowler, 1999; Monteiro 

& Fernandes, 2005). Although both highly and little scattered concerns can be 

crosscutting concerns, highly scattered crosscutting concerns tend to be more 
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harmful to the design modularity. Therefore, it is important to classify a concern 

as highly or little scattered before classifying it as crosscutting. 

 

R01 - Isolated: 
if CIBC = 0 
then CONCERN is ISOLATED 

R02 - Tangled: 
if CIBC > 0 
then CONCERN is TANGLED 

R03 - Little Scattered: 
if CDC / NC of CONCERN < 0.5 
then TANGLED CONCERN  is LITTLE SCATTERED 

R04 - Highly Scattered: 
if CDC / NC of CONCERN ≥ 0.5 
then TANGLED CONCERN is HIGHLY SCATTERED 

R05 - Well Encapsulated: 
if (NCA / NOA ≥ 0.5) and (NCO / NOO ≥ 0.5) for every component with CONCERN 
then LITTLE SCATTERED CONCERN is WELL-ENCAPSULATED 

R06 - Crosscutting: 
if (NCA / NOA < 0.5) and (NCO / NOO < 0.5) for at least one component with CONCERN 
then LITTLE SCATTERED CONCERN is CROSSCUTTING 

R07 - Well Encapsulated: 
if (NCA / NOA ≥ 0.5) and (NCO / NOO ≥ 0.5) for every component with CONCERN 
then HIGHLY SCATTERED CONCERN is WELL-ENCAPSULATED 

R08 - Crosscutting: 
if (NCA / NOA < 0.5) and (NCO / NOO < 0.5) for at least one component with CONCERN 
then HIGHLY SCATTERED CONCERN is CROSSCUTTING 

Figure 17: Design heuristic rules for crosscutting concern analysis 

 

The heuristic rules for crosscutting concern analysis are shown in Figure 17. 

The rules are numbered from R01 to R08 and include the classification of 

concerns shown in the diagram in Figure 16. The first two heuristic rules, R01 and 

R02, use the metric Component-level Interlacing between Concerns (CIBC) to 

classify the concern as isolated or tangled (Figure 17). If the CIBC value is zero, 

it means that there is only that concern in all the components which implement it 

and, therefore, the concern is isolated. However, if CIBC is higher than zero, it 

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA



 115 

means that the concern is interlaced (tangled) with other concerns in at least one 

component, e.g. Factory Method and Observer patterns in the design of Figure 15. 

Rules R03 and R04 verify whether a concern, besides tangled, is scattered 

over multiple components. These heuristics use the metrics Concern Diffusion 

over Components (CDC) and Number of Components (NC) in order to calculate 

the percentage of system components affected by the concern of interest. Based on 

this percentage, the concern is classified as highly scattered or little scattered. As 

we will discuss later in this section, one of the most sensitive parts in a heuristic 

rule is the selection of threshold values. Our strategy for these rules is to use 50% 

as the threshold. Developers should be aware of highly scattered concerns because 

they can potentially cause design flaws, such as Shotgun Surgery (Fowler, 1999) 

(Section 5.1). 

Rules R05 and R06 decide whether a little scattered concern is either a well-

encapsulated or crosscutting concern. Rules R07 and R08 perform similar 

analyses for a highly scattered concern. These four rules use the metrics Number 

of Concern Attributes (NCA) and Number of Concern Operations (NCO) and two 

size metrics presented in Table 5: Number of Attributes (NOA) and Number of 

Operations (NOO). They calculate for each component the percentage of 

attributes and operations which implements the concern being analyzed. 

The role of the heuristics R05 and R07 is to detect components that dedicate 

a large number of attributes and operations (more than 50%) to realize the 

analyzed concern. If so, that concern is regarded as the dominant concern of those 

components. If a concern is dominant in every component where it is, this concern 

is classified as well-encapsulated. 

A concern is classified as crosscutting (rules R06 and R08) if the percentage 

of attributes and the percentage of operations related to the concern are low (less 

than 50%) in at least one component. Hence, a concern is classified as 

crosscutting if it is located in at least one component which has another concern 

as dominant. 
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5.4.2. 
Octopus and Black Sheep 

This section defines design heuristic rules for classifying crosscutting 

concerns as octopus and black sheep. These categories are inspired on the 

categories with the same names proposed by Ducasse et al (2006). Black sheep is 

a concern that crosscuts multiple components, but is realized by very few 

attributes and operations in all these components. Octopus is a crosscutting 

concern which is dominant in some components (octopus’ body), but is realized 

by only few attributes and operations in other components (octopus’ arms). 

Therefore, black sheep and octopus are actually specialized categories of 

crosscutting concerns. Figure 18 shows two heuristic rules, R09 and R10, which 

aim at identifying black sheep and octopus concerns, respectively. Figure 18 also 

defines condition A (Little Dedication) and condition B (High Dedication) used in 

these rules. We explicitly separate the conditions from the heuristic rules in order 

to make the rules easier to understand and also to reuse the Little Dedication 

condition in both heuristics. In rules R09 and R10, a concern previously classified 

as crosscutting (Section 5.4.1) is thoroughly inspected in terms of (i) how much 

each component dedicates to that concern, and (ii) how many components have 

high and low dedication to such concern. 

The heuristic rule R09 classifies a crosscutting concern as black sheep if all 

components which have this concern dedicate only a few percentage points of 

attributes and operations to that concern (less than 33%). The next rule R10 

verifies if crosscutting concerns not classified as black sheep are potential 

octopus. According to this heuristic, a concern is classified as octopus if every 

component realizing parts of this concern has either little dedication (condition A) 

or high dedication (condition B) to it. Besides, at least two components have to be 

little dedicated to the concern (octopus’ arms) and at least one component has to 

be highly dedicated (octopus’ body). We define a component as highly dedicated 

to a concern when the percentage of attributes and operations are higher than 

67%. 
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Condition A - Little Dedication: 
(NCA / NOA < 0.33) and (NCO / NOO < 0.33)  

Condition B - High Dedication: 
(NCA / NOA ≥ 0.67) and (NCO / NOO ≥ 0.67)) 

R09 - Black Sheep: 
if (Little Dedication) for every component with CONCERN 
then CROSSCUTTING CONCERN is BLACK SHEEP 

R10 - Octopus: 
if ((Little Dedication) or (High Dedication) for every component with CONCERN)  
    and ((Little Dedication) for at least 2 components with CONCERN)  
    and ((High Dedication) for at least 1 component with CONCERN)  
then CROSSCUTTING CONCERN is OCTOPUS 

Figure 18: Design heuristics rules for Black Sheep and Octopus 

 

5.4.3. 
Concern-Aware Bad Smells 

This section focus on how concern-driven heuristic rules can also be applied 

to detect well-known design flaws, such as the bad smells proposed by Fowler 

(1999). We defined heuristics for two bad smells: Feature Envy (Fowler, 1999) 

and Shotgun Surgery (Fowler, 1999). The first bad smell, Feature Envy, is related 

to the misplacement of operations. It occurs when an operation seems more 

interested in a component other than the one it actually is in (Fowler, 1999). As 

stated before, Shotgun Surgery occurs when a change in a characteristic (or 

concern) of the system implies many changes to a lot of different places (Fowler, 

1999). The reason for selecting these two bad smells is twofold. First, previous 

work already claimed they are related to inadequate modularization of concerns 

(Monteiro & Fernandes, 2005). Second, existing heuristic rules for detecting these 

bad smells are representative of those rules based on metrics for coupling and 

cohesion. As mentioned before, coupling and cohesion are the most used 

attributes on conventional modularity measurement approaches. 

Figure 19 shows our concern-sensitive heuristic rules for detecting the two 

aforementioned bad smells. While the previous rules (R01 to R10) are applied per 
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concern, the rules in this section (R11 and R12) are applied for each pair 

“component-concern”. The first rule, R11, aims at detecting Feature Envy and 

uses a combination of concern-sensitive and conventional metrics for coupling 

and size. 

According to R11, to be considered Feature Envy, a crosscutting concern 

has to satisfy two conditions: “condition C” (High Inter-Component Coupling) 

and “condition D” (Low Intra-Component Coupling) (Figure 19). In other words, 

this rule states that operations related to a given concern within a given 

component are suspect of Feature Envy if: (i) those operations are responsible for 

imposing high coupling with other components (“condition C”), and (ii) the same 

operations are weakly coupled to other concerns within the component 

(“condition D”). 

The assumption behind this rule is that a concern that imposes high coupling 

to a component might be removed from that component. Besides, if that concern 

is internally weakly coupled it might be easy to remove it from the component. 

Note that when we say “concern” here, we mean “the operations to which the 

concern is assigned”. This is the main difference of our rule from Marinescu’s 

rule (Marinescu, 2002): the analysis provided by our rule takes into account all 

operations related to a concern together rather than each operation in isolation. 

 

Condition C - High Inter-Component Coupling: 
(CSC / CBC) > ((NCA+NCO) / (NOA+NOO))  

Condition D - Low Intra-Component Coupling: 
(ICSC / ((NOA+NOO)-(NCA+NCO))) < ((NCA+NCO) / (NOA+NOO))  

R11 - Feature Envy: 
if (High Inter-Component Coupling) and (Low Intra-Component Coupling) and (LCC > 1)  
then CROSSCUTTING CONCERN is FEATURE ENVY 

R12 - Shotgun Surgery: 
if CONCERN is (Tangled) and (Highly Scattered) and (Crosscutting)  
then CROSSCUTTING CONCERN is SHOTGUN SURGERY 

Figure 19: Heuristic rules for detecting bad smells 
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In order to quantify whether the inter-component coupling imposed by a 

concern to a component is high, “condition C” calculates the percentage of 

coupling related to a concern: CSC/CBC. CSC stands for Concern-Sensitive 

Coupling metric (Section 5.3.4) and CBC stands for Coupling Between 

Components metric (Table 5)  The inter-component coupling is considered high 

when the percentage of coupling related to a concern (CSC/CBC) is higher than 

the percentage of operations and attributes that realize that concern within the 

assessed component ((NCA+NCO) / (NOA+NOO)). Similar computation is 

performed for identifying low intra-component coupling. In this case, the Intra-

component Concern-Sensitive Coupling metric (ICSC) is used. 

The rule R12 (Figure 19) is intended to detect Shotgun Surgery. Differently 

from the previous rules, R12 is composed of the outcomes from other heuristics. 

More precisely, a concern is classified as Shotgun Surgery if it was previously 

identified as Tangled (R02), Highly Scattered (R04), and Crosscutting (R08). R12 

takes a concern classified as crosscutting and checks its previous classifications. If 

that concern, besides of being crosscutting, is high scattered, it is considered as a 

suspect of Shotgun Surgery. It is important to bear in mind that, according to our 

classification (Figure 16), a little scattered concern can also be classified as 

crosscutting. This occurs whenever a concern, even spread over only few 

components, is not dominant in some of them. However, in this case, there is no 

warning about Shotgun Surgery, because changing that concern would not 

generate changes in many components. 

 

5.4.4. 
The Issue of Threshold Values 

Before closing this chapter, we would like to point out to an aspect that has 

a decisive influence on the accuracy of a heuristic rule: the threshold values used 

in parameterizing any heuristic rule. The problem is far from being new and it 

characterizes intrinsically any metrics-based approach. In most of the cases setting 

the threshold values is a highly empirical process and it is guided by similar past 

experiences and by hints from metrics’ authors (Lorenz & Kidd, 1994). 

In the definition of our heuristic rules (Figure 17, Figure 18, and Figure 19), 

we selected the thresholds based on our previous experience applying concern-

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA



 120 

driven metrics (Sant’Anna et al., 2003, 2004; Kulesza et al., 2006; Garcia et al., 

2004a, 2005, 2006; Figueiredo et al., 2008b; Greenwood et al., 2007a; Cacho et 

al., 2006a). In addition, we decided to set the thresholds rather permissive, as it is 

preferable to get more false positive results, rather than losing a large number of 

real flaws due to a very strict threshold value. Also, we used meaningful threshold 

values, such as 0.25 (1/4), 0.33 (1/3), 0.5 (1/2), 0.67 (2/3), and 0.75 (3/4), as 

suggested by Lanza & Marinescu (2006). Nevertheless, the threshold values used 

in our rules are not final. Rather, we believe that further use of the rules will allow 

us to adjust the threshold values in order to increase the number of correctly 

detected samples. 
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