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3 
Aspect-Oriented Software Development 

As pointed out in the first chapter, this work is going to tackle the issue of 

using concern-driven measurement in order to assess the modularity of aspect-

oriented design. The goal of this chapter is, therefore, to present the concepts of 

aspect-oriented software development (Filman et al., 2005). During the rest of this 

thesis we will refer to the concepts introduced here. 

This chapter is structured in three parts. The first part introduces aspect-

oriented programming and key abstractions and mechanisms that constitute an 

aspect-oriented detailed design. The second part concentrates on aspect-oriented 

software architecture, as our approach targets the assessment of aspect-oriented 

architectural design. The last part describes existing metrics for conventionally 

assessing aspect-oriented design modularity. It complements Chapter 2, with a 

discussion of modularity metrics specific to aspect-oriented design. 

 

3.1. 
Aspect-Oriented Programming 

Separation of concerns is a fundamental principle that addresses the 

limitations of human cognition for dealing with complexity. It advocates that to 

master complexity, one has to deal with one important issue (or concern) at a time 

(Dijkstra, 1976). In software engineering, the principle of separation of concerns 

is usually related to system decomposition and modularization (Parnas, 1972): 

complex software systems should be decomposed into smaller, clearly separated 

modular units, each dealing with a single concern. The expected benefits are 

improved comprehensibility and increase on the potential for evolution and reuse 

in complex software systems. 

In software development, the achievement of separation of concerns 

depends largely on the suitability of abstractions and compositions mechanisms of 

languages, methods and tools used throughout the software lifecycle. Classes, 

objects, and methods are examples of classical abstractions in object-oriented 
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software engineering. For instance, a simple concern can be modularized as a 

class or as a single method. Inheritance and polymorphism are examples of 

mechanisms that enable modularization and composition of software concerns.  

However, object-orientation has some limitations for dealing with concerns 

that address requirements involving global constraints and systemic properties, 

such as synchronization, persistence, error handling, and logging mechanisms, 

among many others. These concerns have been called crosscutting concerns since 

they naturally crosscut the boundaries of modular units that implement other 

concerns. Without proper means for separation and modularization, crosscutting 

concerns tend to be scattered over a number of modular units and tangled up with 

other concerns. The natural consequences are lower cohesion and stronger 

coupling between modular units, reduced comprehensibility, evolvability and 

reusability of code artifacts. 

Aspect-Oriented Programming (AOP) (Kiczales et al., 1997) is an emerging 

technology that supports a new flavor of separation of concerns at the source code 

level. It introduces new modularization abstractions and composition mechanisms 

to improve separation of crosscutting concerns at the implementation level. AOP 

promotes a new modular unit, called aspect, for separating crosscutting concerns 

and provides new mechanisms for composing aspects with other modular units at 

well-defined points called join points. In the following we briefly describe the 

main aspect-oriented abstractions and mechanisms. Then we illustrate the use of 

AOP in the light of an example in AspectJ (The AspectJ Team, 2007; Kickzales et 

al., 2001), the most well-known AOP language. 

 

Aspects 

Aspect is the term used to denote the abstraction that aims to support 

improved isolation of crosscutting concerns. Aspects are modular units of 

crosscutting concerns that are associated with a set of classes or objects. An aspect 

can affect, or crosscut, one or more classes and/or objects in different ways. 

Aspect-oriented system designs are decomposed into classes and aspects; aspects 

modularize crosscutting concerns and classes modularize non-crosscutting 

concerns. In addition to conventional attributes and methods, an aspect includes 

pointcuts and pieces of advice as described bellow. 
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Join Points and Pointcuts 

Essential to the process of composing aspects and classes is the concept of 

join points, the elements that specify how classes and aspects are related. Join 

points are well-defined points in the dynamic execution of a system. Examples of 

join points are method calls, method executions, attributes sets and reads, and 

object initialization. Each aspect defines one or more first-order logic expressions, 

called pointcut expressions (or just pointcuts), to select the join points that will be 

affected by the aspect’s crosscutting behavior. 

 

Advice 

When program execution reaches a join point selected by some pointcut 

expression, a body of code, called advice, can be executed before, after or around 

it. Advice is a special method-like construct attached to pointcuts. There are 

different kinds of advice: (i) a before advice runs whenever a join point is reached 

and before the actual computation proceeds, (ii) an after advice runs after the 

computation under the join point finishes, i.e. after the method body has run, and 

just before control is returned to the caller, and (iii) an around advice runs 

whenever a join point is reached, and has explicit control whether and when the 

computation under the join point is allowed to run at all. 

Currently, AspectJ (The AspectJ Team, 2007; Kickzales et al., 2001) is the 

most well-known general-purpose language for AOP. It is an extension to the Java 

programming language. The aforementioned concepts – aspects, pointcuts, join 

points, advice – constitute a common standard vocabulary for AOP adopted from 

AspectJ (The AspectJ Team, 2007). Additionally, aspects in AspectJ can provide 

intertype declarations, which are attributes and methods that will be inserted into 

classes. 

Figure 3 shows an example of an aspect obtained in the AspectJ 

Programming Guide (The AspectJ Team, 2007). The FaultHandler aspect consists 

of an inter-type declaration which introduces an attribute in the Server class (line 

03), two conventional methods (lines 05-07 and 08-10), a pointcut (line 12) and 

two pieces of advice (lines 14-16 and 17-20). This covers the basics of what 

aspects can contain. The pointcut, named services, defines as join points the call 

to any public method of objects of type Server. This is specified by the clausule 

call(public * * (..)). It also allows any piece of advice using the services pointcut to 
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access the Server object whose method is being called. This is specified by the 

clausule target(s). 

The piece of advice in lines 14-16 specifies that the piece of code in line 15 

is executed when instances of the Server class have their public methods called, 

as specified by the pointcut services. More specifically, it runs when those calls 

are made, just before the corresponding methods are executed. The piece of 

advice in lines 17-20 defines another piece of code that is also executed on the 

services pointcut. However, in this case, the piece of code is executed after the 

called method throw exception of type FaultException. 

 
01 aspect FaultHandler { 
02 
03   private boolean Server.disabled = false; 
04    
05   private void reportFault() { 
06     System.out.println(“Failure! Please fix it!.”); 
07   } 
08   public static void fixServer(Server s) { 
09     s.disabled = false; 
10   } 
11 
12   pointcut services(Server s): target(s) && call(public * * (..)); 
13 
14   before(Server s): services(s) { 
15     if (s.disabled) throw new DisabledException(); 
16   } 
17   after(Server s) throwing (FaultException e): services(s) { 
18     s.disabled = true; 
19     reportFault(); 
20   } 
21 } 

 
Figure 3: Example of an aspect in AspectJ 

 
Figure 4 presents a didactic example that shows the difference between Java 

and AspectJ implementations of the same program (The AspectJ Team, 2007). It 

shows the code of a simple program to manage graphical elements. The Java 

solution (left side of Figure 4) encompasses the classes Point, Line and Display 

(the latter is not shown in the figure). The AspectJ implementation (right side of 

Figure 4) comprises the same classes plus the DisplayUpdating aspect. This 

example shows that the method update of the class Display must be called after 

every call to methods setX and setY of the class Point and methods setP1 and 

setP2 of the class Line. In the Java implementation, the call to Display.update is 

spread over the four methods since it is explicitly done at the end of each of them 

(lines 9, 13, 25 and 19). In the AspectJ solution, this call is localized only in the 
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DisplayUpdating aspect (line 37) and is executed when the join points defined by 

the move pointcut (lines 30-34) are reached.  

 
01 class Point { 
02  private int x = 0, y = 0; 
03 
04  int getX() { return x; } 
05  int getY() { return y; } 
06 
07  void setX(int x) {     
08    this.x = x; 
09    Display.update(); 
10  } 
11  void setY(int y) {     
12    this.y = y; 
13    Display.update(); 
14  } 
15 } 
16 
17 class Line { 
18  private Point p1, p2; 
19 
20  Point getP1() { return p1; } 
21  Point getP2() { return p2; } 
22 
23  void setP1(Point p1) { 
24    this.p1 = p1; 
25    Display.update(); 
26  } 
27  void setP2(Point p2) { 
28    this.p2 = p2; 
29    Display.update(); 
30  } 
31 } 
 

01 class Point { 
02  private int x = 0, y = 0; 
03 
04  int getX() { return x; } 
05  int getY() { return y; } 
06 
07  void setX(int x) {     
08    this.x = x; 
09  } 
10  void setY(int y) {     
11    this.y = y; 
12  } 
13 } 
14 
15 class Line { 
16  private Point p1, p2; 
17 
18  Point getP1() { return p1; } 
19  Point getP2() { return p2; } 
20 
21  void setP1(Point p1) { 
22    this.p1 = p1; 
23  } 
24  void setP2(Point p2) { 
25    this.p2 = p2; 
26  } 
27 } 
28 
29 aspect DisplayUpdating { 
30  pointcut move(): 
31    call(void Line.setP1(Point))|| 
32    call(void Line.setP2(Point))|| 
33    call(void Point.setX(int))  || 
34    call(void Point.setY(int)); 
35 
36  after() returning: move() { 
37    Display.update(); 
38  } 
39 } 

 
Figure 4: Java (left side) and AspectJ (right side) version of the same program. 

 

3.2. 
Aspect-Oriented Architecture Design 

Aspect-oriented abstractions and related composition mechanisms have 

been also discussed with the goal of supporting the separation of crosscutting 

concerns in other phases of the software life cycle. In the context of software 

architecture, a number of aspect-oriented architecture description languages have 

been proposed to allow the representation of aspect-oriented abstractions at the 

architectural design level. Architecture description languages (ADLs) are 

modeling notations to support architecture-based development (Medvidovic & 

Taylor, 2000). An ADL focuses on the high-level structure of the overall software 
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rather than the implementation details of any specific source component 

(Medvidovic & Taylor, 2000). 

DAOP-ADL (Pinto et al., 2003), Fractal ADL (Pessemier et al., 2004), AO-

ADL (Pinto & Fuentes, 2007) and AspectualACME (Garcia et al., 2006a) are 

examples of aspect-oriented ADLs. Moreover, some graphical notations, such 

AOGA (Garcia, 2004; Kulesza et al., 2004) and AO Visual Notation 

(Tekinerdoğan et al., 2006) provide graphical notations for modeling aspect-

oriented component-and-connector (C&C) views (Bass et al., 2003). This section 

describes existing approaches for specifying aspect-oriented architectures. Some 

of these approaches are later used in our empirical studies (Chapter 7), namely 

AOGA and AO Visual Notation, and supported by our measurement tool (Section 

6.2), namely AO-ADL.  

A C&C view (Bass et al., 2003) is an architecture view in which the 

elements are components and connectors. Components are main units of 

computation; connectors are the communication means between components. 

Components and the connectors are attached to each other. C&C views consist of 

the major executing components and how they interact. Architectural aspects (or 

aspectual components) can be defined both to modularize architectural 

crosscutting concerns and to separate them from other architectural components. 

Architectural aspects may affect components at well-defined architectural join 

points. For instance, an architectural join point can be the invocation of an 

operation of some component interface. 

Most aspect-oriented ADLs are motivated by the integration of existing 

ADL concepts (e.g. component, interface, and connector) with new AO 

abstractions (e.g. aspect, join point, pointcut and advice) in order to address the 

modeling of crosscutting concerns in architecture. Navasa et al (2002) define a set 

of requirements which current ADLs need to address to allow the management of 

crosscutting concerns using architectural connection abstractions. The 

requirements are: (i) definition of primitives to specify join points in functional 

components, (ii) definition of the aspect abstraction as a special kind of 

component, and (iii) specification of connectors between joinpoints and aspects. 

The authors suggest the use of existing coordination models to specify the 

connectors between functional components and aspects. 
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Pinto et al (2003) propose DAOP-ADL which considers components and 

aspects as first-order elements. Aspects can affect the components’ interfaces by 

means of: (i) an evaluated interface which defines the operations that aspects are 

able to affect, and (ii) a target event interface responsible for describing the events 

that an aspect can capture. The connection between components and aspects is 

supported by a set of aspect evaluation rules. They define when and how the 

aspect behavior is executed. 

Pessemier et al (2004) extend the Fractal ADL with aspect components. 

Aspect components are responsible for specifying existing crosscutting concerns 

in the software architecture. Each aspect component can affect components by 

means of a special interception interface. Two kinds of connections between 

components and aspect components are offered: (i) a direct crosscut connection by 

declaring the component references, and (ii) a crosscut connection using pointcut 

expressions based on component names, interface names and service names. 

AspectualACME (Garcia et al., 2006a) is a simple and seamless extension 

of the ACME ADL (Garlan et al., 1997) to support the modular representation of 

architectural aspects and their multiple composition forms. AspectualACME 

promotes a natural blending of aspects and architectural abstractions by 

employing a special kind of architectural connector, called Aspectual Connector, 

to encapsulate aspect-component connection details. 

Pinto & Fuentes (2007) proposed a XML-based aspect-oriented ADL called 

AO-ADL. The structural organization of AO-ADL is based on the fact that the 

main difference of architectural crosscutting and non-crosscutting concerns is in 

the role they play in a particular composition binding and not in the internal 

behavior itself. Therefore, differently from the previously mentioned ADLs, AO-

ADL does not include a new element to model aspects. Components in AO-ADL 

model either crosscutting or non-crosscutting behavior. This is called a symmetric 

approach. Thus, a component is considered an aspect when it participates in an 

aspectual interaction. In this context, another contribution of AO-ADL is the 

extension of the semantic of conventional connectors to represent the crosscutting 

effect of “aspectual” components. This means that AO-ADL connectors provide 

support to describe not only typical communication as in traditional ADLs, but 

also crosscutting influence among components. 
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The aforementioned aspect-oriented ADLs can be classified in two 

categories: symmetric and asymmetric approaches. The asymmetric ADLs, such 

as DAOP-ADL (Pinto et al., 2003) and Fractal ADL (Pessemier et al., 2004), 

include a special abstraction to represent “aspectual components” at the 

architecture description. Aspectual components comprise special kinds of 

interfaces to specify the points at the architecture affected by it. We could say that 

the pointcuts are specified in the interfaces, such as the DAOP-ADL “evaluated 

interface”. 

On the other hand, symmetric aspect-oriented ADLs, such as AO-ADL 

(Pinto & Fuentes, 2007) and AspectualACME (Garcia et al., 2006a) do not define 

any special kind of component to model aspects. Instead, crosscutting and non-

crosscutting concerns are captured by conventional components without any 

special kind of interface. These ADLs rely on a special kind of connector to 

represent crosscutting relationship between components playing the role of 

aspects and the other components. In this case, we could say that the pointcuts are 

specified in the connectors. 

In our empirical studies (Chapter 7), we used graphical notations to 

represent the architectures under assessment. In particular, we used an asymmetric 

notation provided by AOGA (Garcia, 2004; Kulesza et al., 2004) in the first study 

and a symmetric notation, called AO Visual Notation (Tekinerdoğan et al., 2006), 

in the last two studies. In the following sections, we describe these notations. 

 

3.2.1. 
AOGA 

AOGA is a graphical notation for describing C&C views of aspect-oriented 

architectures. In AOGA, the architect has modeling support to distinguish 

between normal components and aspectual components. Aspectual components 

are aspects at the architectural level. An aspectual component is represented like a 

UML 2.0 component (OMG, 2005) with a diamond on the top of it, as shown in 

Figure 5. Each aspectual component can be related to more than one conventional 

or aspectual component, representing its crosscutting nature.  

In AOGA models, interfaces are attached to the architectural components. 

The interfaces are categorized in three groups: provided interfaces, required 
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interfaces and crosscutting interfaces. Figure 5 illustrates AOGA notation for 

architectural components and interfaces. Provided and required interfaces are 

represented as defined in UML 2.0 (OMG, 2005). Crosscutting interfaces are 

represented as small gray circles. Each interface has a name, which is placed next 

to it. Each architectural component has one or more interfaces. 

 

AspectB

AspectA

ComponentA

ComponentB

Legend:
conventional component

provided interface
required interface

aspectual component

crosscuts relationship

crosscutting interface

CI2

CI1

PI1 PI2

RI1 RI2

 
Figure 5: AOGA architecture elements  

 

Crosscutting interfaces specify which architectural components are affected 

by aspectual components. However, they do not declare how the components are 

affected. A crosscutting interface is different from a provided interface. The latter 

only provides services to other components. Besides providing services, 

crosscutting interfaces also specify when an architectural aspect affects other 

architectural components. An aspectual component conforms to a set of 

crosscutting interfaces. The operations declared in an interface represent the 

services provided by it.  

A crosscutting interface can be attached to either internal elements of the 

architectural components or other interfaces by means of crosscuts relationships. 

The first case means that the architectural aspect directly affects the internal 

structure or dynamic behavior of the target component. The second case means 

that the aspectual component affects the operations defined by other interfaces. 
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3.2.2. 
AO Visual Notation 

The AO Visual Notation (Tekinerdoğan et al., 2006) extends the set of 

architecturally-relevant abstractions and respective graphical elements of UML 

2.0 (OMG, 2005), such as components, interfaces, and connectors. AO Visual 

Notation is a symmetric approach, thus, both crosscutting and non-crosscutting 

concerns are represented by components. The distinction is made at the connector 

level. 

The AO Visual Notation provides support for architecture-level crosscutting 

compositions by means of the notion of aspectual connectors. The authors claim 

that conventional connector types, available in UML 2.0, are not appropriate to 

capture the notion of crosscutting compositions. The reason is that conventional 

connectors must only be defined from a required interface to a provided interface. 

This rule violates a typical composition property of crosscutting collaborations, 

which specifies that an aspectual component and affected components can be 

linked through their both provided interfaces (Garcia et al., 2006a; Kulesza et al., 

2004). 

Figure 6 shows how aspectual connectors are represented in the AO Visual 

Notation. The use of the stereotype is optional. The aspectual connector is a 

component-like graphical notation with elements to specify the “crosscutting 

collaboration” between the involved architectural elements. 

 

 
Figure 6: AO Visual Notation: Aspectual Connectors 

 

Aspectual connectors (Figure 6) are basically formed by base and 

crosscutting roles. These roles consist of two types of connector’s interfaces, and 

define the role the connected components are playing in a crosscutting 
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composition. A crosscutting role defines which component is playing the role of 

“aspect” in the architecture decomposition. Crosscutting roles are represented by 

triangles “cutting across” the connector boundaries. Base roles are associated with 

different join points affected by the components associated with the crosscutting 

roles. They are represented by small rectangles in the opposite extreme of an 

aspectual connector (Figure 6). 

Crosscutting relationships define how the connectors and components are 

attached. They are equivalent to attachments in conventional ADLs, such as 

ACME (Garlan et al., 1997). Their graphical representation is a dashed line. The 

dashed lines associate crosscutting or base roles with component interfaces. The 

set of join points of interest in a certain crosscutting composition are 

conventionally indicated by visual (and sometimes, textual) elements associated 

with a crosscutting relationship. The three interfaces of the component on the left 

of Figure 6 are associated with crosscutting relationships. These three interfaces 

are join points affected by the component on the right of the figure, which plays 

the role of an aspect. 

When a component interface is touched by a line, it means that one or more 

of the interface operations are affected by an aspectual connector. Whenever it is 

required, a sequencing operator can be associated with a crosscutting relationship. 

It specifies when or how the connector is affecting the operation(s). The notation 

includes graphical elements for three sequencing operators: before, after, and 

around (Figure 6). For the sake of scalability, a simpler notation for aspectual 

connectors is available in case connector internals are not relevant (Figure 7). 

 

<<component>>

<<component>>

Aspectual Connector
(simpler notation)

 
Figure 7: Simpler notation for aspectual connectors  
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3.3. 
Aspect-Oriented Metrics 

Aspect-oriented software development and AspectJ, in particular, have 

received an increasing amount of attention by the measurement community. 

Metrics tailored to be applied to aspect-oriented abstractions have been proposed. 

In fact, most of these metrics rest upon AspectJ mechanisms. While object-

oriented metrics are defined in terms of classes, methods and attributes, aspect-

oriented metrics have been defined in terms of aspects, advice, pointcuts and 

intertype declarations. Aspect-oriented programs also include classes, methods 

and attributes, thus the definition of aspect-oriented metrics also consider these 

abstractions. 

Most of the aspect-oriented metrics for quantifying modularity-related 

attributes, such as coupling and cohesion, are extensions of existing object-

oriented metrics (Ceccato & Tonella, 2004; Sant’Anna et al., 2003; Zhao, 2002, 

2004; Zhao & Xu, 2004). These metrics can be considered as conventional as 

object-oriented metrics in the sense that they are defined upon module-like 

abstractions, such as classes and aspects. Therefore, existing aspect-oriented 

metrics suffer from the same limitations of existing object-oriented metrics – they 

are not calibrated by the system’s concerns (Section 1.2). In the following 

subsections, we briefly describe three relevant representative suites of aspect-

oriented metrics, in order to show the new dimensions of conventional modularity 

measurement that are imposed by aspect-oriented design. The last subsection 

(Section 3.3.4) discusses a new type of connection considered by aspect-oriented 

coupling metrics. 

 

3.3.1. 
Metrics by Ceccato & Tonella 

Ceccato & Tonella (2004) define five coupling metrics for aspect-oriented 

software: Coupling on Advice Execution (CAE), Coupling on Intercepted 

Modules (CIM), Coupling on Method Call (CMC), Coupling on Field Access 

(CFA), and Crosscutting Degree of an Aspect (CDA). CAE is defined as the 

number of aspects containing advice that is possibly triggered by the execution of 

operations in a given class or aspect. CIM is defined as the number of classes or 
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aspects explicitly named in the pointcuts of a given aspect. CMC is defined as the 

number of classes or aspects declaring methods that are possibly called by a given 

class or aspect. CFA is defined as the number of classes or aspects declaring fields 

that are accessed by a given class or aspect. CDA is defined as the number of 

classes affected by the pointcuts and inter-type declarations of a given aspect. 

Ceccato & Tonella (2004) define one cohesion metric: Lack of Cohesion in 

Operations (LCO). This metric is a direct adaptation of the Chidamber & 

Kemerer’s LCOM metric (Section 2.4). It is defined as the number of pairs of 

operations (methods or pieces of advice) working on different class fields minus 

pairs of operations working on common fields. Response for a Module (RFM) is 

another metrics defined by Ceccato & Tonella. This metric is an adaptation of 

Chidamber & Kemerer’s RFC metric (Section 2.4). In addition, the RFM now 

also includes aspects and take into account the pieces of advice that might be 

executed due to pointcuts. 

 

3.3.2. 
Metrics by Sant’Anna et al. 

Sant’Anna et al. (2003) define coupling and cohesion metrics for aspect-

oriented software1. Coupling between Components (CBC) is an extension of 

Chidamber & Kemerer’s Coupling Between Object Classes (CBO) metric 

(Section 2.4). A component is defined as a class or an aspect. Thus, CBC is 

defined for a class or an aspect as the number of other classes or aspects to which 

it is coupled. Their definition mentions pointcuts as one of the considered 

coupling dimension between classes and aspects. They proposed the Lack of 

Cohesion in Operations (LCOO) metric. It measures the amount of advice/method 

pairs that do not access the same instance variable and is thus an extension of the 

LCOM metric by Chidamber & Kemerer (Section 2.4). 

 

                                                 
1 These metrics are not contribution of this thesis. They were proposed in the context of 

Sant’Anna’s master dissertation.  
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3.3.3. 
Metrics by Zhao and Xu 

Zhao and Xu’s metrics (Zhao, 2002, 2004; Zhao & Xu, 2004) are based on a 

dependence model for aspect-oriented software that consists of a group of 

dependence graphs. The coupling metrics are: Attribute-Class Dependence, 

Module-Class (member-class) Dependence, Module-Method (member-method) 

Dependence, and Aspect-Inheritance Dependence. The Attribute-Class 

Dependence metric relates to the dependence between attributes of an aspect and 

classes. The Module-Class (member-class) Dependence measure relates to the 

dependence between members of an aspect and classes. According to their 

definition of members of an aspect, this measure can be subdivided into advice-

class, intertype-class, method-class and the pointcut-class dependence measure. 

The Module-Method (member-method) Dependence measure relates to the 

dependence between members of an aspect and methods of a class and can be 

subdivided into four dimensions: advice-method, intertype-method, method-

method and pointcut-method dependence. 

 

3.3.4.Connection between Aspects and Classes 

In Section 2.4, we listed the possible types of connections in object-oriented 

coupling metrics identified by Briand et al. (1999). The aspect-oriented metrics 

also take into account all those types of connections, since an aspect-oriented 

program consists of classes and aspects. However, new types of connections are 

needed to compute aspect-oriented metrics. Based on the aforementioned suites of 

aspect-oriented metrics, we can observe that there is a very relevant new type of 

connection between aspects and classes which could be described as “an aspect a 

affects a class c by means of a pointcut”. At the architecture design we could 

define this coupling dimension as “an aspectual component a affects a component 

c by means of a crosscutting relationship”. Our suite of architectural metrics also 

includes coupling metrics. Our assessment approach also targets aspect-oriented 

design, thus our coupling between component metrics (Section 4.3.6) take into 

account this new type of connection between aspectual components and 

conventional components. 
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