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Mathematical Model

This section describes the proposed model to solve the petroleum supply

planning problem. The model is based on a fixed charge network flow structure

over a discretized time representation [Wol98], where time intervals of equal

duration are considered and activities allocated to a given interval must be

capable of being performed within it.

The nomenclature used in our model is as follows:

Indices

c : crude oil category

cl : class of tanker

cp(u) : campaigns of the crude distillation unit u

p : is used interchangeably to refer to crude oil or production site

r : refinery

u : crude distillation unit

t : time period

z : terminal

Sets

C : set of crude oil categories

CATp : set of category for petroleum p

CDUr : set of CDU in refinery r

CL : set of classes of tankers

CLp : set of classes of tankers that can offload production site p

CLz : set of classes of tankers that can operate in terminal z

CPu : set of campaigns of CDU u

P : set of production sites or crude oils

R : set of refineries

Rz: set of refineries connected to terminal z
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T : set of time periods

TPLAN1, TPLAN2 : set of time periods to consider the strategic

planning direction for the first and second months, respectively

Z : set of terminals

Zr : set of terminals connected to refinery r

Parameters

CAMPc,cp(u) [1000m
3/day] : Consumption rate of category c in campaign

cp(u) at CDU u.

CAPLc,r , CAPHc,r [1000 m3] : Lower and higher ideal storage levels of

petroleum category c at refinery r. Inventory below or above this ideal

range is penalized.

CAPTcl [1000 m3] : Average transportation capacity of class of tanker

cl.

CFcl [1000 USD] : Freight cost of an additional tanker cl.

CP 1
p,r, CP 2

p,r [1000 USD/1000 m3] : Penalty for deviation from the

strategic planning of crude oil p in refinery r, for the first and second

months, respectively.

CRHc,r, CRLLc,r, CRIc,r [1000 USD/1000 m3] : Penalty for having

stock of petroleum category c at refinery r over interval t, high, low and

infeasible, respectively.

CTcl [1000 USD/day] : Transportation cost of class of tanker cl per

period t.

FUcl : Fraction of the total number of tankers in class cl available to be

used in a given time.

MSPp [1000 m3] : Maximum storage capacity at production site p.

MSZz [1000 m3] : Maximum storage capacity at terminal z.

MSZRz,r [1000 m3] : Maximum storage capacity at terminal z alloted

to refinery r.

NBz : Number of berths in terminal z.

NTcl : Number of tankers in class cl.

Pp,t [1000 m3/day] : Production of crude oil p over interval t.

PLAN1
p,r, PLAN2

p,r [1000m
3] : Amount of crude oil p planned for refinery

r for the first and second months, respectively.

V Ti,j [day] : Voyage time between points i and j.
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Binary variables

bpp,cl,z,t : 1 if crude oil from production site p is sent to terminal z by

class of tanker cl over interval t; 0 otherwise.

bzp,cl,z,z1,t : 1 if crude oil from production site p is transshipped from

terminal z to terminal z1 by class of tanker cl over interval t; 0 otherwise.

Continuous variables

dfcl : Number of tankers in class cl having to be freighted during the

study horizon.

dplan1
p,r, dplan

2
p,r [1000 m3] : Deviation from strategic planning for crude

oil p in refinery r, for the first and second months, respectively.

vbzp,cl,z,z1,t [1000 m3] : Amount of crude oil from production site p

transshipped from terminal z to terminal z1 by tanker cl over interval t.

vpzp,c,z,r,t [1000 m3] : Amount of crude oil p of petroleum category c that

arrives at terminal z to supply refinery r over interval t.

spp,t [1000 m3] : Amount of crude oil stored in production site p over

interval t.

strnc,r,t , strhc,r,t , strlc,r,t , stric,r,t [1000 m3] : Inventory of petroleum

category c at refinery r over interval t, in the normal, high, low, and

infeasible levels, respectively.

stzc,z,t [1000 m3] : Amount of petroleum category c stored at terminal z

over interval t.

vzrc,z,r,t [1000 m3] : Amount of petroleum category c pumped from

terminal z to refinery r over interval t.

Constraints:

Production Sites

Inventory balance at the production sites for each time period t is given by,

spp,t − spp,t−1 − Pp,t−1 +
∑

z

∑

cl∈CLp∧CLz

CAPTcl · bpp,cl,z,t−1 = 0 (3.1)

∀p ∈ P, t ∈ T

The inventory at each production site p and time period t must be less than

or equal to its maximum storage capacity,
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spp,t ≤MSPp ∀p ∈ P, t ∈ T (3.2)

At most one tanker should leave a given production site p at each time period

t,

∑

z

∑

cl∈CLp∧CLz

bpp,cl,z,t ≤ 1 ∀p ∈ P, t ∈ T (3.3)

At most NBz tankers should arrive at a terminal z at each time period t,

∑

p

∑

cl∈CLp∧CLz

bpp,cl,z,t ≤ NBz ∀z ∈ Z, t ∈ T (3.4)

We are implicitly assuming in this inequality that the operation time at

terminals is equal to one day.

Terminals

Regarding the discharging operations in each terminal, crude oil can be shipped

to a terminal from a production site or from another terminal. Additionally,

the volume in a tanker going to a terminal can be fully or partially unloaded

in this terminal.

∑

r∈Rz

∑

c∈CATp

vpzp,c,z,r,t −
∑

cl∈CLp∧CLz |

t≥V Tp,z

CAPTcl · bpp,cl,z,t−TVp,z

−
∑

cl∈CLz1
∧CLz

∑

z1∈Z|

t≥V Tz1,z

vbzp,cl,z1,z,t−TVz1,z
(3.5)

+
∑

cl∈CLz∧CLz1

∑

z1∈Z

vbzp,cl,z,z1,t = 0

∀p ∈ P | t ≥ V Tp,z, z ∈ Z, t ∈ T

Notice that these constraints implicitly define the refineries to be supplied.

Crude oil can only be shipped from a terminal z to another terminal z1 if it

was first shipped from a production site to the terminal z,
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∑

cl∈CLz∧CLz1

bzp,cl,z,z1,t − bpp,cl,z,t−V Tp,z
≤ 0 (3.6)

∀p ∈ P | t ≥ V Tp,z, z ∈ Z, r ∈ Rz, t ∈ T

The volume shipped between terminals is bounded by the capacity of the

tanker used,

vbzp,cl,z,z1,t − CAPTcl · bzp,cl,z,z1,t ≤ 0 (3.7)

∀p ∈ P, cl ∈ CL, z, z1 ∈ Z, t ∈ T

Inventory balance at the terminals for each time period t is given by,

stzc,z,r,t − stzc,z,r,t−1 + vzrc,z,r,t−1 −
∑

p|c∈CATp

vpzp,c,z,r,t−1 = 0 (3.8)

∀c ∈ C, z ∈ Z, r ∈ Rz, t ∈ T

Observe that equation (3.8) is for each refinery r and petroleum category c.

Thus for the storage capacity constraints, we need additional inequalities to

account for the storage limit by refinery and for the total storage capacity in

each terminal. These inequalities are written as follows,

∑

c

stzc,z,r,t ≤MSZRz,r ∀z ∈ Z, r ∈ Rz, t ∈ T (3.9)

and,

∑

r

∑

r∈Rz

stzc,z,r,t ≤MSZz ∀z ∈ Z, t ∈ T (3.10)

Refineries

Figure 3.1 illustrates the range of each inventory variable at a given

refinery as well as how the inventory balance is modeled. The middle portion

of the figure represents the ideal inventory of a given category in the refinery.

The upper portion corresponds to high inventory and, therefore, is penalized

since it can give rise to logistical problems in the refinery. The low inventory

is depicted by the lower portion and, in the same way, is penalized because
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the refinery may need to shut down some units. The variables stric,r,t are

associated with the highest penalty, and have an interesting interpretation as

they indicate to the user the need to import more oil to supply this particular

refinery. The equations describing the inventory balance are then as follows,

Figure 3.1: Schematic representation of the inventory in a given refinery

strnc,r,t + strhc,r,t − strlc,r,t − stric,r,t − strnc,r,t−1

− strhc,r,t−1 + strlc,r,t−1 + stric,r,t−1 − zrc,z,r,t−1 (3.11)

+
∑

cp∈CPu

∑

u∈CDUr

CAMPcp(u),c,t = 0

∀c ∈ C, z ∈ Z, r ∈ Rz, t ∈ T

In addition, there are bounds on the inventory variables,

CAPLc,r ≤ strnc,r,t ≤ CAPHc,r ∀c ∈ C, r ∈ R, t ∈ T (3.12)

strlc,r,t ≤ CAPLc,r ∀c ∈ C, r ∈ R, t ∈ T (3.13)

Deviation from the strategic planning direction

Solution deviation from the strategic planning is written for each month as

follows,

First month,
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dplan1p,r +
∑

c∈CATp

∑

z|r∈Rz

∑

t∈TPLAN1

pzp,c,z,r,t ≥ PLAN1
p,r (3.14)

∀p ∈ P, r ∈ R

dplan1p,r −
∑

c∈CATp

∑

z|r∈Rz

∑

t∈TPLAN1

pzp,c,z,r,t ≥ −PLAN1
p,r (3.15)

∀p ∈ P, r ∈ R

Second month,

dplan2p,r +
∑

c∈CAT (p)

∑

z|r∈R(z)

∑

t∈TPLAN2

pzp,c,z,r,t ≥ PLAN2
p,r (3.16)

∀p ∈ P, r ∈ R

dplan2p,r −
∑

c∈CAT (p)

∑

z|r∈R(z)

∑

t∈TPLAN2

pzp,c,z,r,t ≥ −PLAN2
p,r (3.17)

∀p ∈ P, r ∈ R

Tanker management

The maximum number of additional tankers required during the time horizon

for each class of tanker cl is estimated by,

dfcl ≥
∑

p∈P

∑

z∈Z

∑

t−V Tp,z≤t1≤t

bpp,cl,z,t

+
∑

p∈P

∑

z∈Z

∑

z1∈Z

∑

t−V Tz,z1
≤t1≤t

bzp,cl,z,z1,t − ⌈FUcl ·NTcl⌉ (3.18)

∀cl ∈ CL, t ∈ T

Variables dfcl are used in the objective function to minimize the number of

extra tankers of each class cl needed during the study horizon. It is important to

point out that the ship routing is not being considered in this study. However,

we use the parameter FUcl to have an estimate on the number of tankers

available at each time period. In this study, we set FUcl = 0.50, representing

that we have only half of the tankers available in each class of tanker as we

are considering that the other half is already busy transporting crude oil to

terminals.
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Objective function

The model seeks to minimize the total cost, which involves shipping

costs, penalty for inventory shortage or surplus, penalty for deviation from

the strategic planning, and freight cost for additional tanker,

Min
∑

p

∑

cl∈CLp∧CLz

∑

z

∑

t

CTcl · V Tp,z · bpp,cl,z,t

+
∑

p

∑

cl∈CLz∧CLz1

∑

z

∑

z1

∑

t

CTcl · V Tp,z · bzp,cl,z,z1,t

+
∑

c

∑

r

∑

t

CRHc,r · strhc,r,t +
∑

c

∑

r

∑

t

CRLc,r · strlc,r,t (3.19)

+
∑

c

∑

r

∑

t

CRIc,r · stric,r,t

+
∑

p

∑

r

CP 1
p,rdplan

1
p,r +

∑

p

∑

r

CP 2
p,rdplan

2
p,r

+
∑

cl

CFcl · dfcl

3.1 Solution Example

We present part of the solution of a test instance to give some insights

about the decisions that the model handles. Figure 3.2 summarizes the

offload scheduling at platform P1. As we can see, the important questions

confronted at the platform offload scheduling are twofold: avoiding that the

inventory reaches its maximum capacity with subsequent platform shutdown,

and preventing a tanker to be sent before having sufficient inventory to fill

it up completely. Additionally, each tanker assigned to offload each platform

has its terminal destination determined. The figure in the terminals is slightly

complicated since for each discharge of a tanker the model has to determine

how its volume will be split between possible refineries and categories. In

the case shown in Figure 3.3, the terminal T1 is only linked to one refinery,

and therefore the representation becomes easier as the model only needs to

manage the classification into categories. When it comes to the refineries, the

most relevant issue is to keep the inventory inside the safe region delimited by

horizontal lines inside the graphs in Figure 3.4. As pointed out in the modeling

subsection, every time the inventory goes beyond these limits the solution is

penalized.

DBD
PUC-Rio - Certificação Digital Nº 0611954/CA



Chapter 3. Mathematical Model 32

Figure 3.2: Summary of offload scheduling at Platform P1

Figure 3.3: Summary of the inventory and discharging activity at Terminal
T1
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Figure 3.4: Summary of the inventory levels at Refinery R1

3.2 Flexibility of Campaigns

In this model we study the effects of considering flexible dates for the

initial campaigns defined by the user. In addition to the initial campaigns

given, we ask the user to inform the earliest time, the latest time, and the

duration of each campaign. If it is worth to change the campaign dates, the

model will perform it and can even break up the original campaign into the

earliest and latest dates, on condition that the crude oil estimate profiles match

better with the refineries consumption. It should be noticed that every time

the model divides a campaign, a changeover cost has to be paid. Hence, this

is carried out only if it is absolutely necessary. Figure 3.5 illustrates how the

assignment of campaigns works. As we can notice, campaign 1 is initially set

up to start on day 1 and finish on day 6. Nevertheless, the model could, for

instance, move it to start on day 4 and finish on day 9. In the same way,

campaign 2 is originally programmed to start on day 7 and finish on day 15.

However, the model could split it into two campaigns, one starting on day 1

and finishing on day 3, and another taking place from day 10 to 15.
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Figure 3.5: Flexibility of Campaigns at Refineries

In order to model the flexibility of campaigns, we need the following

additional definitions:

Parameters

CS : Set up cost for CDU campaign changes.

DCcp : Duration of campaign cp.

TRcp : Release date for campaign cp.

TDcp : Deadline for completing campaign cp.

Binary variables

bcpu,cp,t : 1 if CDU u processes campaign cp over interval t; 0 otherwise.

bsuu,t : 1 if a set-up is necessary in CDU u at time t; 0 otherwise.

The inequalities describing the flexibility of campaigns are as follows:

Assignment of production campaign to time slots within valid time windows,

∑

cp∈CP (u)|

TRcp≤t≤TDcp

bcpu,cp,t = 1 ∀u, t ∈ T (3.20)

The duration of each campaign must hold,
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TDcp
∑

t=TRcp

bcpu,cp,t = DCcp ∀u ∈ CDU, cp ∈ CP (u) (3.21)

If a change of campaign takes place from time period t to t + 1, then a crude

distillation set-up is necessary,

bsuu,t + bcpu,cp,t+1 − bcpu,cp,t ≥ 0 ∀u, t, cp ∈ CP (u) (3.22)

Moreover, we incorporate the changeover costs,
∑

u

∑

t CS · bsuu,t, to the

objective function given in (3.19).

Figures 3.6-3.7 show the advantage of flexible campaigns. We observe

that when the flexibility of campaigns is considered we avoid in some time

periods stockout of some petroleum categories in the refineries.

This concept of flexible campaigns is not considered yet in practice in the

Petroleum Supply Planning activity. However, we introduce it in this model to

draw the attention to the importance of considering this aspect of the problem

since, as verified by Figures 3.6-3.7, it allows us to manage our resources in a

more economical way.

Figure 3.6: Comparison between the inventory evolution of category c1 at
refinery r1 using initial and flexible campaigns
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Figure 3.7: Comparison between the inventory evolution of category c1 at
refinery r2 using initial and flexible campaigns

3.3 Changeover Cut

As shown by Yee and Shah [Yee98], the presence of changeovers in an

MILP scheduling model may lead to a large relaxation gap. To overcome this

difficulty, usually some cut constraints are added to enforce that a minimum

number of changeover tasks must be performed. It is easy to show that

scheduling problems with changeover costs present a large integrality gap

that increases the computation burden in Branch-and-Bound algorithms. The

example in Figure 3.8 motivates this discussion and sheds some light on the

possible outcome when this aspect is disregarded.

Figure 3.8: Motivated example to justify the changeover cuts

It is likely that the LP relaxation solution to this example happens to be,

bcpu,cp,t =
1

3
∀cp ∈ CPu, t (3.23)

Thus, from (3.22),

DBD
PUC-Rio - Certificação Digital Nº 0611954/CA



Chapter 3. Mathematical Model 37

bsuu,t = 0 ∀t

Therefore, the changeover costs will be zero in the objective function.

However, we can verify by inspection that at least two changeovers will be

necessary, as three campaigns were initially assigned to this crude distillation

unit. We can generalize this idea and write the following cuts for each crude

distillation unit,

∑

t

bsuu,t ≥ |NCPu| − 1 ∀u (3.24)

where, |NCPu|, is the number of campaigns in CDU u.

To demonstrate the importance of adding changeover cuts to our formu-

lation, in the sequel we present some computational results on three instances

whose sizes are detailed in Table 3.1. All the results were obtained by setting

the integrality tolerance gap to 10%.

Table 3.1: Dimension of test instances
Instances

Elements #1 #2 #3
Production sites 6 6 11
Terminals 4 4 5
Refineries 5 5 6
CDUs 6 6 7
Crude oil categories 3 3 3
Ship classes 3 3 6
Horizon (days) 10 10 60

Table 3.2: Computational results for solving instance 1 using changeover cuts

Instance 1 Without changeover cuts With changeover cuts

no. of constraints 1550 1553
no. of variables 2740 2740
no. of binary variables 940 940
no. of visited nodes >> 1000000 202
CPU(s) >> 100000 3
LP relaxation solution (Zlp) 321.40 464.73
Best solution (Zo) - 605.50

Initial integrality gap* 47 % 23 %
*
(

Z∗−Zlp

Z∗

)

× 100%, Z∗ = min{Z0}
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Table 3.3: Computational results for solving instance 2 using changeover cuts
Instance 2 Without changeover cuts With changeover cuts

no. of constraints 1550 1553
no. of variables 2740 2740
no. of binary variables 940 940
no. of visited nodes 551 313
CPU(s) 4 3
LP relaxation solution (Zlp) 539.00 832.00
Best solution (Zo) 1111.00 1104.50
Initial integrality gap 51 % 25 %

Table 3.4: Computational results for solving instance 3 using changeover cuts
Instance 3 Without changeover cuts With changeover cuts

no. of constraints 13847 13855
no. of variables 46992 46992
no. of binary variables 22123 22123
no. of visited nodes >>1000000 631243
CPU(s) >>100000 32760
LP relaxation solution (Zlp) 16484.03 17471.83
Best solution (Zo) - 25743.72
Initial integrality gap 35 % 32 %

Although these test instances do not represent the complexity of the real

problem, the results in Tables 3.2-3.4 make clear the strength of the cuts in

(3.24). After adding the changeover cuts, the integrality gap was less than

half the initial value of the original formulation for instance tests 1 and 2.

For instance 3, although the decrease in the integrality gap was smaller, the

changeover cuts made it possible to solve this very large problem. Moreover,

the number of changeover cuts introduced is negligible compared to the size of

the original formulation, and thus the time to solve the Linear Relaxation at

each node of the Branch-and-Bound is not affected.

DBD
PUC-Rio - Certificação Digital Nº 0611954/CA




