
3
Type Inference and Optimization

The previous chapter presented a basic compiler from Lua to the CLR

and some variations of it, changing the runtime representation of Lua values

and the treatment of functions that return multiple values. All variations of

the basic compiler have in common the fact that they did not need any analysis

of the source code beyond basic analysis to tie the use of local variables with

their definitions.

This chapter presents a more complex variation of the basic compiler,

using information derived from a type inference algorithm, a kind of static

analysis that tries to assign a type to each variable and expression in the

program. If types are precise enough, the compiler can use more efficient

runtime representations for values, and can generate more efficient code for

operations.

In Section 3.1, we give an overview of the problem of typing inference in

the Lua programming language, and describe our type inference algorithm. In

Section 3.2, we show how the compiler uses the type information extracted by

the algorithm. In Section 3.3, we review related work on type inference and

type-related analysis for dynamic programming languages, and discuss how

our work differs from this other work.

3.1
Type Inference For Lua

Lua is a dynamically typed language, which combines lack of type

annotations with runtime type checking. This imposes several constraints in

the representation of Lua values for the Lua compilers we presented in the

previous chapter: all numbers have to use the same underlying representation

as other values, and any operation involving two numbers converting from this

representation to native CLR numbers, doing the operation, and converting

back to the common representation; all polymorphic operations have to be

dispatched through virtual methods, a form of dynamic dispatch natively

supported by the CLR; all functions need to be able to take any number

of arguments of any type; all function applications can produce any number of
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values of any type; finally, all tables have to allow keys and values of any type.

We can use more efficient representations and can generate more efficient

code if we are sure that variables and expressions have more precise types. In

an extreme case, if we are sure that expression e1 can only be a number and

that expression e2 can only be a number, we can safely make both expressions

evaluate to double, so the expression e1+e2 compiles to the following Common

Intermediate Language code, where C(e) is the code for evaluating expression

e and leaving the result on the top of the CLR’s data stack:

C(e1)

C(e2)

add

Contrast this with the code when we can not be sure e1 and e2 are

numbers, which is the following CIL code in the “box”, “intern”, and “prop”

compilers (we elide the case where either expression did not evaluate to a

number):

C(e1)

dup

isinst double

brfalse add1

unbox double

C(e2)

dup

isinst double

brfalse add2

unbox double

add

box double

br out

add1: . . .

br out

add2: . . .

out: ldots

What was just a simple addition now involves type checking, unboxing

and reboxing the result.

Another interesting case is the compilation of expressions such as e[c]

where c is a string literal and we are sure that e evaluates to a table whose

keys are all statically known and include c (a record, in other words). This is a

common expression in Lua because of the e.name syntactic sugar for tables. In
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this case, we can represent the table as a sealed CLR class (a heap-allocated

record), and the expression compiles to the following simple code, where t is

the type of the record we synthesized for the table, and ldfld is a very efficient

field access operation (in practice an indexed memory fetch):

C(e)

ldfld t::c

Contrast with the following code, where callvirt is a dynamically dis-

patched call to a function that does a hashtable lookup, and we elide the special

case where e evaluates to a number:

C(e)

dup

isinst double

br num

castclass Lua.Reference

ldsfld InternedSymbols::c

callvirt Lua.Reference::get Item(Lua.Symbol)

br out

num: . . .

out: . . .

We want an algorithm that can extract from the program the type

information necessary for this kind of optimization. The specific algorithm

we use is a form of type inference. A type inference algorithm uses syntax-

directed typing rules to build and solve a set of constraints on the types of

the program [Damas and Milner, 1982]. The solution ideally assigns the most

precise type for each expression and variable that still satisfies all typing rules.

All Lua programs have to be typable by our type inference algorithm, the

variation will only be in the degree of precision of this typing; programs that

make more use of Lua’s dynamism will necessarily have more imprecise types

but will still be well-typed, that is, our type inference will not introduce errors

in correct programs.

Our type system will assign type D, the dynamic type, to all variables

and expressions whose precise type can only be known at runtime. We say

these variables and expressions hold and evaluate to tagged values from the

way runtime type checking is traditionally implemented (e.g. in the Lua

interpreter), by representing a dynamic value as a tagged union. Any operation

on a tagged value involves a check of the tag and dispatching based on this tag.

An abstract class and concrete subclasses, the representation we used on the

last chapter, is a kind of tagged union. Typing all variables and expressions
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with type D produces a valid typing for any well-formed Lua program, but

without any static type optimizations.

We are interested in using better representations than tagged unions in

our compiler, so we will introduce several untagged types in addition to D.

We will assign an untagged type to any variable and expression for which we

can infer a precise type. These variables and expressions hold and evaluate

to untagged values, so the implementation can use different and incompatible

representations for tagged and untagged types. For example, if we infer the

untagged type Number to variable x then we know x will only hold untagged

numbers, and we can choose a representation accordingly (double in the

compiler we present in Section 3.2). If we infer type D to x then x can

potentially hold any tagged value, even if at runtime it will only hold tagged

numbers, so we have to use the fallback dynamic representation (object in

the case of the CLR).

We could eliminate the distinction between tagged and untagged values,

and use the inferred type information only to eliminate type checks and

dynamic dispatch, which is what soft typing approaches do [Wright and

Cartwright, 1997], but we would lose important optimization opportunities.

For example, in the code fragments we presented in the beginning of this

section we would only be able to eliminate the type checks and the dynamic

dispatch, but the unboxing, reboxing and the hashtable lookup would still be

there.

We will have untagged types for the first-order values booleans, numbers,

strings, and nil, and also for the higher-order values tables and functions.

Threads and userdata do not have untagged types as a simplification (our

simplified Lua core in Section 3.1.4 does not have threads and userdata). Lua

functions can return multiple values in some syntactical contexts, so we will

also introduce a “second-class” tuple type for these situations. Our table types

will be a family of related types, corresponding to the different ways tables get

used in Lua programs: records, sparse arrays, hash tables, or a combination of

these.

Our type system will also have a coercion relation ! that applies when

the values of a type can be coerced to values of another type without error (with

a runtime conversion if the two types do not share the same representation).

The coercion relation lets part of an expression have an untagged type even if

the expression as a whole needs to have type D. It also allows us to introduce

singleton types for literals that appear in the program, which in turn lets us

infer record-like types for tables that are only indexed by literals. And also

allows us to introduce nullable types, which are unions of an untagged type and
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the type of nil, useful for typing table indexing expressions, as indexing a non-

existent value in Lua evaluates to nil instead of raising an error. The coercion

relation is similar to a subtyping relation with regard to contravariance, so

coercions from function and table types will be severely restricted. Section 3.1.2

gives the full coercion relation and elaborates on these issues.

There is no ML-style parametric polymorphism [Cardelli and Wegner,

1985, Damas and Milner, 1982] in our type system, for pragmatic reasons

that we elaborate on Section 3.1.3. The lack of polymorphic types in our type

system will not make programs fail to type check and compile, because our

type system has D as a fallback type. The worst that can happen is a loss

of precision, with a corresponding loss of runtime efficiency. This is different

from the type systems of languages of the ML family, where lack of polymorphic

types can make useful programs not compile at all.

Finding a valid and precise typing for a program is the job of our type

inference algorithm. The core of the algorithm is a traversal of a program’s

abstract syntax tree, typing the expressions in the tree from the leafs to the

root. If there are several valid typings for an expression then the algorithm will

use the most precise one. Coercions in the typing rules lets the type inference

assign a less precise type to an expression while having more precise types

in its parts. The contravariance restrictions on coercion of function and table

types add another complication, though; to assign a type to an expression the

algorithm may need to change the type of other expressions that already have

been typed.

For example, a function that has already been typed as Number →
Number has to be applied to a String. In this case, the algorithm needs to

change the type of the function’s parameter from Number to D. This may

induce a change in the return type of the function, and in other expressions that

have already been typed. To deal with the situations like these, the algorithm

is iterative, and does traversals of the program’s tree until the types of all terms

have converged. Termination is guaranteed because types always change from

more precise to less (according to coercion). Once the type of a term becomes

D it will remain D.

This “mutability” of function and table types is reflected in our typing

rules by non-determinism in the typing rules for constructors of these values.

The type of a function can have more parameter types than the function’s

arity, for example, and the type of the table constructor can be any valid table

type. Section 3.1.5 details the algorithm and gives a non-trivial example of its

iterative type assignment.

In the rest of this section we give a detailed description of the types,
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coercion relation, and the main typing rules of our type system, and also detail

the main parts of the type inference algorithm.

3.1.1
Type Language

In the previous section we have already introduced the first type of our

type system, D. A value having type D means we can only know its type

at runtime, so values of type D have to carry their type information in their

runtime representation, which is why we called them tagged values. Our type

system will guarantee that any variable that can hold a tagged value or any

expression that can produce one will have type D. In the rest of this section

we will present the other types in our type system.

Let us start with singleton types, the types of constants. Singleton types

are nil, true, and false, plus a singleton type for each number and string (we

will use n to mean a numeric singleton type and s to mean a string singleton

type). Typing literals and constants with these singleton types will let us infer

record types for some tables.

The next types we will introduce are Bool, Number, and String,

for values that are known at runtime to be booleans, numbers, or strings,

respectively. Notice that while literal string “foo” has the “foo” singleton

type, the coercion relation effectively also gives it the String type because

“foo” ! String.

Table types can take two forms. The first form is a type with the template

D !→ υ, where υ is a type. These are hash tables with dynamic keys and values

of type υ. The other form is a conjunction τ1 !→ υ1 ∧ . . .∧ τn !→ υn with n ≥ 1

and τk %= D, meaning a table where the keys can have any of the types τ1, . . . , τn

and the values any of the types υ1, . . . , υn, with keys of type τk having values

of type υk.

Table types as defined above can be ambiguous. For example, in the type

2 !→ Number ∧Number !→ String the type of the value corresponding the

key 2 could be Number or String, as 2 can be interpreted as having singleton

type 2 or type Number (because of coercion). To remove this ambiguity we

restrict the types of the keys so that for any distinct key types τi and τj there

is no type σ with σ ! τi and σ ! τj.

To talk about function types we will first define tuple types, which

correspond to heterogeneous (and immutable) lists of values. Tuples are not

first-class values in Lua. They have temporary existence as the result of

evaluating a list of expressions (the rvalue of an assignment or the arguments

of a function application), and sometimes can be returned as the result of a

DBD
PUC-Rio - Certificação Digital Nº 0510949/CA



Chapter 3. Type Inference and Optimization 37

function application, but the elements of a tuple cannot be other tuples. The

size of a tuple size may not be statically know, so our type system has to

reflect this. We will give the type empty to empty tuples. Non-empty tuples

of known size have types of the form τ1× . . .× τn with n ≥ 1 (τk can not be a

tuple type, naturally). Tuples with a known minimum but unknown maximum

size have types of the form τ1 × . . .× τn ×D∗ (possibly D∗).

We can now define function types as types of the form τ → υ, where

τ and υ are tuple types. Variadic functions are functions where the domain

type is a tuple type of unknown maximum length, so variadic arguments of a

function always have type D in our type system.

Situations where a value can either be nil or some other untagged value

are common in our type system because of the way Lua tables work. In Lua,

indexing a table with a key that does not exist is not an error, but returns nil.

This means that even if all assignments to keys of type τ have type υ there

is the possibility of indexing the table and getting nil. We introduce nullable

types τ? to represent the union of τ and nil (a value of type τ? is either a

value of type τ or nil). To simplify our type inference, we restrict the type τ

in τ? to simple, table, and function types.

Our type system also types statements, not just expressions. The type of

a single statement is the singleton type void if it is not a return statement.

The type of a block of statements is also void if no return statements are

present in the block.

Finally, we need a way to define recursive types (to be able to have types

for things such as linked lists and trees); we use µα.τ for recursive types, where

τ is a function or table type with α appearing anywhere a function or table

type could appear. For example, µα.(1 $→ Number∧2 $→ α?) represents single

linked lists of numbers.

Figure 3.1 summarizes our complete type language.

3.1.2
Types and Coercion

The core of our typing rules and type inference algorithm is a coercion

relation τ ! υ between two types τ and υ that holds whenever values of type

τ can be coerced into values of type υ. This coercion means that values of type

τ can be converted to values of type υ, or it means that the both types τ and

υ share the same runtime representation, depending on the how we map types

to concrete representations.

The coercion relation is reflexive and transitive, and Figure 3.2 lists its

base cases.

DBD
PUC-Rio - Certificação Digital Nº 0510949/CA



Chapter 3. Type Inference and Optimization 38

tagged types
dynamic ::= D

dynamic list ::= D∗

untagged types
singleton ::= n, s, nil, true, false

simple ::= Bool, Number, String
table ::= τ1 !→ υ1 ∧ . . . ∧ τn !→ υn with n ≥ 1, where

∀k.τk &= D and ∀i, j, σ.(i &= j ∧ σ ! τi) → σ &!
τj

::= D !→ υ
function ::= τ → υ, where τ and υ are tuple types
nullable ::= τ?, where τ is a simple, function, or table type

recursive ::= µα.τ , where τ is a function or table type with
α standing in for τ

tuple types
tuple ::= τ1 × . . .× τn with n ≥ 1

::= τ1 × . . .× τn ×D∗ with n ≥ 0
::= empty

Figure 3.1: Type Language

The simple and nullable coercions are straightforward. Any untagged

first-order type can be coerced to D, and a nullable type can also be coerced

to D if its base type can be coerced. Tables and functions are a different

matter; only tables that map tagged values to tagged values and functions

that take tagged values and return a dynamic list can be coerced to D, because

there are no coercions from D to untagged types and functions and tables are

contravariant on their domain and key types, respectively.

The coercion rules for tuples are best understood in the context of the

typing rules that employ them, so we will defer the explanation to the next

section, where we describe and explain some the essential type rules of our

type system.

The purpose of the coercion relation is to balance the need of inferring

precise types with the need of inferring types for all correct Lua programs

(which often means using D). A coercion constraint in a typing rule means

that a part of the expression being typed can have a more precise type than

the whole expression. For example, coercion allows the type system to type an

argument in a function application with a function of type D∗ → D∗ with a

more precise type such as Number.
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simple coercions
true ! Bool
false ! Bool

n ! Number
s ! String

nullable coercions
nil ! τ?

τ ! τ?

tagging coercions
nil ! D

Bool ! D
Number ! D

String ! D
τ? ! D iff τ ! D

D !→ D ! D
τ1 × . . .× τn → D∗ with n > 0 ! D iff τ1 = D ∧ . . . ∧ τn−1 =

D∧(τn = D∨τn = D∗)

tuple coercions
empty ! nil× . . .× nil

τ1 × . . .× τn ! υ1 × . . .× υn iff τk ! υk

τ1 × . . .× τn ! τ1 × . . .× τn × nil
τ1 × . . .× τn ×D∗ ! υ1 × . . .× υn ×D∗ iff τk ! υk

τ1 × . . .× τn ×D∗ ! τ1 × . . .× τn ×D ×D∗

τ1 × . . .× τn ! D∗ iff τk ! D
τ1 × . . .× τn ×D∗ ! D∗ iff τk ! D

Figure 3.2: Coercion Relation

3.1.3
Monomorphism Restriction

Lua’s primitive operations exhibit ad-hoc [Cardelli and Wegner, 1985]

instead of parametric polymorphism. A simple function like the function foo

in the following fragment has no single polymorphic type:

function foo(a, b)

return a[1], b[2]

end

Function foo can work on any Lua type, via extensible semantics. If

indexing was restricted to tables then foo still would not be polymorphic, as

there is insufficient information to know if the table a is a record, an array, a

hashtable, a set, or other structures that Lua tables can emulate, each with a

different polymorphic type.
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One way to assign polymorphic types to foo would be to type each

call site of foo separately, assuming that we are sure that those call sites

only call foo, so we could get enough information to resolve the ad-hoc

polymorphism of the indexing operator at compile-time. Each inferred type

for foo would lead to at least one different compilation of foo, because the use

of different representations may force more than one compiled version for the

same parametric type. If foo is parametric on two types then we need m × n

versions where m is the number of representations of one of the types and n the

number of representations of the other. If a call site of foo is inside a function

bar and bar itself is polymorphic, then the call sites of foo in each polymorphic

version of bar have to be typed separately.

Even if we accept the increased code size of having several compiled

versions of the same function, polymorphic type inference in the presence

of assignment and mutable data structures is unsound in the general case.

Restrictions in the inference algorithm can restore soundness, but at the cost of

greater complexity of the type inference (greater complexity of implementation,

greater complexity of understanding by the user, and greater complexity in

the algorithmic sense) [Leroy and Weis, 1991]. Restricting our type inference

to monomorphic types does not mean restricting the set of programs that are

typable, only the precision of the type inference, so we decided to forego the

extra complexity of polymorphic types.

3.1.4
Typing Rules

We use a simplified core of the Lua language to make the presentation

of the typing rules in this section easier. This simplified core removes syn-

tactic sugar, reduces control flow statements to just if and while statements,

makes variable scope explicit, and splits function application in three differ-

ent operators, f(el)0 when we discard return values (function application as a

statement), f(el)1 when we want exactly one return value (the first, or nil if

the function returned no values), and f(el)n when we want all return values.

Appendix A gives an operational semantics for our simplified core,

modeling extensible semantics (metamethods, see Section 1.1) through special

primitives. The simplified semantics just capture how the extensible semantics

influences the typing of operations and do not try to specify their precise

behavior.

Figure 3.3 describes the abstract syntax of our core Lua. The syntactic

categories are as follows: s are statements, l are lvalues, el are expression lists,

me are multi-expressions (single expressions that can evaluate to multiple
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s ::= s1; s2 | skip | return el | e(el)0 | if e then s1 else s2 |
while e do s | local !x = el in s | rec x = f in s | !l =
el

l ::= x | e1[e2]
el ::= nothing | !e | me | !e,me

me ::= e(el)n | rn

e ::= v | e1[e2] | e1 ⊕ e2 | e1 == e2 | e1 < e2 | e1 and e2 |
e1 or e2 | not e | e(el)1 | r1

v ::= c | f | {}
f ::= fun() b | fun(r) b | fun(!x) b | fun(!x, r) b
b ::= s; return el
c ::= n | “” | “a1 . . . an” | nil | true | false
n ::= <decimal numerals>
a ::= <characters>

Figure 3.3: Abstract Syntax

values), e are expressions, v are values, f are function constructors, b are

function bodies, and the remaining categories are for literals. The expressions

r1 and rn are rest expressions, to access variadic arguments (the formal

parameter r in the function constructors is the variadic argument list). The

notation !x denotes the non-empty list x1, . . . , xn.

We will give the typing rules as a deduction system for the typing relation

Γ " t : τ . The relation means that the syntactical term t has type τ given the

type environment Γ, which maps variables to types. We say Γ[x #→ τ ] to mean

environment Γ extended so it maps x to τ while leaving all other mappings

intact.

We start with the rules for assignment. The main constraint of our typing

system is that all valid Lua programs have to typecheck. The assignment

x, y = z + 2

is correct Lua code, where Lua at runtime adjusts the result of the expression

list to have the same length as the number of lvalues, dropping extra values

and using nil for missing ones. The rules for assignment, assign-drop and

assign-fill, have to take adjustment into account:

Γ " lk : τk Γ " el : υ1×. . .×υm m ≥ |!l| υk ! τk

Γ " !l = el : void

Γ " lk : τk Γ " el : υ1×. . .×υm m < |!l| υk ! τk nil ! τl l > m

Γ " !l = el : void

The assign-drop rule ignores the types of extra values, and assign-
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fill uses nil as the types of missing values. Each value’s type needs to be

able to be coerced into the corresponding lvalue’s type. The assignment itself

has type void. The intuition behind the rule is that if there is more than one

assignment to the same lvalue (the same variable, for example), then the type

of the lvalue must be a type that all the values in the several assignments can

be coerced to. In the worst case this means D, but the job of the type inference

will be to find a more precise type if it is available.

The typing rules for simple expression lists, el-empty and el, are

straightforward:

Γ ! nothing : empty

Γ ! ek : τk n = |"e|
Γ ! "e : τ1×. . .×τn

Assignments with empty expression lists will use rule assign-fill.

Adjustment is different in the special case where the last expression in a

expression list is a function application or rest expression, as these can produce

multiple values. In the assignment

x, y, z = a + 1, f(empty)n

if the function application produces no values then y and z will get nil, if it

produces a single value then y will get this value and z will get nil, and if it

produces two or more values then y and z will get the first two values produced

and the rest is ignored.

First we will consider the case where the number of values the multi-

expression produces is statically known, which is covered by rules el-mexp-

empty and el-mexp:

Γ ! ek : τk Γ ! me : empty n = |"e|
Γ ! "e,me : τ1×. . .×τn

Γ ! ek : τk Γ ! me : υ1×. . .×υm n = |"e|
Γ ! "e,me : τ1×. . .×τn×υ1×. . .×υm

There are analogous rules mexp-empty and mexp for when the expres-

sion list is just the multi-expression.

When the number of values the multi-expression produces is not statically

known it will have type D∗ or τ1 × . . . × τn × D∗. We need corresponding

expression list rules el-var-1 and el-var-2:

Γ ! ek : τk Γ ! me : D∗ n = |"e|
Γ ! "e,me : τ1×. . .×τn×D∗
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Γ ! ek : τk Γ ! me : υ1×. . .×υm×D∗ n = |#e|
Γ ! #e,me : τ1×. . .×τn×υ1×. . .×υm×D∗

We now add new rules assign-var-drop and assign-var-fill for

assignment that will correctly handle variable-length expression lists:

Γ ! lk : τk Γ ! el : υ1 × . . .× υm ×D∗ m ≥ |#l| υk ! τk

Γ ! #l = el : void

Γ ! lk : τk Γ ! el : υ1 × . . .× υm ×D∗ m < |#l| υk ! τk τl = D l > m

Γ ! #l = el : void

The rule assign-var-fill covers the interesting case, and comes from

our previous definition of D∗ as a list of tagged values, so it is natural that the

lvalues of D∗ need to have type D. In the assignment

x, y, z = a + 1, f(empty)n,

if f(empty)n has type D∗ then both y an z will have type D.

Let us move to the rules for the typing of functions and function

application. Lua also adjusts the length of argument lists to the number of

formal parameters, so the code fragment (given in the abstract syntax of

Figure 3.3) below is correct Lua code:

local f = fun(x) return x + 2 in

local g = fun(x, y) return x + y in

local h = g in

if z then return h(2, 3) else h = f ; return h(3, 2)

One way the above code fragment can typecheck, given the typing and

coercion rules we have until now, is to have the type of h be D while f has type

D → D∗ and g has type D ×D → D∗, both types coercible to D. But ideally

we want the possibility of more precise types. A solution is to have h, f and

g all have the same type, Number×Number→ Number. This is possible

with the following rules, fun-empty and fun, for (non-variadic) function

definitions, so the type of the function’s domain can have more components

than the number of formal parameters:

Γ ! s; return el : υ

Γ ! fun() s; return el : τ1×. . .×τn → υ

Γ[#x %→ #τ ] ! s; return el : υ

Γ ! fun(#x) s; return el : τ1×. . .×τn → υ n ≥ |#x|
The typing of a function application depends on the type of the function

expression, whether it is a non-variadic function type, a variadic function type,
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or other type that can be coerced to D. The first case is similar to typing an

assignment, and is covered by rules app-drop, app-fil, app-var-drop, and

app-var-fill:

Γ ! f : τ1×. . .×τn → σ Γ ! el : υ1×. . .×υm m ≥ n υk ! τk

Γ ! f(el)n : σ

Γ ! f : τ1×. . .×τn → σ

Γ ! el : υ1×. . .×υm m < n υk ! τk nil ! τl l > m

Γ ! f(el)n : σ

Γ ! f : τ1×. . .×τn → σ Γ ! el : υ1×. . .×υm×D∗ m ≥ n υk ! τk

Γ ! f(el)n : σ

Γ ! f : τ1×. . .×τn → σ

Γ ! el : υ1×. . .×υm×D∗ m < n υk ! τk τl = D l > m

Γ ! f(el)n : σ

Similar rules cover f(el)0, where the type of the application is always

void, and f(el)1, where the type is nil if Γ ! f(el)n : empty, D if Γ ! f(el)n :

D∗, and τ1 if Γ ! f(el)n : τ1 × . . .× τn or Γ ! f(el)n : τ1 × . . .× τn ×D∗.

The return type of a function depends on the types of return expression

lists in the function body. We use a trick where the type of a block with no

return statements has type void, but a block with a return statement has

the type of the return statement. For blocks with more than one return

statements we give the same type to all the return statements using the rule

return:
Γ ! el : τ τ ! υ

Γ ! return el : υ

Figure 3.2 has the coercion rules for tuples, derived from how adjustment

works. The last two coercion rules cover the case where a function must have

return type D∗ because the function has to be coerced into D.

Function application when the type of the function expression is not a

function type is typed by rule app-dyn:

Γ ! f : τ Γ ! el : υ τ ! D υ ! D∗

Γ ! f(el)n : D∗

The rule means that the expression list can be any expression list that

produces tagged values (or values that can be coerced into tagged values), and

the application can return any number of tagged values.

Typing tables has similarities to typing functions. The typing for a table

constructor {} depends on how the rest of the program uses the tables created

by that constructor. The type system also needs to be flexible enough to let
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the type inference algorithm synthesize precise enough types even when the

same expression can evaluate to different functions, or tables from different

constructors. Take the code below, where x can be a table created by the first

or the second table constructor:

local f = fun(x) return x.foo in

local a = {} in

local b = {} in

a.foo = 3; a.bar = “s”; b.foo = 5; return f(a), f(b)

We will have the first and second table constructors (and, by extension,

variables a and b) sharing the same precise type “foo” !→ Number?∧“bar” !→
String?. We are trading precision for possibly greater memory consumption

in the representation of the tables created by the second table constructor

(because of the unused “bar” field).

These typing rules for the table constructor are cons and cons-dyn:

∀i, j, σ.(i %= j ∧ σ ! τi) → σ %! τj nil ! υk

Γ & {} : τ1 !→ υ1 ∧ . . . ∧ τn !→ υn

nil ! υ

Γ & {} : D !→ υ

They basically restate the rules for creating table types in our type

language given on Figure 3.1, with the added restriction that nil has to be

coercible to any type used as a value. This added restriction comes from the

behavior of Lua tables where indexing a non-existent key returns nil instead

of being an error. Without this restriction the type system becomes unsound,

as we could type as τ (with nil %! τ) an expression that evaluates to nil at

runtime. Lua has other kinds of table constructors that can lift this restriction

in some cases, and in the end of this section we discuss a nuance of Lua’s

semantics that, while not removing this restriction, at least lessens its effects

in most Lua programs.

Indexing a table uses the rule index:

Γ & e1 : τ1 !→ υ1 ∧ . . . ∧ τn !→ υn Γ & e2 : σ σ ! τk

Γ & e1[e2] : υk

The restriction on the types of table keys guarantees that τk is unique.

The index rule types both indexing expressions and indexing assignments

(indexing in lvalue position), although we will see in the next section that

they are treated differently by the type inference algorithm.
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There is also an index-dyn rule for indexing non-tables, analogous to

the app-dyn rule:

Γ ! e1 : τ Γ ! e2 : υ τ ! D υ ! D
Γ ! e1[e2] : D

The nil ! υ restriction on types of table values means that expressions

such as t[e1][e2] cannot have precise types using just the rules we gave, as t[e1]

cannot have a type τ where τ is a table type in our typing rules; the closest to a

table type t[e1] can have is τ? where τ is a table type. So the expression t[e1][e2]

always has to use the index-dyn rule. This is how Lua’s semantics work in

the general case, as the user can extend the behavior of the nil value. But in

practice extending the behavior of nil in this manner is forbidden (the user

has to use Lua’s debug library for that), because changing the behavior of nil

can break library and third-party code that depends on the standard behavior.

So it is safe to add rules to get precise type inference for expressions such as

t[e1][e2] (and expressions such as the t[e](el) application), like index-nil:

Γ ! e1 : (τ1 "→ υ1 ∧ . . . ∧ τn "→ υn)? Γ ! e2 : σ σ ! τk

Γ ! e1[e2] : υk

This last rule is type safe, as the nil in values of type τ? is the untagged

nil, which the compiler can make sure has the standard nil behavior.

The complete set of typing rules is in Appendix B. In the next section

we will outline part of the type inference algorithm based on these rules.

3.1.5
Type Inference

The type system we outlined in the previous section allows us to assign

more precise types to a Lua program than just D, and lets us check if these

types lead to a well-typed program (assigning type Number to an expression

that can possibly hold a string at runtime is against the typing rules, for

example). But the type system is not constructive: it can only check if a typing

is valid, not produce one. Assigning valid and precise types to programs is the

task of our type inference algorithm.

Our type inference algorithm finds types for the program’s variables and

expressions by recursively trying to apply the typing rules with type variables

instead of just types. A type variable is a reference to a type (or another type

variable), and the type the variable refers to can change during the course

of the inference, and this change is always from more precise to less precise

types. The algorithm proceeds from the root node of the program’s abstract
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syntax tree to its leafs, using the typing rules and an update procedure for

type variables that is based on the coercion relation of Section 3.1.2. Several

syntactical constructs have different typing rules, and the algorithm has to

choose one based on information that may later change. The algorithm does

multiple passes over the syntax tree until no type variables have changed (we

say that the types have converged). We will later see this gives us the benefit

of a straightforward implementation of aliasing for function and table types

when our type inference has to force different functions or tables to have the

same type.

In the exposition of the algorithm below we always represent type

variables with upper-case letters, with V(X) being the value that the type

variable X refers to and X := τ an update of type variable X. A fresh

(unassigned) variable has the special value ε. During the course of the inference

we need to change table types, adding or removing pairs of key and value types.

To make it easier to follow the algorithm, we use different letters to indicate

invariants that some type variables can have. We use T and U for table types.

Different table constructors may need to have the same type, so T always holds

another type variable which we will call P or Q. So the following always holds

for table types:

V(T ) = P

V(P ) = τ1 !→ X1 ∧ . . . ∧ τn !→ Xn.

Similarly, we use the letter F for function types. Functions need a similar

indirection for the types of their return values, and we use the letters R and

S for the type variable used for the return type. So the following always holds

for function types:

V(F ) = X1 × . . .×Xn → ×R

V(R) = Y1 × . . .× Yn or Y1 × . . .× Yn ×D∗ or D∗

Each syntactical term t has an implicit type variable that we will refer

as [[t]].

Let us now present an example of type inference for the fragment

local f = fun(x) return x.foo in

local a = {} in

local b = {} in

a.foo = 3; a.bar = “s”; b.foo = 5; return f(a), f(b)

that we used in the last section. In the first iteration we have the function
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definition getting a fresh function type F with V(F ) = XF1 → ×R, and F

gets assigned to f . The first table constructor gets a fresh table type T with

V(T ) = P , and T gets assigned to a, while the second table constructor gets

a fresh table type U with V(U) = Q, and U gets assigned to b. After the first

assignment statement we have V(P ) = “foo” #→ XP1 and V(XP1) = 3. After

the second assignment we have V(P ) = “foo” #→ XP1 ∧ “bar” #→ XP2 with

V(XP2) = “s”. After the third statement we have V(Q) = “foo” #→ XQ1 and

V(XQ1) = 5. After Processing the first expression in the expression list of the

last statement we have V(XF1) = T , as V(XF1) was ε. After processing the

second expression we have aliasing of T and U , so we have V(T ) = V(U) = P ′

where P ′ is a fresh type variable. The expression list produces ε× ε.

In the second iteration we have V(XF1) = U (which is now an alias of T ),

so the indexing expression in the function body now sets P ′ to “foo” #→ XP ′
1

but still has type ε, so R is still ε. The first table constructor now makes

V(XP ′
1
) = nil so T respects the invariant of table types. The second table

constructor does not change anything, as U is an alias of T . The first

assignment updates XP ′
1

to Number?, as Number? is the most precise type

that both nil and 3 can be coerced to. After the second statement we have

V(P ′) = “foo” #→ XP ′
1
∧“bar” #→ XP ′

2
and V(XP ′

2
) = “s”. The third assignment

now does not change anything as 5 ! Number?. There is no more aliasing

in the last statement as both T and U have the same value P ′, but the type

of the expression list is still ε× ε.

In the third iteration we still have V(XF1) = U , but the indexing expres-

sion in the function body now has type Number?, so V(R) = Number?. The

first table constructor changes XP ′
2

from “s” to String?, to restore the invari-

ant of table types. The second table constructor does not change anything.

The three assignments now do not change anything either, as 3 ! Number?,

“s” ! String? and 5 ! Number?. In the last statement the type of the

expression list now is Number?×Number?.

In the fourth iteration no type variables change, and the algorithm stops.

In the final assignments (eliminating the type variables) we have f with type

(“foo” #→ Number? ∧ “bar” #→ String?) → Number? and both a and b

having type “foo” #→ Number? ∧ “bar” #→ String?. The whole fragment

has type Number?×Number?. It is straightforward to check that this is a

correct typing in our type system.

The entry point of the algorithm is the procedure infer:

1: procedure infer(root)

2: Γ := {}
3: repeat
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4: inferstep(Γ, root)

5: until converge

6: end procedure

Procedure inferstep corresponds to one iteration of the type inference

algorithm, taking a type environment, which is a mapping from identifiers

to type variables, and a syntactical term. We will give parts of its definition

using pattern matching on terms to simplify the exposition. Let us start with

the definition of inferstep for assignment statements, covering rules assign-

drop and assign-fill:

1: procedure inferstep(Γ, 〈l1, . . . , ln = el〉)
2: inferstep(Γ, el)

3: let 〈υ1 × . . .× υm〉 = V([[el]])

4: if m ≥ n then

5: for k := 1, n do

6: inferstep(Γ, lk)

7: update(υk, V([[lk]]))

8: end for

9: else

10: for k := 1, m do

11: inferstep(Γ, lk)

12: update(υk, V([[lk]]))

13: end for

14: for k := m + 1, n do

15: inferstep(Γ, lk)

16: update(nil, V([[lk]]))

17: end for

18: end if

19: [[l1, . . . , ln = el]] := void

20: end procedure

All definitions of inferstep follow a similar structure, derived from

the typing rule it implements. In the definition above, for type inference of

assignments, we begin by recursively inferring the type of the expression list.

If there are more rvalues than lvalues, we recursively infer the type for each

lvalue, and update its type variable (we will see that V([[lk]]) is always a type

variable) with the type of the corresponding rvalue, and ignore the others.

This corresponds to rule assign-drop. If there are more lvalues than rvalues,

we do the above, and update the type variables of any remaining lvalues

with nil. This corresponds to rule assign-fill. Extending the definition of
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inferstep given above to cover rules assign-var-drop and assign-var-

fill is straightforward.

This is the definition of inferstep for simple expression lists:

1: procedure inferstep(Γ, 〈e1, . . . , en〉)
2: for k := 1, n do

3: inferstep(Γ, ek)

4: end for

5: [[e1, . . . , en]] := V([[e1]]) × . . . × V([[en]])

6: end procedure

The definition above recursively infers the types of each expression in the

expression list and assigns a tuple of these types as the type of the expression

list. The definition implements typing rule el.

The update(τ, X) procedure is the core of the type inference algorithm.

This procedure updates X from its current value υ to a υ′ so that τ
V
! υ′

and υ
V
! υ′, where

V
! is the coercion relation lifted for type variables. For

example, this is the definition of update when τ = nil, used in inferstep

for assignments:

1: procedure update(nil, X)

2: match V(X) with

3: case ε: X := nil

4: case n: X := Number?

5: case s: X := String?

6: case true | false: X := Bool?

7: case D | τ?: break

8: otherwise: X := V(X)?

9: end match

10: end procedure

The first case, where X is unassigned, is a common case for all update

definitions. Then come three cases where X holds a singleton type, so we

update X to the corresponding nullable type. Then comes the case where

nil
V
! X already holds, with X holding D or a nullable type, so we do nothing.

For other values of X we update X so it holds the corresponding nullable type.

Another case of update is the one where V(X) is D. In this case, the

update does nothing if t is a scalar type, as τ ! D already holds for all scalar

types. The interesting subcases are where τ is a function or table type. This is

the definition for τ as a function type:

1: procedure update(F, 〈X when V(X) = D〉)
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2: let 〈Y1 × . . .× Yn → R〉 = V(F )

3: for k := 1, n do

4: Yk := D
5: end for

6: R := D∗

7: end procedure

The only way to let a function type be coerced to D is to have all its

parameters have type D and its return type be D∗, so we force the function

type to be D× . . .×D → D∗. It is easier to see that the above procedure works

if we examine part of inferstep for function definitions:

1: procedure inferstep(Γ, 〈fun(x1, . . . , xn) s; return el〉)
2: if V([[fun(x1, . . . , xn) s; return el]]) = ε then

3: let R = newvar

4: let τ = newvar× . . .× newvar︸ ︷︷ ︸
n

→ R

5: let F = newvar τ

6: [[fun(x1, . . . , xn) s; return el]] := F

7: end if

8: let F = V([[fun(x1, . . . , xn) s; return el]])

9: let 〈X1 × . . .×Xm → R〉 = V(F )

10: inferstep(Γ[x1 %→ X1, . . . , xn %→ Xn, rv %→ R], 〈s; return el〉)
11: end procedure

In the above inferstep procedure we construct an initial function type

if this is the first iteration; this function type has the structure we outlined in

the beginning of this section (and the structure that the update procedure

we gave above expects). Then we deconstruct the function type to get the

type variables for each parameter and for the return values, and recursively

infer types in the body using an extended type environment. We inject the

return type variable in the environment so type inference for statements (and

in particular return statements) can change the return type of the enclosing

function directly. Notice the parallel with the rule FUN we gave in the previous

section.

Another interesting update(τ, X) subcase when V(X) = D is the

subcase for table types:

1: procedure update(T, 〈X when V(X) = D〉)
2: let P = V(T )

3: P := D %→ (newvar D)

4: end procedure
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In the above procedure we are forcing the table to have type D !→ D.

We use a new type variable to hold the second D to respect the structure for

table types that we gave in the beginning of the section. Again, it is easier to

understand update if we examine inferstep for table constructors:

1: procedure inferstep(Γ, 〈{}〉)
2: if V([[{}]]) = ε then

3: let P = newvar

4: let T = newvar

5: let T := P

6: [[{}]] := T

7: end if

8: let T = V([[{}]])
9: let P = V(T )

10: if V(P ) %= ε then

11: let 〈τ1 !→ X1 ∧ . . . ∧ τn !→ Xn〉 = V(P )

12: for k := 1, n do

13: update(nil, Xk)

14: end for

15: end if

16: end procedure

Like we did for function definitions, we make an empty table type with

the structure we outlined in the beginning of this section if this is the first

iteration. We then deconstruct the table type and enforce the invariant that

nil has to be able to be coerced to the types of the table’s values.

In the last section we discussed how the type system allows us to keep

precise types for functions and tables even if different function definitions need

to have the same type. In the type inference algorithm it is the job of the

update procedure to unify different function types (and table types) when

this occurs. The iterative nature of our algorithm and the structure we use for

these types make this a simple procedure, though; we can build a new fresh

type for the aliased types, and just make sure for function types that the new

type preserves the invariant that we have at least as many parameter types

than formal parameters. This is the aliasing update for function types:

1: procedure update(F, 〈X when V(X) = G〉)
2: if V(F ) %= V(G) then

3: let 〈X1 × . . .×Xm → R〉 = V(F )

4: let 〈Y1 × . . .× Yn → S〉 = V(G)

5: let k = max m, n
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6: let R′ = newvar

7: G := newvar× . . .× newvar︸ ︷︷ ︸
k

→ R′

8: F := V(G)

9: end if

10: end procedure

In the above procedure we make F and G hold the same fresh type

variables for parameters and return types, effectively aliasing F and G. The

aliasing update for table types is simpler:

1: procedure update(#→ T, 〈X when V(X) = U〉)
2: if V(T ) &= V(U) then

3: let P = newvar

4: T := P

5: U := P

6: end if

7: end procedure

Again, we just make the two table types hold the same (fresh) type

variable, effectively aliasing T and U .

The inferstep procedure for function application is analogous to assign-

ment. The inferstep procedure for indexing operations is more interesting,

as it is the procedure responsible for enforcing the invariants on types of table

keys. This is part of the inferstep procedure for indexing in lvalue position:

1: procedure inferstep(Γ, 〈l when l = 〈e1[e2]〉〉)
2: inferstep(Γ, e1)

3: inferstep(Γ, e2)

4: match V([[e1]]) with

5: case T :

6: match find(V([[e2]]),V(T )) with

7: case ε:

8: let X = newvar

9: union(V([[e2]]) #→ X,V(T ))

10: [[l]] := X

11: end

12: case X: [[l]] := X

13: end match

14: end

15: case otherwise:

16: update(V([[e1]]),newvar D)
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17: update(V([[e2]]),newvar D)

18: [[l]] := newvar D
19: end

20: end match

21: end procedure

In the indexing expression e1[e2], if the type of e1 is a table type T , we

try to find which the type for values with keys of type V([[e2]]). This uses the

auxiliary function find. find(υ, P )searches for a pair τk !→ X in P so that

υ
V
! τk. If there is such a pair then find returns X, otherwise it returns ε. If

find returns ε then we extend the table’s type with the new key type and a

fresh type variable, using the auxiliary procedure union(〈υ !→ X〉, P ):

1: procedure union(〈υ !→ X〉, P )

2: if V(P ) = ε then

3: P := υ !→ X

4: else

5: let 〈τ1 !→ X1 ∧ . . . ∧ τn !→ Xn〉 = V(P )

6: let P ′ = newvar (υ !→ X)

7: for k := 1, n do

8: if τk
V
! υ then

9: update(V(Xk), X)

10: else

11: P ′ := V(P ′) ∧ τk !→ Xk

12: end if

13: end for

14: P := V(P ′)

15: end if

16: end procedure

The implementations of find and τ
V
! υ are straightforward. The

implementation of
V
! has to alias its arguments if they are both function

or table types, otherwise aliasing in other places may break the invariants on

key types.

The inferstep procedure for indexing in rvalue position is similar to

inferstep for indexing in lvalue position: we just replace [[l]] := X with

[[e1[e2] ]] := V(X) and [[l]] := newvar D with [[e1[e2] ]] := D. inferstep for

indexing can also be trivially extended to cover the alternative index-nil rule

we presented in the last section.

In the next section we will show how the types inferred by the type

inference algorithm can lead to a variation of the compiler we presented on
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Chapter 2 that generates exploits type information to generate more efficient

code.

3.2
Compiling Types

This section presents a variation on the “intern” compiler we presented

in Section 2.2.3. Its code generator uses information extracted by the type

inference algorithm to generate optimized representations for Lua’s values and

specialized code for Lua’s operations.

The representation of tagged types (corresponding to type D) is un-

changed, so any operation that involves values of type D continues generating

the same code as before. We then have two issues to tackle: first, representation

of untagged types, second; code generation for operations on untagged types

and coercions.

3.2.1
Untagged Representations

Representing singleton types and simple types is straightforward, as

each of them has an analogue in the CLR: Number is double, String is

Lua.Symbol, each numeric and string singleton type has a corresponding

literal, and true, false, and Bool are respectively the literals true, false,

and the CLR type bool. The singleton type nil is the special value null.

We represent function types using a pair of delegate types, which are

CLR’s analogue of function types. We use two types instead of just one so we

can keep the optimization of Section 2.2.1 for function calls that only need

a single value; one delegate type returns a single value, the other delegate

type returns a tuple. Function return values are the only place we need a

representation of a tuple type, as tuples are not first class values. We represent

a tuple type τ1 × . . . × τn × D∗ with a CLR class having a field vk of type

corresponding to the representation of type τk for each type in the static part

of the tuple, and having a member r of type object[] for the dynamic part of

the tuple.

We represent the actual functions as CLR classes that implement one

“invoke” method for each of the two delegate types that represent the func-

tion’s type, and have fields for the function’s display. Functions with types

that can be coerced to D also subclass the Function type of dynamic Lua

functions.

The representations of table types are CLR classes, but the specifics de-

pend on their characteristics. For each singleton key type τk with corresponding
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value type υk we have a field vτk
of type corresponding to the representation

of type υk. This is the record part of the table.

If the table has Number !→ υ as part of its type, its CLR class has a

member a of type SparseArray<T>, where T is the representation of type υ.

The SparseArray<X> type is a polymorphic specialization of Lua tables (with

an array part and a hash part) for numeric keys, parametrized over the type

of its values.

If the table has String !→ υ as part of its type, its CLR class has a

member s of type Dictionary<Lua.Symbol, T>, where T is the representation

of type υ. Dictionary is the CLR’s type for polymorphic hash tables (from

its base class library).

For Bool !→ υ we do the same as if the table has both true !→ υ and

false !→ υ as part of its type, and generate code accordingly. A table with

τ !→ υ as part of its type, where τ is a function type, gets a field f of type

Dictionary<Delegate, T> where T is the representation of type υ. If the table

has τ !→ υ as part of its type, where τ is a table type, it gets a field t of type

Dictionary<T, U>, where T and U are the representation of types τ and υ,

respectively.

Tables of type D !→ υ are represented by the CLR class HTable<T>,

where T is the representation of type υ. Class HTable<X> is a polymorphic

version of Table, the class of dynamic Lua tables, that implements the same

protocol as Table plus methods for accessing elements parametrized by type

X.

We can use the same types for both τ and τ? in most cases, because the

CLR’s reference semantics allows null as a valid value for any reference type.

The exception is Number?, because double is a value type. In this case, we

use the boxed version of double, a reference type.

CLR’s structured reference types (which include classes and delegates)

are naturally recursive, so representing recursive types is straightforward.

3.2.2
Code Generation

It is straightforward to generate code for Lua operations that uses the

type information. For each operation there is a fast case, where the operation

has simple semantics for the types involved, like arithmetic with numbers,

indexing with records, and applications with functions, and a dynamic case

where you coerce the operands to D and then do the dynamically dispatched

operation. Generating code for the dynamic dispatch is the same as for the

compiler on Section 2.2.3.
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In the fast case the code for the operation is often just a single CIL

instruction, as in the two examples in the beginning of Section 3.1. In some

cases the code for the operation itself is a no-op, like and or or with a first

operand that is known to be neither nil nor false. There are also some edge

cases like arithmetic operations with one number operand and one operand of

other type, where we can generate better specialized code than just naively

treating it as the dynamic case.

The code for simple coercions is a no-op, as the representation of a

singleton type is the same as the simple type they can be coerced to. Nullable

coercions for most types are also no-ops, due to CLR reference semantics

regarding null, and coercion from Number to Number? is just boxing.

Coercion to D is a no-op for tables and functions, boxing for numbers,

wrapping in the Symbol type for strings, and selecting the corresponding

singleton value for Bool and nil. Coercing nullable types to D is a no-op

for Number? and the same operation as coercing the non-nullable type for

the other types.

Tuples are not first class values, so they usually only have ephemeral

existence in the CLR evaluation stack. Tuple coercions then involve coercing

individual tuple elements as we pushed on the stack, and then pushing

additional elements as needed. In cases where we have to create a tuple object

so we can return it as the result of a function call, we generate the code for

the tuple coercion, then call the corresponding tuple object constructor. The

typing rules guarantee that these cases only occur when generating code for

return.

3.3
Related Work

This section is a review of some of the previous approaches for extracting

type information from dynamically typed programs. We divide the approaches

in two, presented in this order: type inference and flow analysis. Type inference

approaches work directly on the abstract syntax tree of a program, and assign a

type in a formally defined type language to each syntactical term. Flow analysis

works on a control flow graph, built incrementally from an entry point in the

program (using the nodes in the syntax tree and the information obtained

by the analysis as input), and tracks the flow of abstract values through this

graph; types are just a kind of abstract value.

The type information discovered by flow analysis is always used for

optimization, by eliminating runtime type checks and usually also optimizing

representation of values. This is not the case for the type inference approaches
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we review in this section; some of them have the goal of optimizing the program,

like the type inference we presented in this chapter and the flow analysis

approaches, but most are primarily for checking types to discover potential

runtime errors. In the section where we review the type inference approaches

we note which of these goals (optimization or checking) is the primary goal for

each approach.

3.3.1
Type Inference

Type inference algorithms for dynamically typed languages are not new.

Gomard [1990] describes a two-level lambda calculus with a monomorphic type

system that adds a type untyped (similar to our type D), and an annotated

version of each primitive operation that works on values of this type. He also

presents an extension of the unification-based algorithm W [Damas and Milner,

1982] that, on a type error (unification failure), annotates the primitive where

the error occurred and retries the algorithm until it succeeds. One possible

application he gives for this modified algorithm W is to avoid doing type

checks in dynamically typed code.

His type system forces these annotations to propagate to subexpressions,

though, while our coercions can be localized to only part of an expression,

increasing precision. Our type system also has a richer type language that

cannot be fitted into his framework without losing precision. Extending his

framework to support the same level of precision we achieve would lead to a

more complex type system and inference algorithm that would be harder to

understand.

Global tagging optimization [Henglein, 1992b,a] adds a type Dynamic

(similar to our type D) to a fairly complete subset of Scheme extended with

coercions, and a type inference algorithm that finds out which coercions give

the most precise types for a program using an extension of unification, and it is

used to generate code for Scheme that uses more efficient data representations

and avoids type checking. The algorithm can be implemented with a single pass

over the program. His type system has polymorphic primitives but all inferred

types are monomorphic. The algorithm is efficient and reasonably simple, but

is very specific to its type system, and cannot accommodate Lua’s ad-hoc

polymorphic primitives or adjustment of expression lists.

The type system and inference algorithm in Henglein and Rehof [1995]

extends the work of Henglein [1992b,a] with polymorphism for inferred types

and modular type inference (it can infer types of functions without know-

ing how they are used), by incorporating polymorphic coercions as part of a
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function’s polymorphic type. These polymorphic coercions have coercion pa-

rameters that are analogous to type parameters in polymorphic types. The

type system also replaces the type Dynamic of Henglein [1992b] with a sum

type where each type constructor in the type language appears once and only

once. The goal is code optimization through better data representation and

avoidance of runtime checks, but the use of polymorphism requires generation

of specialized code.

The inference algorithm in Henglein and Rehof [1995] is still based

on unification, but has a complex intermediate step between unification

and generalization of type variables; this intermediate step simplifies the

parameters of the polymorphic coercions. Without this extra step the number

of parameters to be generalized can be exponential on the size of the function.

Polymorphic coercion parameters are an elegant way of combining parametric

polymorphism with dynamic typing, but it is not useful in our case, as a

polymorphic type system is a poor fit for Lua due to the reasons we gave on

Section 3.1.

Aiken and Fähndrich [1995] give an alternative formulation for Henglein’s

global tagging optimization [Henglein, 1992b], which also has the goal of

optimizing representations. They model coercions with subtyping constraints

on a type system where each type has a structural part and a tagging part,

and the structural part allows both union and intersection types. The inference

algorithm generates a set of constraints from the program’s syntax tree,

solves these constraints, and maps these back to coercions. The algorithm

is more general than the algorithm in Henglein [1992b], and can accommodate

richer (but still monomorphic) type systems at the cost of cubical instead of

linear time complexity, but the constraint language cannot express the ad-hoc

polymorphism in our type system without sacrificing precision.

Soft typing [Cartwright and Fagan, 1991] presents a type system and

inference algorithm for a functional language that has polymorphic types and

union types (using an encoding of sum types as polymorphic types so they

work with regular unification), where the inference algorithm inserts runtime

type checks when algorithm W finds a type error.

Wright and Cartwright [1997] have a more sophisticated soft typing

system for full Scheme. This system has extensions to deal with features present

in Scheme but not in the idealized functional language used in Cartwright and

Fagan [1991], including imperative features, and not only inserts runtime type

checks, but also flags applications of primitives that can never succeed, and

tries to expose readable types to the programmer (the encoding used for union

types in Cartwright and Fagan [1991] makes it harder to understand what the
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types mean).

The primary goal of both soft typing approaches is to find possible errors

in programs by exposing the necessary runtime checks to the programmer;

optimizing the program by removing unnecessary runtime checks is a side

effect. Soft typing approaches also assume a uniform runtime representation

for all types. The goal of our type system, on the other hand, is to optimize

Lua programs, primarily by using optimized representations of Lua values. It

is ill suited for finding programming errors.

3.3.2
Flow Analysis

Iterative flow analysis has been used by optimizing compilers for Scheme

and Lisp to extract type information from dynamically typed programs.

Beer [1987] presents an inference system that uses local data flow analysis

to infer types in Common Lisp programs, aided by type declarations for

formal parameters. The inference system has, for each node in the flow

graph, a function that computes the type of the node’s output from the

type of the node’s input. Initially all types (except those flowing from formal

parameters and constants) are empty, and analysis of the flow graph is iterated

until reaching a fixed point. Optional type declarations act as filters for

the types of corresponding control flow nodes. An implementation of type

inference using these techniques is present in the “Python” CMU Common

Lisp compiler [MacLachlan, 1992]. The information extracted by the analysis

is used in code optimization.

Lua, in contrast to Common Lisp, does not have type declarations, so

a local data flow analysis like the above would need to assign the maximal

type (an analogue to D) to formal parameters. The result is that in most

cases all local variables and expressions will also have this maximal type,

rendering inference useless. Our type inference is also syntax-directed instead

of depending on computing a data flow graph, which is a harder problem in a

higher-order language with a single namespace (Lisp-1), as Lua and Scheme,

than in languages with separate scalar and function namespaces (Lisp-2), as

Common Lisp [Gabriel and Pitman, 1988, Shivers, 1988].

Storage Use Analysis [Serrano and Feeley, 1996] uses a global data flow

analysis to infer types in a Scheme dialect by computing a subset of the

(finite) set of possible abstract values (one abstract value for each scalar type,

closure, and structured data constructor in the program). The analysis has

a special abstract value ! for values external to the program. The analysis

is done by iterated traversal of the call graph of an intermediate form of the
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program where all closure creation has been made explicit and higher-order

function application has been converted to closure calls. The call graph is not

constructed explicitly, but traversed implicitly from the syntactical structure

of the transformed program. The authors use the information extracted by

their analysis for optimizing data representation.

Our type inference algorithm is similar to the Storage Use Analysis

algorithm in that their “type system” is also monomorphic, but the actual

details of the inference algorithm are very different: we do not require a

transformation to make closure creation and use explicit, and traverse the

syntax tree instead of the call graph. Their type system is also implicitly

specified by the algorithm, and their treatment of structured types is ad-hoc,

while our type system is specified separately as a deduction system. We believe

this makes our type system and inference easier to reason about, both for the

compiler writer and for the programmer. Although our type inference’s purpose

is program optimization, it is trivial to make it output readable types for the

programmer, using the type language in Section 3.1.1.

Polymorphic Splitting [Wright and Jagannathan, 1998] is a global flow

analysis for Scheme that mimics ML’s let-polymorphism [Damas and Milner,

1982] by splitting different occurrences of the same let-bound closure in

different abstract values instead of having they all be the same abstract value.

The analysis explicitly constructs a flow graph from the program’s syntax tree,

and propagates abstract values along this graph. The authors use the results

of this analysis to eliminate runtime checks in Scheme programs, but, due to

polymorphism, assume a uniform data representation, so the results of the

analysis are unsuited for the optimizations that our type inference enables.
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