PUC-RIo - Certificacdo Digital N° 0721336/CA

5 An Architecture for Distributed High Performance Video
Processing in the Cloud

5.1 Introduction

As computer systems evolve, the volume of data to be processed increas-
es significantly, either as a consequence of the expanding amount of infor-
mation available, or due to the possibility to perform highly complex opera-
tions that were not feasible in the past. Nevertheless, tasks that depend on the
manipulation of large amounts of information are still performed at large com-
putational cost, i.e., either the processing time will be large, or they will require

intensive use of computer resources.

In this scenario, the efficient use of available computational resources is
key, and creates a demand for systems that can optimize the use of resources in
relation to the amount of data to be processed. This problem becomes increas-
ingly critical when the volume of information to be processed is variable, i.e.,
there is a seasonal variation of demand for processing. Such variable demand
can have different causes, such as an unanticipated burst of client requests, a
time-critical simulation, or a high volume of simultaneous video uploads, e.g.
as a consequence of a public contest. In these cases, there are moments when
there is very low demand and the resources are almost idle while at other mo-
ments, there is processing demand that exceeds the resource capacity, and

which may cause undesirable delays.

Moreover, from an economical perspective seasonal demands do not jus-
tify a massive investment in infrastructure, just to provide enough computing
power for peak situations. In this light, the ability to build adaptive systems,
capable of using on demand resources provided by Cloud Computing

[ARMBRUST 2009][VOGELS 2008][MILLER 2008] is very interesting.

The remainder of this chapter is structured as follows. In the next section
(5.2) we discuss computing on demand and the Map-Reduce [DEAN 2008]
paradigm, in section 5.3 we introduce the Split&Merge [PEREIRA 2010] ar-

chitecture, in section 5.4 we discuss fault tolerance issues and compare be-

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

PUC-RIo - Certificacdo Digital N° 0721336/CA

38

tween private cluster and public cloud implementations of the Split&Merge ar-

chitecture. In section 5.5 we conclude and discuss further work.

5.2 Background and Problem Statement

The distribution of tasks in a cluster for parallel processing is not a new
concept, and there are several techniques that use this idea to optimize the pro-
cessing of information. The Map-Reduce paradigm [DEAN 2008], for example, is
a framework for processing huge datasets of certain kinds of distributable prob-
lems using a large number of computers (nodes), collectively referred to as a clus-
ter. It consists of an initial Map stage, where a master node takes the input, chops
it into smaller or sub-problems, and distributes the parts to worker nodes, which
process the information; following there is the Reduce stage, where the master
node collects the answers to all the sub-problems and combines them to produce
the job output. The process is illustrated in figure 5.1.

A popular Map-Reduce implementation is Apache’s Hadoop [BIALECKI
2011], which consists of one Job Tracker, to which client applications submit
Map-Reduce jobs. The Job Tracker pushes work out to available Task Tracker

nodes in the cluster, which execute the map and reduce tasks.

Userl

StartJobl StopJobl

Service Store status and

esults

Get Result

User2

StopJoh2
StartJoh2

Figure 5.1. Map Reduce architecture.

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

PUC-RIo - Certificacdo Digital N° 0721336/CA

39

However, despite being a very appealing and efficient technique for pro-
cessing large volumes of data, there are a number of challenges associated with
the deployment of Map-Reduce architectures. One of them is the required infra-
structure. To make the process truly effective, one needs several machines acting
as nodes, which often requires a large upfront investment in infrastructure. This
point is extremely critical in situations where the processing demand is seasonal.
In addition, fault tolerance issues and the need of a shared file system to support
mappers and reducers make the deployment of a Map-Reduce architecture com-
plex and costly.

In cases where there is a seasonal computation demand, the use of public
Clouds, for information processing and storage, is emerging as an interesting al-
ternative. The Hardware as a Service (HaaS) paradigm relieves the burden of
making huge investments in infrastructure, and at the same time supports on-the-
fly resizing of resources, and adaptation to current needs.

With a public Cloud, one can quickly make provision for the resources re-
quired to perform a particular task, and pay only for the computational resources
effectively used. This is good solution, not only because it deploys faster, as op-
posed to having to order and install physical hardware, but it also optimizes over-
all costs, as resources can be released immediately after the task is completed.

One of the largest HaaS providers in the public Cloud is Amazon AWS,
with its Elastic Cloud Computing (EC2) and Simple Storage Service (S3) ser-
vices. Amazon EC2 is a web service interface that provides resizable computing
capacity in the cloud, allowing a complete control of computing resources and re-
ducing the time required to obtain and boot new server instances. This feature is
of particular interest because it allows applications to quickly scale up and down
their processing and storage resources as computing requirements change. Ama-
zon S3 provides a simple web services interface that can be used to store and re-
trieve data on the web, and provides a scalable data storage infrastructure.

In the specific case of applications requiring parallel processing using Map-
Reduce architecture, one may also use the Elastic Map Reduce, which implements
a hosted Hadoop [BIALECKI 2011] framework running on the infrastructure of
Amazon EC2 and Amazon S3.

In this thesis we are interested in computer systems that are capable of being

deployed both in private clusters, and in public Cloud providers, under the HaaS

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

PUC-RIo - Certificacdo Digital N° 0721336/CA

40

paradigm. In this scenario, the Map-Reduce architecture is an interesting ap-
proach, once it is versatile enough to be deployed in both environments. As stated
above, Amazon itself already has a Cloud Map-Reduce platform through Elastic
Map Reduce. However, the Map Reduce architecture isn’t generic enough to be
used in all classes of problems that deal with large amounts of data to be pro-
cessed, once there are some issues that are not addressed efficiently, such as the
use of different Reduce algorithms for some specific pieces of information, or the
chunk ordering before the Reduce step. A good example where Map-Reduce
could be generalized is the compression of high definition video files, which re-
quires intensive information processing. In this compression process, streams of
audio and video are processed with different algorithms, and there is a great corre-
lation between subsequent video frames, especially when there is temporal com-
pression. The order in which pieces of audio and video are recombined after hav-
ing been processed must also be taken into account so as to avoid that significant
distortions are incorporated in the output. Moreover, issues such as fault tolerance
and scalability need to be thoroughly considered, so that the proposed architecture
becomes robust enough to meet the requirements of different video compression
applications. These issues will be further discussed in more detail in section 5.4.
In the next section we propose an architecture for video processing, which is
sufficiently flexible to be deployed in either a private cluster, private or public

Cloud environment, that provides a HaaS platform.

5.3 Distributed Video

Video compression refers to reducing the quantity of data used to represent
digital video images, and is a combination of spatial image compression and tem-
poral motion compensation. Video applications require some form of data com-
pression to facilitate storage and transmission. Digital video compression is one of
the main issues in digital video encoding, enabling efficient distribution and inter-
change of visual information.

The process of high quality video encoding is usually very costly to the en-
coder, which, and require a lot of production time. When we consider situations
where there are large content volumes, this is even more critical, since a single
video may require the server’s processing power for long time periods. Moreover,

there are cases where the speed of publication is a critical point. Journalism and

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

PUC-RIo - Certificacdo Digital N° 0721336/CA

41

breaking news are typical applications in which the time-to- market the video is
very short, so that every second spent in video encoding may represent a loss of
audience.

Figure 5.2 shows the speed of encoding of a scene, measured in frames per
second, with different implementations of the H.264 compression standard
[MPEG4-10 2003]. We note that the higher the quality, i.e., the bitrate of the vid-
eo output, the lower the speed of encoding.

In order to speed up encoding times, there are basically two solutions. The
first one is to augment the investment in encoding hardware infrastructure, to be
used in full capacity only at peak times. The downside is that the infrastructure
will be idle the remaining of the time. The second solution is to try and optimize
the use of available resources. The ideal scenario is to optimize resources by dis-
tributing the tasks among them evenly. In the specific case of video encoding, the
intuitive solution is to break a video into several pieces and distribute the encod-
ing of each piece among several servers in a cluster. The challenge of this ap-
proach is to split, as well as merge video fragments without loss in synchroniza-

tion.

Absolute encoding time, Battle

L e AT T L dicas, High-Speed preset

|
|
|
|
|
;
: : - Elecard, High-Speed preset :
| | -~ Intel IPP, High-Speed preset |
| | Mainconcept, High-Speed preset |
ffffff A x264, High-Speed preset -
£+ XviD, High-Speed preset :
|
|
|

120 - — - — - -

o -------— = -t

Encodeing speed (fps)

| t
| T
| |
| |
49 L L
400 600 800 1000 1200 1400 1600 1800
Bitrate, kbps

Figure 5.2. Encoding speed for different H.264 implementations [VATOLIN2009].

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

PUC-RIo - Certificacdo Digital N° 0721336/CA

42

Given a video encoded in H.264, for example, a split in a frame other than
the key-frame (B or P frames) could be disastrous, because the remaining frames
depend on information registered in the key frame to be regenerated. Furthermore,
the synchronization between audio and video can be greatly affected, since the

frame size of each one may not be equal.

5.4 The Split Step

In what follows we describe a technique for reducing video encoding times,
based on distributed processing over cluster or cloud environments, implemented
using the Split&Merge architecture and illustrated in figure 5.3. The fragmenta-
tion of media files and the distribution of encoding tasks in a cluster consist of an
advanced solution for increasing the performance of encoding, and an evolution of
the simple distribution of single complete video encoding tasks in a cluster or
cloud. The idea is to break the media files into smaller files so that its multiple
parts can be processed simultaneously on different machines, thereby reducing the
total encoding time of the video file.

The problem in the case of video files is that, unlike a text file, we can not
split it anywhere. As discussed above, if the video to be encoded already provides
some form of temporal compression, then it would be necessary to first identify its
key-frames, so that the cuts are made at their exact positions. Furthermore, to
avoid synchronization between audio and video problems, we must separate the
two, so that they can be independently compressed.

Situations where the original video does not show temporal compression are
special cases where the video can be split at specific frame numbers or at regular
intervals. The important point here is to ensure that no frame coexists in more than

one chunk, and that no frame is lost.

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

PUC-RIo - Certificacdo Digital N° 0721336/CA

43

TEEE) _ARNE R R R R
! ! !
chunk1 chunk2 chunkN
| [Eessssssssasssssssssl
l l l FULL Encoded Video
chunk1 chunk2 chunkN DI 292297 I 00
+ + + =
-
\ssisrsissrens sssrninslsnns
AFFTRTRRHHRITIITRTITIITIIT
ORRRRRFIARRRARRARRART

Figure 5.3. The proposed Split&Merge architecture instantiated to video encoding.

Assuming an input video in high definition at 1080p, with 29.97 frames per
second, encapsulated in AVI and compressed with MJPEG codec (no temporal
compression), and an audio stream stereo PCM, with sampling rate of 44100Hz,
the first step in split task would be separate video stream from the audio stream.
This is because video encoding is much more complex, and requires much more
computer resources than audio encoding. Because the overall impact to the per-
formance is very small, the audio stream is processed in one piece (no fragmenta-
tion). Furthermore, if processed together, chunks containing both audio and video
may generate various synchronization problems, since audio frames do not neces-
sarily have the same temporal size than video frames. We thus avoid processing
both streams simultaneously, for it may generate audible glitches, delays and un-
desirable effects.

After splitting audio from video, the video stream must be broken at regular
intervals. Note that this is only valid in the case where there is no temporal com-
pression at the input. The ideal here is to make chunks with a constant amount of
frames, and not based on runtime. When using a time shift split, it is important to
make sure that there is no loss or duplication of frames in chunks.

A key point in the fragmentation of the input video is to determine the size
of the chunks to be generated. This decision is closely related with the output that
is generated, that is, the video codec and compression parameters passed to it in
the processing step. This is because, after processing, the chunks will present a
key- frame in its beginning and end. Fragmentation in chunks performed indis-

criminately, will produce an output video, after the merge, with an excess of key-

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

PUC-RIo - Certificacdo Digital N° 0721336/CA

44

frames, which reduces the efficiency of compression. To have an idea, it is fre-
quent the use of spacing between key-frames of 250 frames, when we have a vid-
eo with 29.97fps. Thus, if in the split step chunks are generated with less than 250
frames, we will inevitably reduce the efficiency of the temporal compression of
the encoder. A good approach is to perform the split so that the number of chunks
generated is equal to the number of nodes available for processing. However,
when we use an elastic processing structure, we can further optimize this split,
analyzing what is the optimum amount of chunks to be generated, which certainly
varies according the duration of the video, and the characteristics of the input, and
output to be produced.

To have this optimized split, would be necessary to implement a decision-
making algorithm to evaluate the characteristics of input and output, choosing
what size of fragment will use resources more efficiently, producing a high quality
result and with an acceptable response time. The implementation of this algorithm
is quite desirable in order to improve the efficiency of the process, however, it is
beyond the initial scope of this work.

When we split a video file into several chunks, or smaller files, we must re-
pair the container of them, rewriting the header and trailer, most of the time. This
process can be avoided with a very interesting method. When we refer to split the
video, we are actually preparing the data to be distributed in a cluster, and to be
processed in parallel. If in the split step, instead of breaking the video file, we just
identify the points of beginning and end of each chunk, then it would not be nec-
essary to rewrite the container, which would consequently reduce the encoding
time. The disadvantage in this case would be that all nodes should have read ac-
cess to the original file, which could be implemented through a share of the file
system, as an NFS mount, or even through a distributed file system with high read

throughput.

5.5 The Process Step

Once video is fragmented, the chunks generated should be distributed
among the nodes to be processed. In the specific case of video compression, this
process aims at reducing the size of the video file by eliminating redundancies. In
this step, a compression algorithm is applied to each chunk, resulting in a com-

pressed chop of the original video.

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

PUC-RIo - Certificacdo Digital N° 0721336/CA

45

The process of chunk encoding is exactly equal to what would be done if the
video were processed without fragmentation, i.e. it is independent of the split and
the amount of chunks generated. However, if the option to simply mark the points
of beginning and end of chunks was used during the split, then the processing step
should also have read access to all the original video, and must seek to the posi-
tion of the start frame, and stop the process when the frame that indicates the end
of the chunk is achieved.

There are several open source tools for video compression, among the most
popular, FFmpeg [TOMAR 2006] and mencoder, which are compatible with vari-
ous implementations of audio and video codecs. It is possible, for example, use
mencoder to implement the processing step, performing a compression of a high-
definition video, generating an output that can be viewed on the Internet, or even
on mobile devices that have a UMTS [GANESH 1999] or HSDPA [HOLMA
2006] connectivity. In this case, we could use the H.264 Baseline Profile with
280kbps, and a 480x360 resolution, performing, therefore, an aspect ratio adjust-
ment. Using the marking approach in the split step, the processing step could be

implemented as follows:

mencoder
-ofps 30000/1001 -vf crop=$ {WIDTH}:$ {HEIGHT},scale=480:360,harddup
${ORIGINAL INPUT FILE}

-ss ${CHUNK START}

-endpos $ {CHUNK END}

-sws 2 -of lavf

-lavfopts format=mp4,i_certify that my video stream does not use b frames

-ove x264

-x264encopts
psnr:bitrate=280:qcomp=0.6:qp_min=10:qp_max=51:qp_step=4:vbv_maxrate=500:vbv_
bufsize=2000:level idc=30:dct decimate:me=umh:me_ range=16:keyint=250:keyint min
=25:nofast_pskip:global header:nocabac:direct pred=auto:nomixed refs:trellis=1:bframe
s=0:threads=auto:frameref=1:subq=6

-nosound

-0 $(printf %04u $ {CHUNK ID}).mp4

In addition to processing the video chunks, it is also necessary to process the

audio stream, which was separated during the split step. Audio compression is a

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

PUC-RIo - Certificacdo Digital N° 0721336/CA

46

simple process, with low computational cost, and can be performed with the same

tools used for video compression:

mencoder
${ORIGINAL INPUT FILE}
-ovc raw -ofps 30000/1001
-oac mp3lame
-af lavcresample=22050,channels=1
-lameopts cbr:br=32

-of rawaudio -0 audio.mp3

At the end of the processing step, we have all the compressed chunks, as well as
the audio stream. To obtain the desired output, we must merge all fragments, thus recon-

structing the original content.

5.6 The Merge Step

The merge step presents a very interesting challenge, which consists of re-
constructing the original content from its parts, so that the fragmentation process
is entirely transparent to the end user. This means that not only the joining of the
fragments of video should be perfect, but also that the audio and video must be
fully synchronized. Note that the audio stream was separated from the video be-
fore the fragmentation process took place. As compression does not affect the
length of the content, in theory after merging the processed chunks, we just need
to realign the streams through content mixing.

The first phase of the merge step is to join the chunks of processed video,
which can be accomplished easily by ordering the fragments and rewriting the

container.

mencoder
${LIST OF VIDEO_CHUNKS}
-ovc copy -nosound -of lavf
-lavfopts
format=mp4,i_certify that my video stream_ does not use b frames

-0 video.mp4

Following, we remix the audio stream with the video, synchronizing the contents,

and generating the expected output.

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

PUC-RIo - Certificacdo Digital N° 0721336/CA

47

mencoder
video.mp4
-audio-demuxer lavf
-audiofile audio.mp3
-ovc copy -oac copy -of lavf
-lavfopts
format=mp4,i_certify that my video stream_ does not use b frames

-0 ${OUTPUT}

After the split, process and merge steps, implemented using the proposed
architecture, we created a fully parallel and distributed video compression pro-
cess, where the different pieces of content can be processed simultaneously in a

cluster or, alternatively, using resources in the Cloud.

5.7 Performance Tests

In order to validate the proposed architecture we experimented using Ama-
zon's AWS services. We deployed an instance application responsible for the en-
coding different sequences of videos, evaluating the total time required for the en-
coding process, and comparing it with the total time spent in the traditional pro-
cess, where the video is encoded without fragmentation, i.e. all content is rendered
on a single server.

For these tests, we selected sequences of high-definition video, with differ-
ent durations, and encoded with MJPEG 25Mbps, 29.97fps, and audio PCM/16
Stereo 48kHz. The video output of the compression process was set to be an
H.264 Baseline Profile, with 800kbps, 29.971ps, and with a resolution of 854x480
(ED), and audio AAC, 64kbps, Mono, 44100Hz.

To deploy the infrastructure, we chose the instance type m1.small for all in-
stances of servers, which has the following characteristics, according to Amazon:

* 1.7 GB memory

* 1 EC2 Compute Unit (1 virtual core with 1 EC2 Compute Unit)
* 160 GB instance storage (150 GB plus 10 GB root partition)

* /O Performance: Moderate

In figure 5.4, as follows we depict the comparison between the total times,

measured in seconds, required for the encoding of different video sequences, us-

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

PUC-RIo - Certificacdo Digital N° 0721336/CA

48

ing the proposed Split&Merge implementation, and using the traditional compres-
sion process. In this test scenario, we worked with chunks of fixed size (749

frames), and with one node per chunk.

totzal encoding duration (sec)

—a ~

0 100 200 300 400 500 600 700 800 500 1000
content duration (sec)

=o=Traditional Process =l=Split&Merge

Figure 5.4. Total encoding times for different sequence durations (s).

As we see, while the total encoding time using the traditional process, grows
linearly with increasing duration of the video input, the Split&Merge, average
process times remain almost constant for short duration videos. In fact, the total
CPU time consumed, which is the sum of the CPU usage in all nodes, will be
greater in the Split&Merge approach, however, the distribution of processing
among several nodes for parallel execution will reduce the total encoding dura-
tion. This result is quite significant when one considers videos of short and aver-
age duration. In the case when we have a video about 10 minutes long, the total
time for encoding using the technique of Split&Merge is equivalent to less than
10% of the total time spend using the traditional process, which is extremely in-
teresting for applications where time to market is vital, as breaking news. If we
consider another application, such as the production of soccer matches, which
have videos about 2 hours long, the gain would be even more significant if we in-
crease the amount of available nodes by provisioning of servers in the Cloud. In
this case, we could reduce the total production time from several hours to a few

minutes. However, with the increasing of the number of chunks being processed

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

PUC-RIo - Certificacdo Digital N° 0721336/CA

49

simultaneously, the efficiency of the Split&Merge tends to be reduced due the
network 1.O rates, as we could see with the sequence of 900 seconds duration.

Whereas, in the limit, the elastic capacity of a public Cloud tends to be infi-
nite, i.e. the amount of resources available is unlimited (including networks), then
we can say that it is possible to encode all the video content of a production studio
collection, with thousands of hours of content, in a few minutes, by using the ap-
proach of Split&Merge deployed in a Cloud, which certainly would take hundreds
of hours using the traditional process of coding in a private cluster.

Another key point that must be considered is the cost of the Split&Merge
approach deployed in the public Cloud, against the cost of having a private infra-
structure dedicated to this task. Taking into account the results of the tests above,
and also a production of 500 minutes a month, we will have, at the end of one
year, an approximate cost of $25,000 using the platform of Amazon AWS, with
the advantage to be possible to produce all content in a few minutes. This value is
comparable to the cost of a single server, without even considering the deprecia-
tion and maintenance, which makes the architecture of Split&Merge deployed in
the public Cloud not only efficient in terms of processing time, but also in cost of
deploy and operation.

Considering an optimal situation where there are unlimited resources avail-
able, it is possible to use the experimental results to predict the total cost and
number of nodes needed to encode videos of different categories. Table 5.1, bel-
low, compares the traditional encoding process with the proposed Split&Merge
approach. In this example we set the total encoding time to 2 minutes, and explore
several different scenarios, i.e. advertisements, breaking news, TV shows and
movies or sports matches, respectively. We are also using the cost per minute, alt-
hough Amazon’s minimum timeframe be one hour, considering scenarios where
there are a great number of videos to be processed, so, consequently, the machines

are not shut down after a single process.

Input Video | Traditional En- | S&M Encoding | Number of

Duration coding Duration | Duration S&M Nodes
(in US dollar)

30 sec. 2 min. 2 min. 1 $0.003

5 min. 19 min. 2 min. 10 $0.03

S&M Encoding
Cost Using EC2

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

PUC-RIo - Certificacdo Digital N° 0721336/CA

50

30 min. 112 min. 2 min. 57 $0.16

2 hour 7.5 hour 2 min. 225 $0.63

Table 5.1. Comparison between the traditional encoding process and the split & merge

approach.

Note that the Split&Merge approach, deployed in a public Cloud, reduces the
total encoding time for a 2-hour video from 7.5 hours to 2 minutes, with the total
processing cost of $0.63. If we extrapolate these numbers for the Super Bowl
XLIV [STLTODAY 20111, it is possible to encode the 3.3 hours match for $1.03,
in only 2 minutes, as opposed to 12.2 hours, if we opted for the traditional pro-

CCSS.

5.8 Discussion

Scalable and fault tolerant architectures that support parallel processing of
large volumes of data in Cloud environments, are becoming increasingly neces-
sary to enable flexible, robust and efficient processing of large volumes of data. In
this paper we are specifically interested in architectures that deal with large-scale
video processing tasks, as most of the existing video processing techniques do not
consider parallel computing in the cloud. In what follows we discuss the require-
ments for such architecture, focusing on the dynamic deployment of additional
computer resources in the Clouds, as the means to handle seasonal load variations.

The first requirement for such architecture is portability, i.e., it should be
designed in a way that it works on different platforms. Therefore, it should be
simple and componentized, so that it can be deployed in hybrid infra-structures,
including machines in private clusters, as well as in public Clouds. With approach
it would be possible, for example, to combine servers in a local cluster, to instanc-
es running on Amazon EC2, simultaneously processing tasks. An alternative sce-
nario is to have the processing done locally, using servers in a private cluster, but
using a public Cloud for storage. There are several other possibilities, but the fun-
damental point is that portability is central to secure flexible solutions that com-
bine private and public Cloud resources. These are commonly referred to as hy-
brid cloud computing [CEARLEY 2009].

To make this possible, all components of the architecture should be service

oriented, i.e., they must implement web services that allow functional architectur-

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

PUC-RIo - Certificacdo Digital N° 0721336/CA

51

al building-blocks to be accessed over standard Internet protocols, independently
of specific platform and programming languages. This is a key feature when deal-
ing with services in the Cloud. In the case of Cloud services provided by Amazon,
for example, it is possible to manipulate data stored in Amazon S3, and to provi-
sion resources in Amazon EC2, scaling up and down, and deploy virtual ma-
chines, using programs that communicate through REST web services [ZHANG
2004]. Thus, a task processing architecture should provide a standard service-
oriented interface for scheduling and manipulation of jobs. The communication
amongst its internal components should, of course, make use of the same stand-
ard. This makes deployment more flexible, and also facilitates the extension of
existing features, addition and/or removal of software components, as needed.

If we analyze Map-Reduce in its essence, we note that process optimization
is achieved by distributing tasks among available computing resources. The pos-
sibility of breaking down the input, and processing its parts in parallel, is the key
to reducing overall processing times. In the particular case of video processing,
special care must be given to the processes of merging and recombining processed
fragments, so as to preserve their original order, avoid synchronization problems,

and quality loss.

5.9 Fault Tolerance

To understand how the Split&Merge architecture deals with possible fail-
ures in its components, we need to detail the implementation of redundancy
mechanisms, component behavior, and information exchange. The first point is
the way in which messages are exchanged. We advocate in favor of a service-
oriented architecture, based on exchange of messages through REST web services
[FIELDING 2000].

The typical Map-Reduce implementation provides a single master node, re-
sponsible for the scheduling tasks to worker nodes (responsible for doing the pro-
cessing). Communication between workers and the master node is bidirectional:
the master node delegates tasks to workers, and the workers post the execution
status to the master. This type of architecture has received severe criticism, as a
single failure can result in the collapse of the entire system. Conversely, worker

failures could happen without ever being detected.

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

PUC-RIo - Certificacdo Digital N° 0721336/CA

52

The Split&Merge architecture tackles this problem by coupling a service to
the master node that periodically checks the conditions of its workers. This en-
sures that the master node, which controls the entire distribution of tasks, is al-
ways able to identify whether a node is healthy or not. This simple mechanism
can be further refined as necessary, e.g., adding autonomic features, such as moni-
toring workers to predict when a particular worker is about to fail, isolating prob-
lematic nodes, or rescheduling tasks. Of course, care must be taken to avoid over-
loading the master node with re-scheduling requests, and additional overhead
caused by recovery and prevention mechanisms.

Another issue addressed by the proposed Split&Merge architecture is relat-
ed to the fact that there is a single point of failure on the master node. The main
challenge in having two active masters is sharing state control between them.
More specifically, state control sharing means that, whenever it delegates a task,
the master node responsible for such operation must inform its mirror which task
has been delegated to which worker node, so that both are able understand the
processing status post from the worker(s). Sharing of states can be implemented
through several approaches, but our choice was to use master replication using a
common database. Apart from the simplicity of state sharing, with this solution
we also secure control state persistence, which means that in case of failure, we
may resume processing of the chunks from the last consistent state.

We must pay attention to how workers read the input and write processing
results, which translates to the problem of ensuring file system reliability. In the
cases where a private cluster is used, we opted for a shared file system, e.g. NFS,
HDFS (that uses a distributed architecture) [BORTHAKUR 2008] or MogileFS.
They seem a natural choice as Distributed file systems, in general, already incor-
porate efficient redundancy mechanisms. In cases where the Cloud is used, stor-
age redundancy is already fully transparent, which greatly simplifies the deploy-
ment architecture. However, we must note that data writing and reading delays in
Cloud storage systems are significantly higher, and often depend on the quality of
the connection among nodes and the servers that store content.

In the following two sections we compare between two possible implemen-

tations of the Split&Merge architecture.

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

PUC-RIo - Certificacdo Digital N° 0721336/CA

53

5.10 Private Cluster

Defining a flexible and robust architecture is not enough, as we must also
guarantee that it is suited to the environment where it is going to be deployed.
When considering deployment in a private cluster, we identify a number of char-
acteristics in the environment that may interfere in the architecture efficiency, and
thus require subtle changes, to enable more rational use of available resources.

One of the main features of a private cluster is the control over the environ-
ment and the ability to customize it. It is possible to have an accurate idea of the
computational power of each component, and identify existing bottlenecks, which
greatly facilitates the processes of deployment, management and maintenance of
existing resources. Figure 5.5 illustrates the proposed architecture, instantiated to

a cluster environment.

Distributed
File System

Worker Worker Worker } Worker

Node Node Node Node

T T RESTful

i information exchange

Master
Node

HTTP POST :> Master

(new job)

Node

=
-
-

N
>
>
.)
master-master

replication

Figure 5.5. Private cluster Split&Merge architecture.

The great disadvantage of a cluster consists in the investment necessary to
set it up, which is not justifiable in cases of seasonal demands. The deployment of
applications using the proposed architecture, with a minimum redundancy of as
described in the previous session, would require at least 4 servers, which is a sig-

nificant investment when we consider that, together with the cost of hardware,

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

PUC-RIo - Certificacdo Digital N° 0721336/CA

54

there are maintenance, depreciation, electricity / cooling, human resources,
amongst other additional costs.

A major advantage of using a private cluster consists, in most cases, in the
guaranteed and exclusive bandwidth available between the nodes of the architec-
ture. This point is important for applications that handle large volumes of data be-
cause they usually are 1.O. intensive, both in terms of file system and network-
oriented 1.O., especially when using a shared file system. In such cases, scalability
may be limited by network bottlenecks. Therefore, for such applications a good

connectivity infrastructure between the components is paramount.

5.11 Public Cloud Deployment

In cases where there is a floating demand or services, or when sudden
changes to the environment dictate the need for additional resources, the use of
public Cloud Computing platforms to launch applications developed using the
Split&Merge architecture becomes extremely interesting. The “pay-as-you-go”
business model provides a series of advantages: there are no fixed costs, no depre-
ciation, and it does not require a high initial investment. Furthermore, it is totally
elastic, i.e., it is possible to add and remove workers at any time, according to de-
mand. If there is no demand, all workers can be turned off, on the fly, by the mas-
ter node. Cost of operation is thus minimal. Even masters may be disconnected,
and re-connected, manually, which makes the total cost of operation in idle situa-
tions very low. In Figure 5.6 we illustrate the Split&Merge architecture when used
with public Cloud Environments. Because we opted for the Amazon Web Ser-
vices (AWS) for our experiments, the examples used throughout the text refer to
their services. The Split&Merge architecture, however, is general enough to ac-
commodate other choices of cloud service providers. Figure 5.6 illustrates the
proposed architecture, instantiated to Amazon cloud services.

To enable the use of Amazon Web Services to deploy applications using of
the proposed architecture, we first need to build an image (AMI) for EC2 instanc-
es, one that corresponds to one full installed and configured worker. This way we
ensure that new instances can be started in a state of readiness. We also need an
image for the master node.

For our storage needs, we use Amazon S3. In this case, redundancy and

availability concerns are transparent and delegated to the Cloud provider. We also

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

PUC-RIo - Certificacdo Digital N° 0721336/CA

55

use the Amazon Relational Database Service that implements a simple relational
database.

An important point to consider when making a deployment in a public
Cloud service is data delivery and recovery in the Cloud storage. It is relevant be-
cause, in addition to paying for data transfer, the network throughput is limited to

the bandwidth availability between the destination and origin, Internet links, in

t
v ' v v

general.

EC2 EC2 EC2 EC2
Worker Worker Worker Worker
Instance Instance Instance Instance

EC2
Master

EC2

Master
Instance

Instance

!

%

@ Amazon Relational

._‘ Database Service

%

Figure 5.6. Public cloud Split&Merge architecture (depicted using Amazon S3).

5.12 Conclusion

With increasing demand for processing of large volumes of information, the
need for systems able to meet this demand efficiently also increases, which pro-
motes the research on architectures and techniques to optimize use of available
resources. In addition, the emergence and evolution of services in the Cloud,
which allows computing resources to be used on demand, increases flexibility and
makes the processing of large datasets more accessible and scalable, especially
when we have seasonal demands.

There are now various techniques and paradigms aimed at the optimization
of computing resources usage, and the improvement of performance in infor-
mation processing. Among them, we highlight the Map-Reduce, however, we un-
derstood that for some situations it could be generalized and simplified. A specific

case that was presented was video compression, and, for this type of processing,

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

PUC-RIo - Certificacdo Digital N° 0721336/CA

56

we propose a more efficient architecture and that can be deployed both in private
clusters, as in the Cloud

It is important to note that the techniques used in the split and merge steps
are hotspots, i.e., the techniques can be exchanged and customized as needed.
That ensures flexibility, adaptation, extensibility and generality to proposed archi-
tecture. In the case of video processing, it is paramount to allow a choice among
codecs, containers, audio streams, and different splitting techniques. Let’s take the
cases where the input video has no temporal compression, MJPEG [SYMES
1998] for example. In such cases, the split operation can be performed at any vid-
eo frame. Conversely, cases when the input is a video with a temporal compres-
sion that uses p-frames only — H.264 [MPEG4-10 2003] Baseline Profile for ex-
ample — it is mandatory to identify the key-frames before splitting.

The generalization of this idea, lead to an architecture in which it is possible
to isolate, and modify the implementations for the split, process and merge steps.
The current implementation encompasses a great plethora of techniques that one
can choose from, ranging from video compression, to image processing, through
the fragmentation of their macro-blocks, to simple word counts. The choice of
technique can be done at scheduling time, the implementation embeds the tech-
nique of choice in a web service at run time.

We also pointed out that the deployment in a private cluster is only justified
in situations where there is a constant demand for processing. The alternative,
therefore, to situations where the demand is seasonal, is using a public cloud plat-
form, such as Amazon, where one pays for the exact amount of resources used.

We validated the proposed Split&Merge architecture and verified its behav-
ior of processing a large volume of information, both in the private cluster and
public cloud scenario, by instantiation of a distributed video compression applica-
tion. As a result we were able to dramatically reduce video encoding times. In
fact, we demonstrated that if we scale up the architecture to one worker per 250-
frame chunk, we can guarantee fixed encoding times, independently of the size of
the video input. This is extremely interesting for content producers, because it is

possible to establish entry independent SLAs for video encoding services.

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

