

3 An Architecture for Public and Open Submission
Systems in the Cloud

3.1 Problem Addressed

The Brazilian Big Brother reality show is broadcasted by free-to-air TV

network with an audience of more than eighty million people simultaneously. The

idea behind this reality show is to portray the life of 16 random anonymous people

while living together under the same roof, for a total period of three months. They

are isolated from the outside world but are continuously monitored by television

cameras. The housemates try to win a cash prize by avoiding periodic evictions

from the house.

 With technological advances the application process evolved from sending

a videotape by postal mail to uploading a digital video using the Internet. Due to

legal reasons, videos can not be hosted in websites such as YouTube or Vimeo.

Applicants are allowed to send videos in the video format of their choice. These

must be stored until the end of the selection process (three months). All the videos

need to be transcoded to a standard format, so that the TV show’s production team

is spared from the hassle of having to deal with a plethora of video formats and

different codecs.

 The system should be able to receive a very large number of videos during

the three-month application process. With the new digital process it is expected

that more than 100,000 videos; about 60% of the total submission is uploaded dur-

ing the last week before the deadline.

3.2 Research Relevance

Investment in infrastructure for high peak situations for a short period of

time is usually a waste of money and resources as most of the time the resources

will not be used. In what follows we will argue that Cloud Computing

[ARMBRUST 2009] technology provides the necessary requirements in which to

provide a viable solution. It provides the necessary infrastructure in which to de-

velop submission applications in which both storage and processing needs can be

dimensioned as needed. For this purpose we propose a general architecture for

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

 18

open, public submission systems – thus allowing up and down scalability rapidly

responding to external factors.

 The relevance of this demo is the use of Cloud Computing [VOGELS

2008] to solve a real world problem with a general-purpose architecture that could

be re-used in different situations. This architecture provides the necessary flexibil-

ity to be used in a wide range of applications [MILLER 2008] that deals with

large dataset processing, such as text corpus processing, audio recognition, and, as

described in this demo, for mass video transcoding, and, when deployed in a

Cloud platform, providing a dynamic and efficient resource usage, which might

be a critical factor to business success.

3.3 Uniqueness of Design and Implementation

In this section, we describe the proposed architecture for large, user-

generated content, file submission and processing systems using Cloud Compu-

ting. A few specific characteristics leverage the use of Cloud Computer architec-

ture for this project in particular:

• Uncertainty in how much storage and processing capacity will be needed;

• Resources will be needed during the application and selection processes

only. After this short period, all storage and computing resources would be

idle;

• Few but extreme high peak situations where the infrastructure will need to

scale up – 60% of the videos are expected to be sent in the last week;

The proposed architecture uses the cloud to store and process all this con-

tent, and to provide storage availability and scale resources as needed. All user

content is received through a website where video files can be uploaded without

restriction regarding the file extension, or video format/codec.

The demo is based on Amazon’s Cloud Computing platform and we make

use of the following services:

Amazon S3 – Amazon Simple Storage Service is cloud-based persistent storage

and operates independently from other Amazon services. It can be used to upload

data in the cloud and pull it back out.

Amazon EC2 – Amazon Elastic Compute Cloud is a web service [ZHANG 2004]

that provides resizable compute capacity in the cloud. It provides an API for pro-

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

 19

visioning, managing, and deprovisioning virtual servers inside the Amazon cloud.

It’s the heart of the cloud and allows remote deployment of virtual server with a

single web service call.

Amazon SQS – Amazon Simple Queue Service is a highly scalable, reliable,

hosted queue for storing messages as they travel between computers. It can be

used to move data between distributed components of an application that perform

different tasks, without losing messages or requiring the components to be always

available.

 As each submission is made, the video file is stored in Amazon S3 and a

message is written in SQS Queue with relevant information so that proper pro-

cessing of the job can be done. An EC2 instance is created to process the new

submission using the information contained in the SQS queue. The message con-

tains relevant information for an EC2 instance process a new job, consisting of

transcoding the user’s video to a standard format, bitrate and specific codec

MPEG4/h.264/AAC [MPEG4-10 2003]. The output video should be easily repro-

duced by any video player, e.g., Adobe’s Flash video player.

Figure 3.1. Architecture for the public submission system.

We detail the process in the following basic steps:

1. Video submitted by user is stored in Amazon S3;

2. Local server writes the message in the input queue of SQS detailing

the job to be done;

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

 20

3. Local server creates a new EC2 instance to process the job;

4. EC2 instance reads the message from the input queue;

5. Based on the data of the message the input video is retrieved from S3

and stored locally in the EC2 instance;

6. Video is transcoded by EC2 and the generated output is stored in S3;

7. EC2 instance writes a message in the output queue describing the

work performed;

8. The local server from SQS output queue reads confirmation of the

work completed.

 The local server illustrated in the picture is the web application responsible

for receiving the user-generated content.

 Messages use the basic structure format used by mail messages and HTTP

headers defined in RFC-822 [CROCKER 1982]. Input messages are as follows:

Figure 3.2. Example of data in the input message used by the application.

 Where Bucket and InputKey are the identifiers of the file in the S3 infra-

structure, and OriginalFileName is the source filename. Web services were im-

plemented using the python Boto library [GARNAAT 2006].

 The output message is defined as:

Figure 3.3. Example of data in the output message used by the application.

Where we also define the hostname of the EC2 instance that processed the

job and the timestamps when the job was received and when it finished.

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

 21

 The EC2 instance that is launched uses a specific Amazon Machine Image

(AMI) created with all the dependencies necessary to process the video. That in-

cludes an updated version of the Linux kernel, git to retrieve the latest source code

available for this framework, Python and the FFmpeg software, which does the

actual video transcoding.

 Once the AMI image is instantiated it reads a configuration file that keeps

parameters as:

• Command line and arguments – in this case the FFmpeg command;

• Maximum processing time before marking the job as dead;

• Input queue name to read SQS messages;

• Output queue name to store SQS messages;

• Maximum number of retries in case of error;

• Notification e-mail (for debugging purposes);

• Python class to be invoked for the processing.

 Due to the generalization of the configuration file, the framework can be

setup to a variety of other purposes not restricted to video transcoding.

3.4 Underlying Implementation Techniques and Used Technologies

In the complete system there are three different sub-systems:

• Web application for receiving video files from users in the Internet;

• Back-end system to manage the cloud infrastructure, creating EC2 in-

stances, writing/reading in SQS and storing files in S3;

• Video transcoding application of the received content – run in the cloud

instance;

 The web application was developed using PHP and is the only system with

an interface to the end user – the website itself.

 The back-end system was written in Python using Boto [GARNAAT 2006]

to consume Amazon’s web services to manage the cloud infrastructure. The use of

Amazon’s cloud platform allowed the architecture to be scalable and elastic to

fulfill the high peek demand as needed.

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

 22

 Finally, for the transcoding of the video we used FFmpeg, which is a com-

plete solution to convert audio and video [TOMAR 2006]. FFmpeg’s libavcodec

provides support to a great number of different video formats and codecs.

3.5 Description of Presentation

To begin the submission process the user needs to create an account in the

reality show’s [BBB 10] website.

Figure 3.4. Big Brother Brasil’s official web page.

 The user can either use an existing account or create a new one. The user

account is a requirement so that we can guarantee that the end user is not violating

the rights of the content – the user must accept an agreement claiming he is the

owner of the content.

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

 23

Figure 3.5. Sign-in and sign-up web page.

 Some meta-data information needs to be filled and the video chosen from

his local file system.

Figure 3.6. Content submission form web page.

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

 24

 Once the video is received by the system, the Cloud is taken into place.

Figure 3.7 shows the instances created in Amazon EC2 as the videos were being

received.

Figure 3.7. Amazon AWS management console screen.

 Once the transcoding process is completed the instances are shutdown to

avoid wasting computing resources from the EC2.

 If we were to calculate how much money would be spent to process

100,000 videos with an average size of 15MB, using the small EC2 instance we

can process a video in 50% real time, that would require 834 hours of CPU run-

ning.

Storage 1.5 TB U$0.15 / GB U$ 225.00

Transfer 1.5 GB U$0.14 / GB U$ 210.00

Messages 200,000
U$0.01 / 10,000

requests
U$ 0.20

Computer Resources 834 hours U$0.085 / hour U$ 70.90

Total U$ 506.10

Table 3.1. Cost analysis of transcoding solution in the Cloud for 100,000 videos.

 A total of U$506.10 for transcoding and storing 100,000 videos – that’s

not even a penny for each video.

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

 25

 Adding to that the fact that no up-front investment and deployment of in-

frastructure was needed, neither a precise estimation on the expected load of the

system we can conclude that Cloud Computing is an excellent solution in this

specific scenario. It is important to remark that economical viability of the pro-

posed architecture is such that enables it to quickly deploy at great reduction of

the TCO, typical of Cloud Computing implementation [WALKER 2009].

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

