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3  
A Framework for Modeling and Simulation in Serious 
Games 

3.1  
Introduction 

This chapter first discusses the desirable characteristics of a framework for 

modeling the dynamics of serious games, considering the requirements 

enumerated in section 1.3. Very briefly, the framework must allow: 

 

1. The integration of different dynamic models, expressed in a variety 

of formalisms, avoiding the creation of dependency relations among 

them as much as possible. This is important to achieve modularity, 

allow flexible scenario composition, and facilitate reuse of 

simulation models. 

2. The inclusion of dynamic models into a game architecture with 

minimum performance impact. 

3. The communication with external asynchronous entities during game 

play. This communication may affect the outcome of the game 

simulation. 

 

The discussion on the requirements led to the conception of the process-

oriented simulation (POS) paradigm for modeling and simulation, whose 

characteristics are described in the form of design decisions, listed in section 3.2. 

Then, this chapter introduces a novel modeling and simulation formalism, called 

Process-DEVS, which is described in detail in section 3.3. 

 

3.2  
A Discussion on the Framework Requirements 

This section provides a more detailed discussion on the requirements, which 

helps justify the framework design decisions.  
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The discussion is carried out at a considerably high level of abstraction. 

Some decisions are sometimes based on subjective arguments and they are not 

intended to suit all possible serious games. However, they do intend to produce a 

highly general and extensible architecture that will suffice for most cases. This 

discussion also aims at helping detect if the proposed framework is actually the 

best option for implementing a particular game. 

 

3.2.1  
On the Nature of Time 

The requirement for realism in the context of serious games raises the 

central question of how to model dynamic systems so that they can be simulated 

during game play. With respect to how they model state change in time, dynamic 

models can be categorized, at the highest abstraction level, as discrete or 

continuous. In discrete models, changes are modeled by state transition functions, 

which, at a given point in time, are invoked to determine the next state of the 

system, taking the previous one as input. An example of a discrete model is a 

banking account which, when receiving a deposit, has its value immediately 

updated. In continuous models, the state of the systems changes continuously in 

time. At each time instant, the model defines a change rate for each numeric 

variable that composes the state of the system. An example of a continuous model 

is the level of water in a tank, which changes continuously as a function of the 

incoming and outgoing water flows. 

Discrete models can be further categorized into discrete event models and 

discrete time models. The difference is that discrete event models operate in a 

continuous time base, while in discrete time models time may only assume values 

from a discrete set. In discrete event models, every state change is called an event, 

which always happens at one particular time instant. The bank account example 

fits in this category. Discrete time models consist of a stepwise mode of execution 

where the state transition functions are invoked at each time step. Cellular 

automata are an example of such kind of model. 

Since the state changes in discrete time models are modeled by state 

transition functions that happen at specific points in time, discrete time models 
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can be seen as a specialization of the more general discrete event model class. 

Figure 3.1 illustrates the major classes of models. 

 

 

Figure 3.1 – Continuous, Discrete Event, Discrete Time and Quantized Process Models 

 

Continuous models are usually described as systems of differential 

equations. Although these differential equation systems (DES) represent 

continuous processes, they may be simplified into discrete models either by 

discretization of time or discretization of the variables domains. While the first 

leads to a discrete time model, the later leads to a discrete event model, called a 

quantized model (Zeigler et al. 2000), which is also illustrated in Figure 3.1. 

Continuous models provide potentially unbounded precision with respect to 

time. Ideally, DES simulators should be able to solve their models analytically. 

However, the great majority of the available simulators use numerical methods 

because of performance and scalability issues. Instead of solving models, these 

simulators employ numerical methods to run their models, generating an artificial 

history of the system and collecting observations to be analyzed (Banks et al. 

2005). All that suggests that, even if a continuous formalism is used for describing 

the dynamic models, its underlying simulation machine should be of a discrete 

nature. 
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Although some traditional DES formalisms such as Systems Dynamics 

(Forrester 1972) and Bond Graphs (Paynter 1961) have been popularly used in 

areas such as physics, business, economics, and social modeling, several problems 

remain with these continuous approaches (Michel et al. 2009): (1) Only a global 

perspective is possible, which hurts modularity; (2) It is hardly possible to 

consider micro-level interactions, as in multi-agent systems; (3) It is not possible 

to model individual actions; (4) Integrating non-quantitative aspects is hard. 

Even though continuous and discrete models are distinct in their nature, it is 

not always necessary to make an exclusive choice between them. The creation of 

hybrid models (Cellier 1986; Praehofer 1991; Deshpande et al. 1997; Lee and 

Zheng 2005) made it possible to simulate both kinds simultaneously. However, as 

Zeigler et al. (2000) points out, this incurs in performance loss. What is 

commonly seen in practice is the use of discrete formalisms to model continuous 

systems (Banks et al. 2005), easing the modeling and simulation tasks at the cost 

of some precision. 

Considering the two main classes of discrete models, namely discrete time 

models and discrete event models, the discrete time class is clearly more specific 

and restricted. On the other hand, it is more intuitive and easier to modeling 

(Zeigler et al. 2000). However, there are two problems with the discrete time 

approach: (1) The granularity of time is fixed, which makes it difficult to integrate 

processes modeled with different time granularities (Banks et al. 2005); (2) In 

some cases where the state of most simulation elements is changed sparsely in 

time, the performance of a discrete time model can be rather poor, as compared to 

a corresponding discrete event model. Zeigler et al. (2000) illustrates well this 

problem in the domain of cellular automata. 

Given this process modeling background, it is now possible to justify the 

first decision behind the framework for modeling and simulation in serious 

games: 

 

Decision 1: The class of discrete event models will provide the basis on 

which to build all dynamic elements of the game. 
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This decision is grounded on the following arguments: 

 

• Pure continuous or hybrid models were found to be more 

performance-costly. 

• There are approaches to build platforms on which it is possible to 

integrate multiple models defined in any discrete subformalism in a 

scalable and parallelizable way (Praehofer et al. 1993; Vangheluwe 

2000). This is much more difficult to be accomplished with 

continuous or hybrid models. 

• Differential equation models can still be used in pure discrete 

simulation through discretization. The infinite precision of 

continuous systems may not be so important since the error can be 

controlled by increasing the granularity of value discretization. 

• During the simulation of discrete models, it is easy to make the state 

always ready to be rendered for the players. In continuous or hybrid 

models, in order to render the state at time t, it is necessary to solve 

the equations for t, making rendering less immediate. One option 

would be to determine t in advance, but it was shown in section 2.1.1 

that this is not possible for uncoupled game loops. Therefore, 

rendering performance will be hurt in that case. 

 

3.2.2  
On the Nature of Simulation Elements 

The types of elements required for modeling and simulation in a serious 

game may vary in some aspects. The complexity of their behavior may range from 

a simple inanimate physical object to sophisticated artificial intelligence (AI) 

algorithms capable of simulating human reasoning in some context. Another 

aspect is the role of each game element. Simulation elements may play distinct 

roles such as parts of the game environment, proactive actors or natural 

phenomena. 

We focus the discussion on two main classes of simulation approaches 

based on discrete-event time representation: object-oriented simulation (OOS) and 
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agent-oriented simulation (AOS). Uhrmacher and Swartout (2003) provide a good 

introduction to the main concepts of these approaches. 

In OOS, a simulation is typically defined by a network of objects, which 

have hidden internal states and interact with each other by sending and receiving 

messages. The term object is not consensual in the simulation field. Some specific 

frameworks give their simulation components different names such as models 

(Eker et al. 2003) or systems (Zeigler et al. 2000). 

Although the notion of object in OOS is distinct from that in object-oriented 

programming languages, they share some common principles. In object-oriented 

programming languages, objects are software entities with an internal state and a 

set of operations, through which they can interact with each other. The idea of 

object orientation is to increase modularity relative to plain procedural 

programming. Ideally software pieces with similar concerns should be brought 

together and organized in a single software entity. OOS follows the same principle 

by modeling simulation elements as objects with a definite boundary and a hidden 

internal state. Typically, OOS approaches also provide the notions of classes and 

inheritance, which are important properties to achieve code reuse. 

Almost all of the main OOS formalisms support composition. Objects may 

be composed of other objects that are kept internal to it. This is the ground for 

multi-level modeling in object-oriented models. The DEVS formalism, as 

described in section 2.2.1, is a good representative of these object-oriented 

simulation concepts. 

On the other main group of simulation approaches, agents are defined as 

autonomous entities which also have a hidden internal state. They are usually 

embedded in a multi-agent system which provides an environment that they can 

observe through sensors and change through effectors. They also communicate 

with each other by exchanging messages. These basic characteristics are present 

in most agent-oriented formalisms. More specialized characteristics of agents are 

not entirely consistent among researchers. However, a considerable number of 

them analyze the behavior of agents in mental terms such as beliefs, goals and 

desires. Therefore, the notion of an agent intuitively communicates the idea of 

something more complex than an object. 

With respect to their acting, agents are classified as deliberative, purely 

reactive or both. Purely reactive agents base their present actions only on stimuli 
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received in a recent past. Agent deliberation is the act of predicting the future with 

the objective of planning its actions. Acting accordingly to plans based on an 

internal model of the world is what distinguishes between deliberative and 

reactive agents. Since objects typically intend to reproduce reactive rather than 

deliberative behavior by means of their internal states and transitions, the notion 

of deliberative agents seems more aggregative to the discussion on simulation 

elements for games. Therefore, in the context of this discussion, the term agent 

will denote an entity characterized by cognitive properties such as intentions, 

beliefs, desires and plans that are responsible for its goal-oriented rational 

behavior. 

While OOS is aimed at modularity and reuse, AOS intends to improve 

interoperability by focusing on the interaction between agents and with a dynamic 

environment. It was not by chance that objects have grown as a standard way to 

model knowledge about dynamic systems and agents are usually used for the 

investigation of distributed AI phenomena such as cooperation and emergent 

behavior. Both objectives are useful for serious games. Therefore, a framework 

capable of incorporating the main benefits of both approaches would be 

appreciated. 

The two kinds of dynamic systems are illustrated in Figure 3.2. In both 

approaches, entities have a definite boundary, an internal state and interact with 

others through message exchanging mechanisms. The difference is that agent-

oriented approaches tend to work with relatively more specialized state and 

message sets. This suggests the view of agents as specialized objects (Uhrmacher 

1997). Indeed, objects represent individual entities with some degree of autonomy 

who exchange messages when events are triggered. As an example, in the DEVS 

formalism, introduced in section 2.2.1, an agent can be modeled as an atomic 

DEVS model perceiving and effecting the environment through its input and 

output ports. It can react to external perturbations using its external transition 

function and also proactively with its internal transition function. 
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Figure 3.2 – Object- and Agent-Oriented Simulation 

 

Several toolkits have been implemented using the AOS approach on top of 

OOS, such as JAMES II (Himmelspach and Uhrmacher 2007), SeSAm (Klügl 

2009), RePast (North et al. 2006) and Swarm (Minar et al. 1996). Those toolkits 

also benefit from the greater maturity of OOS engines, since OOS is considerably 

older than AOS in the simulation field. Particularly, pure AOS toolkits tend to use 

equidistant time steps for all simulation elements, neglecting the fact that complex 

realistic simulations often use different time scales in different sub-elements of it 

(Troitzsch 2009).  The toolkits mentioned above overcome this simplicity by 

inheriting the discrete-event time representation of their underlying OOS 

approaches. 

By embedding agents into object-oriented simulation systems, it is possible 

to overcome some typical restrictions of multi-agent testbeds by combining agents 

and other types of objects in the same simulation. This flexibility helps integrating 

existing dynamic models within multi-agent systems, thereby producing a more 

realistic simulation (Uhrmacher 1997). These observations lead to the following 

decision: 

 

Decision 2: The proposed framework will adopt the basic characteristics of 

object-oriented simulation. Its simulation elements will keep their internal states 

hidden and they will be organized as a network. The simulation elements will 

interact with adjacent elements by sending events to each other. Additional 

libraries will provide support for more specialized elements, such as agents. 
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The following arguments further justify the decision: 

 

• If agents are modeled as objects, then the simulation platform will 

impose fewer restrictions on the nature of its elements. 

• OOS models exhibit greater modularity than AOS models and 

thereby facilitate reuse. Additionally, OOS models make it easier to 

integrate other dynamic modeling formalisms, such as State Charts, 

Petri Nets and Cellular Automata (Himmelspach and Uhrmacher 

2007). 

• It is still possible to provide agent-oriented or other higher level 

formalisms by creating libraries on top of the basic OOS layer. 

 

The adoption of these basic characteristics does not necessarily mean that 

the proposed framework is a special case of OOS. Indeed, non-OOS 

characteristics will still be considered in what follows. Therefore, it is still useful 

to further analyze other characteristics of AOS. 

Unlike AOS, OOS lacks the notion of a global environment. Each object has 

its own environment defined by its input and output couplings. This is not an issue 

specific to OOS, but to all kinds of systems aiming at modularity and code reuse 

(Uhrmacher 1997). However, the notion of environment is present in most gaming 

frameworks. This happens naturally because one of the main features of games is 

precisely the simulation of the interaction of actors that takes place in some 

environment. 

In OOS, common environments, such as spatial structures, can be modeled 

as a specialized object or a composition of objects. Models such as Timed Cell-

DEVS (Wainer and Giambiasi 2001) have been tested in the domain of cellular 

spaces. Indeed, if agents are modeled as specialized objects, it seems natural that 

their environment is also modeled as specialized objects. This is a good example 

of how object-orientation strives for uniformity, treating communication and 

interaction with the environment indistinctly as discrete events, as in Figure 3.2. 

Although keeping high levels of modularization, modeling the environment 

as a regular object has a potentially substantial drawback. Consider a large set of 

agents that need to sense a large volume of environmental data with some 

frequency. Since the internal states of all objects are hidden, the agents cannot 
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read all that data directly. The environment has to copy and transmit all necessary 

data to each sensing agent via messages, which may be unacceptable, depending 

on the number of agents and the frequency they need to sense the environment. In 

fact, this was one of the reasons for the rise of AOS, when OOS was already a 

well established modeling paradigm.  

In the context of serious games, one may have to sacrifice modularity in 

favor of better performance, which in turn implies direct access to the game 

environment state. This observation leads to the following decision: 

 

Decision 3: The environment is modeled as a simulation element whose 

internal state will be directly queried by other simulation elements. In all other 

aspects, it will be treated as a regular simulation element. Since the environment 

is an exception to encapsulation, it will not be provided in additional libraries, 

like specialized agents. Instead it will be part of the framework specification. 

 

The following argument further justifies the decision: 

 

• If the environment is treated as a regular object, the performance 

overhead will be prohibitive, especially in the case of multi-agent 

systems.  

 

This decision does not mean that the environment will be modeled 

monolithically, as a single data structure. Modularity can still be achieved through 

composition of smaller data structures. This form of composition will depend on 

the kind of data structure of a particular environment implementation. Therefore, 

it is not included in the framework, which is on a more general level of 

abstraction. 

In OOS, each object is responsible both for keeping its own state and 

defining its own behavior. They interact directly by input-output coupling 

relations, which are usually organized in a fixed structure. However, in computer 

games, as commonly happens in AOS, interaction between game elements is often 

determined by spatial proximity. That interaction may be direct or indirect, 

through the environment. If two elements are sensing and acting on the same 

piece of environment, they will have established an indirect causal relation among 
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their actions. That environment in most cases represents a physical space where 

these causality links happen by proximity of the physical location of the game 

elements. This justifies the high importance given to collision detection in the area 

of gaming and, more generally, to spatial algorithms and spatial indexing in AOS. 

There are three main reasons why most games use the centralized physical 

environment approach. First, as already mentioned in section 2.1, it is important to 

group all rendered game elements in a specialized data structure to improve 

rendering performance (Sowizral 2000; Metello et al. 2007). Second, it makes it 

more natural to model actions that depend on spatial relationships. Lastly, object-

oriented approaches usually offer little support for dynamic changes to the 

coupling structure of its objects, which is necessary in the case of moving objects 

that interact by proximity, as in computer games. 

All these arguments suggest that the environment object should keep not 

only the spatial structure of the game but also the physical representation of its 

elements. This approach differs from traditional OOS by splitting the physical and 

behavioral states of game elements into two different objects. Physical states 

should be part of the environment and be deprived of their proactivity. Elements 

representing behaviors should be responsible for animating their physical 

counterparts. These elements shall be called processes. 

 

Decision 4: There will be two types of simulation elements: environment 

and processes. The space and physical state of simulation elements will be 

implemented as parts of the environment, which is deprived of any proactive 

behavior. Any kind of behavior will be implemented in processes, which are 

responsible for providing behavior to all physical elements in the simulation. 

 

The main arguments for this decision are the following: 

 

• It allows the grouping of all physical game elements in a specialized 

and possibly spatially indexed data structure, which helps improve 

the performance of the rendering algorithms as well as of the spatial 

algorithms. 
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• Depriving the environment of proactivity does not impose any 

restrictions to the supported simulation models. If a particular model, 

for some reason, considers an environment that evolves in time, that 

environment should be divided in two parts: one physical state and 

one process that will interact with the physical state and implement 

its behavior. 

• Both agents and other types of simulation objects can be modeled in 

this framework by splitting them into physical and behavioral parts. 

The physical part is modeled as part of the environment and the 

behavioral part is modeled as a process. 

 

3.2.3   
On the Interaction between Elements 

Decision 4 stated that a simulation is composed of an environment and a set 

of processes. Therefore, the possible types of interaction between elements are 

inter-process interaction and interaction between a process and the environment. 

Considering the case of inter-process interaction, decision 2 defined that the 

simulation elements interact with each other as in OOS, by sending events to each 

other. This form of interaction allows the modular design of complex processes as 

a composition of interacting sub-processes as, for example, in the coupled DEVS 

formalism, described in section 2.2.1. The same form of interaction could also be 

used to implement the communication between cognitive agents, where the 

processes that model the behavior of the agents need to exchange messages. 

The case of process-environment interaction needs further discussion 

because processes are allowed to access the internal state of the environment, as 

stated in decision 3. 

Since the framework provides the notion of a global environment, the 

traditional modularity of OOS approaches becomes less characterized. In OOS, 

the global state is typically distributed across the objects, which have dependency 

relations only with their immediate neighbors in the coupling structure. Therefore, 

some special care is necessary to design the interaction between the environment 

and other elements in order to keep a reasonable degree of modularity and reuse. 
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In order to reuse a process in different simulations with different 

environments, this process must perceive those different environments in the same 

way, with the same set of possible states. One simple approach to accomplish this 

is the notion of environment views, which is similar to the concept of interface in 

object-oriented programming languages. An interface basically defines a type of 

object with a definite set of possible states. An object that implements that 

interface can be perceived as an object of that type. The same notion applies to 

environment views. Different environments providing the same view can be 

perceived in the same way. That helps reducing dependency relations, improving 

modularity and reuse of simulation models. 

Up to this point, the discussion covered the topic of environment perception, 

concluding that external elements should have read access to the internal state of 

the environment. This raises the question of whether external elements should also 

have write access, which in turn inevitably leads to the problem of concurrency. 

This problem also arises in AOS and, more generally, in the broader field of 

multi-agent systems (Michel et al 2009). Practically all OOS formalisms provide 

some mechanism to deal with it. It has even led to the creation of new formalisms, 

such as Parallel DEVS (Zeigler et al. 2000).  

Since our approach adopts the main characteristics of OOS, the 

straightforward solution is to adopt a well-established concurrency mechanism 

from some OOS formalism. In this case, any simulation element that intends to 

change the environment state has to do it by sending events to it and not by direct 

writing. Modeling actions that alter the state of the environment as regular OOS 

events certainly makes the simulation framework more uniform, in the sense that 

state transitions are always propagated in the same way throughout the simulation 

elements, including the environment. 

One might argue that this approach could lead to performance loss due to 

the fact that a process is forced to make a copy of the information it sends to the 

environment, in order to send it as an event. This is the same case as the 

performance problem discussed in decision 3, only in the opposite direction. 

However, we believe that this will not be performance-costly in most cases 

because of the semantics of sending information to the environment. A process 

sends an event to the environment when it acts on it, causing changes. It is 

reasonable to assume that a process will know exactly what it wants to change 
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when it decides to act on the environment. Therefore, it can send only the 

necessary information to perform the change. The problem that led to decision 3 is 

that, when the information is flowing in the opposite direction, the environment 

hardly knows precisely which information the process will really need. Therefore, 

in that case, it is better to let the process query the environment state. 

 

Decision 5: Processes interact with each other by exchanging events, as in 

pure OOS. Processes also affect the environment by sending events to it. 

However, to observe the environment state, processes will directly access an 

environment view. The environment will provide a set of views, each one defined 

by a set of perceivable states. 

 

The following arguments further support this decision: 

 

• The propagation of state transitions in the network of simulation 

elements is uniformly done by events, as in pure OOS. Hence, many 

formal properties of OOS are incorporated, such as concurrency 

control. 

• Accessing the internal state of the environment indirectly via 

environment views increases modularity. The same set of processes 

can be reused in different simulations with different environments, 

as long as the environments provide the necessary views. 

 

3.2.4   
The Process–Oriented Simulation Paradigm 

The decisions taken in sections 3.2.2 and 3.2.3 lead to a process-oriented 

simulation (POS) paradigm, which is a hybrid paradigm with notions adopted 

both from OOS and AOS. 

If we consider only the operational characteristics of the simulation 

elements, the POS paradigm is very close to OOS, with the exception of the 

environment read access method. However, this exception can be abstracted as if 

each read access query were composed of two regular events, one for the query 

and one for the answer. However, it should not be implemented that way for the 
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performance reasons discussed in section 3.2.2. This abstraction gives POS the 

possibility of inheriting many interesting formal properties from OOS, such as 

universality and closure under coupling/composition (Zeigler et al. 2000). 

 

 

Figure 3.3 – Process-Oriented Simulation 

 

If we consider the semantics of the simulation elements, the POS paradigm 

inherits the notion of environment from AOS. However, there is a conceptual 

difference between both. In AOS, the boundaries of the simulation elements are 

usually defined by the boundaries of entities in the real system they attempt to 

simulate. For example, in the popular case of the simulation of an insect colony, 

there is usually an agent for each insect. Likewise, in social simulations, there are 

agents representing people or institutions. In POS, the simulation elements are 

defined first by their nature – physical or behavior – then they are further divided 

according to their complexity in order to achieve modularity. For example, in an 

insect colony, there may be a single process responsible for implementing the 

behavior of all insects in the simulation. Likewise, in a social simulation, the 

behavior of a person could be divided into different parts, such as production, 

consumption and leisure, each one implemented by a different process. 

These characteristics of POS aim clearly to isolate the physical 

representation of whatever is being simulated, while keeping traditional 

simulation properties. That makes POS, just like AOS, suitable for simulations 

with highly specialized forms of environment representation, such as those 

mentioned in section 2.1 and GIS-based spatial structures and databases (Gimblett 

2002; Gonçalves et al. 2004). 
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3.2.5   
Process Creation and Destruction 

Predicting in advance what is going to happen in a simulation is usually 

hard. In fact, that is one of the reasons simulations exist. On top of that, 

simulations may involve sources of non-determinism such as coin flips or human 

interactions. That raises a relevant question on whether processes should be 

allowed to be created and destroyed during the execution of a simulation. If all 

simulation activity could be easily predicted in advance, all necessary processes 

could be instantiated at the beginning of the simulation and it would not be 

necessary to create or destroy them at execution time. 

 If we take for a fact that no process can be created at execution time, a 

reasonably complex simulation with many different possible outcomes could 

potentially produce one (or both) of the following situations: 

 

• The appearance of complex processes, which can act in a number of 

different ways, according to the evolution path of the simulation. 

This would hurt modularity. 

 

• A large number of smaller processes instantiated at the beginning of 

the simulation to handle every possible scenario that arises during 

execution. This potentially leads to huge inefficiencies, because it is 

not known in advance which processes will actually play some role 

in the simulation. 

 

Allowing processes to be created at execution time makes it possible to 

avoid these situations. In fact, AOS-based toolkits typically allow the creation and 

destruction of agents at execution time. In opposition, many traditional OOS 

approaches, such as the basic DEVS, do not consider this kind of structural 

change during simulation execution. This limitation has been felt in a number of 

research works and has lead to extensions to some OOS formalisms to support 

variable object structures (Uhrmacher 2001). 

In the context of discrete-event simulations, the creation of a process may be 

considered as an event. In fact, it can be abstracted as an instantaneous state 
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transition, where the process leaves the state of non-existence and assumes the 

initial state of its lifetime. Likewise, its destruction may also happen 

instantaneously as another event. This observation suggests a simple mechanism 

for process creation and destruction. Instead of sending events to other processes 

or to the environment, a process can output a special type of event causing the 

creation or destruction of another process. By analogy with execution threads, one 

can say that a process can fork other processes. In fact, processes can be seen as 

threads in a multithreaded programming environment. If we continue the analogy, 

a process that has forked another process is referred to as its parent process. 

Likewise, the forked process is called the child process. 

The hierarchical structure of processes induced by the process forking 

model provides the additional benefit of allowing abstraction levels when 

reasoning about processes. For example, a workflow may be represented as a 

single parent process which forks a child process for each action that is executed 

in the workflow. Hence, the whole workflow may be seen as one single process or 

as a set of actions according to the desired abstraction level. 

 

Decision 6: Processes may fork and destroy other processes by outputting a 

special type of event, which is part of the framework definition. The creation and 

destruction of processes happen instantaneously with respect to simulation time, 

just like regular events. 

 

The following arguments further support this decision: 

 

• Allowing a dynamic simulation structure helps keeping the 

simulation models modular and simple. 

• Parental processes hierarchies allow reasoning about and designing 

processes in multiple abstraction levels. 

  

3.3  
The Process-DEVS Formalism for Process Modeling 

The result of the discussion in section 3.2 was an abstract framework to 

model the dynamics of serious games. This section describes an instantiation of 
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the framework, called Process-DEVS, which extends the DEVS formalism 

(Zeigler 1972) to work with the process-oriented simulation paradigm. DEVS was 

chosen as basis for our framework because of its formal properties, such as 

universality and closure under composition (Zeigler et al. 2000).  

 

3.3.1   
Formal Model 

We start the description of the formal model with the definition of an 

abstract simulation element or, simply, an element. Then, we define two classes of 

elements, process and environment. Finally, we introduce two specializations of 

processes, input processes and output processes, designed for interacting with 

external asynchronous entities. 

An operational semantics of these concepts is described in section 3.3.2. 

 

 

Figure 3.4 – The Hierarchy of Simulation Elements in Process-DEVS 

 

Processes and environments have very similar behaviors. Therefore, 

defining how they are simulated in terms of the abstract notion of simulation 

elements leads to a more concise way of describing the simulation mechanisms. 

 

Simulation Element 
 

A simulation element is defined by a tuple of the form (an intuitive 

explanation of the components follows the formal definition): 

 

〈S, V, X, Y, E, P, δint, δext, λ, ρ, ta〉 

where 

S is the set of possible internal states 
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V = {(Vi, µi) | i=1, … n} is a set of views that provide external read 

access to the internal state of this element, where 

Vi is the set of view states of the i
th

 view 

µi: S → Vi is the view mapping function of the i
th

 view 

X is the set of acceptable input events 

Y is the set of possible output events 

E is a set of environment view states 

P is the set of elements that this element can create and destroy 

δint: S × E → S ∪ {finished} is the internal transition function 

δext: Q × E × (X ∪ {finish}) → S ∪ {finished}  

is the external transition function, where 

Q = {(s, e) | s ∈ S, 0 ≤ e ≤ ta(s)} is the total state set 

e is the time elapsed since last transition 

λ: S → 2
Y
 is the output function 

ρ: S → 2
P
 × 2

P
 is the process structure transition function 

ta: S → [0, ∞] is the time advance function 

 

The terms S, X, Y, δint, δext, λ and ta have basically the same meaning as in 

the basic DEVS formalism, introduced in section 2.2.1. The set S defines all 

possible internal states an element may assume. The sets X and Y define all 

possible input and output events of the element, at any time in the simulation. 

These three sets have the exact same meaning as in DEVS. 

The functions δint and δext define all state transitions of the element. They are 

basically the same functions defined in the basic DEVS formalism, with some 

minor differences. 

The function δint is the internal transition function. It is responsible for 

defining the proactive behavior of the element. This function is invoked by the 

simulator after ta(s) units of time have passed since the last state transition, where 

s is the internal state that resulted in that last transition. The output of this function 

defines the next state of the element. The special output value finished means that 

this will be the last state transition of this element, which will cease to exist in the 

simulation from that time instant on. In order to compute the state transition, δint is 
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allowed to read the current state of the element, as well as the environment state, 

according to how this element perceives the environment. 

The function δext is the external transition function. It is responsible for 

defining the reactive behavior of the element. This function is invoked by the 

simulator whenever the element receives an event from another element. The 

output of this function is handled exactly in the same way as in δint. However, its 

input is quite different. It is allowed to read the event that the element is receiving. 

If it receives the special event finish, it means that this will be the last state 

transition of this element, which will cease to exist in the simulation. This last 

transition function call allows the process to finish in a friendly way, releasing 

resources and sending events to inform other processes. The external transition 

function is also allowed to access the environment state, the current element state 

and the time elapsed since the last transition, which is not necessary in δint because 

it can be computed by ta(s). 

The terms λ and ta have the exact same meaning as in DEVS. λ(s) defines 

which events are output by the element after any state transition is performed. 

ta(s) defines the time delay the simulator will wait to call δint again, if no events 

are received until then. 

The terms V and E define the way an element may access the internal state 

of another element. The set V defines the views that this element provides, 

through which other elements can access a particular view of its internal state. 

Note that the internal state is not accessed directly. Instead, external elements are 

only allowed to access view states of the views defined by V. Those view states 

are determined by the view mapping functions applied to the current internal state. 

The set E defines the environment view states in which the element can perceive 

its environment. The formalism only allows an element to access the state of 

exactly one other element. This follows because there will be only one 

environment in a simulation, and this is the only element that will have its internal 

state accessed through its views. 

Finally, the terms P and ρ define the mechanisms for dynamic creation and 

destruction of elements. The set P contains all elements that this element can 

create and destroy. The function ρ outputs two sets of elements, one for the 
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elements that are created and one for those that are destroyed, whenever a state 

transition has been performed. 

As defined here, simulation elements do not have input and output ports, as 

in the DEVS with ports formalism (Zeigler et al. 2000), described in section 2.2.1. 

This is merely for notational simplicity, since this decision is unimportant at a 

conceptual level. It is understood here that the main benefit of ports for games is 

to improve performance by allowing a more efficient event routing method. Since 

performance is extremely important for games, the model should be easily 

extendable to embrace port support, even though it is not relevant to the 

discussion on an abstract level. Ports could be easily added to the framework with 

minor changes in this notation: simply by representing inputs and outputs by pairs 

(port, event), exactly as in DEVS with ports. 

 

Environment 
 

An environment is an element 〈S, V, X, Y, E, P, δint, δext, λ, ρ, ta〉 that 

satisfies the following constraints: 

(1) E = {nil} 

(2) P = ∅ ˄ (∀s∈S)(ρ(s) = (∅,∅)) 

(3) (∀s∈S) (∀e1∈ℜ+
) (∀e2∈ℜ+

) (∀x∈(X ∪ {finish})) 

    (δext((s,e1),nil,x) = δext((s,e2),nil,x)) 

(4) (∀s∈S) (∀e∈ℜ+
) (∀x∈(X ∪ {finish})) 

    (δint(s,nil) ≠ finished ˄ δext((s,e),nil,x) ≠ finished) 

(5) (∀s ∈ S)(ta(s) ∈ {0, ∞}) 

Constraint (1) just states that the environment does not directly access the 

internal state of any other element. Constraint (2) states that the environment does 

not alter the simulation structure. Constraint (3) states that state transitions do not 

depend on the elapsed time since the last transition. Constraint (4) guarantees that 

the environment never finishes. Constraint (5) deprives the environment of 

proactive behavior, which means that its state does not change with the flow of 

time, if no events are received. The ta function is allowed to output the value 0 in 

order to allow transient states (Zeigler et al. 2000). Transient states are states that 

do not have duration. When reached, they are immediately changed again. They 

are commonly used as intermediate states in a state transition to produce different 
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outputs according to the previous state of a given system. Function ta is also 

allowed to output the special value ∞, meaning that its internal transition function 

will not be invoked at least until the next received event, when the external 

transition function will be invoked and ta will be evaluated again. 

Even though the environment does not act proactively, it is still allowed to 

output events in response to state changes, which are always caused by the arrival 

of another event. The purpose of these output events is to alert processes about 

state changes in the environment, which is analogous to the observer pattern in 

object-oriented design patterns (Gamma et al. 1995). If we deprived the 

environment of the ability to send events to processes, any process that needs to 

respond to changes in the environment would have to check it with a minimum 

frequency, which would lead to inefficiencies. 

For ease of notation, the environment is defined by the simplified structure 

E = 〈S, V, X, Y, δint, δext, λ, ta〉, subject to constraints (3) and (5), representing the 

element 〈S, V, X, Y, {nil}, ∅, δint, δext, λ, ρ, ta〉, where  

(∀s∈S)(ρ(s) = (∅,∅)). 

 
Processes 

 

A process is a simulation element 〈S, V, X, Y, E, P, δint, δext, λ, ρ, ta〉 such 

that V = ∅. This means that the internal state of a process is not directly accessible 

by any other element. For ease of notation, a process is defined by the structure 〈S, 

X, Y, E, P, δint, δext, λ, ρ, ta〉, representing the simulation element 〈S, ∅, X, Y, E, P, 

δint, δext, λ, ρ, ta〉. 

Intuitively, a process represents an activity carried out in a simulation. 

Processes may be created and destroyed dynamically during a simulation. In order 

to reason about processes in time, it is possible to determine their start times and 

finish times. Process creation and destruction are usually defined by the function 

ρ, which is invoked right after every state transition, and before the simulation 

time is advanced any further. Therefore, the start and finish times of processes is 

determined by the time instants of the state transitions that triggered their creation 

and destruction. There is still another way to destroy a process, which is by 

suicide. Whenever a state transition leads to the special state finished, the finish 

time is naturally defined by the time instant of that transition. Having well-defined 
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start and finish times allows some interesting analytical properties such as, for 

example, the representation of process execution histories in a very similar way as 

in Sowa’s discrete event process model (Sowa 2000). 

Whenever a process creates another process, it is said that the parent 

process, which is the creator process, has forked a child process, which is the 

created process. Process forking, besides providing simulations with structural 

dynamism, also provides abstraction level capabilities to process modeling. The 

capability of process forking is considered a form of abstraction and modularity of 

process modeling in the sense that a process may delegate some of its sub-tasks to 

its children. Hence, modularity and abstraction is achieved in a different way, as 

compared with the coupled DEVS formalism (Zeigler et al. 2000), described in 

section 2.2.1. 

 

I/O Processes 
 

Input processes and output processes are processes dedicated to manage the 

communication with asynchronous entities external to the simulation. This 

communication is modeled as exchange of events between a process and an 

external entity. Hence, any process can communicate with some external entity in 

the same way it communicates with other processes. The input and output 

processes act as one-way channels. They receive events from the sender side and 

store those events in their internal state until the receiving side requests the events 

to be flushed. Therefore, I/O processes act as streams of events. 

In order to represent event streams, it is necessary to use lists, instead of 

sets. The following notation is used to represent lists: S* is the set of all possible 

lists formed with elements of S; [e1, e2, … , en] represents the list formed by the 

elements e1, e2, … , en, in that order; [] represents the empty list; [head | tail] 

represents a list that has the element head as its first element, followed by all the 

elements in the list tail, in the same order. For example,  

[e1 | [e2, e3]] represents the list [e1, e2, e3]. 

An input process receives events from external entities, where the events are 

taken from a set I, and sends them to other processes. An input process over I is 

formally defined as pin = 〈S, X, Y, E, P, δint, δext, λ, ρ, ta〉, where 

S = I* × (I ∪ {nil}) 
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X = I 

Y = I 

E = {nil} 

P = ∅ 

δint((list, out), nil)  = (list, nil)  if list = [] 

 = ([e1, … ,en-1], en)  if list = [e1, … ,en] ≠ [] 

δext(((list, out), e), nil, x) = ([x | list], nil) if x ≠ finish 

 = (list, nil)  if x = finish 

λ((list, out)) = {out}    if out ≠ nil 

 = ∅    if out = nil 

ρ(s) = (∅,∅) 

ta((list, out)) = ∞    if list = [] 

 = 0,    if list ≠ [] 

 

When an event is received by the input process, it is stored in the internal 

state. As soon as possible, the input process outputs the events stored in its 

internal state to other processes in the same way as any other simulation element. 

An output process receives events from other processes, taken from a set O 

of events, and sends them to external entities. An output process over O is 

formally defined as pout = 〈S, X, Y, E, P, δint, δext, λ, ρ, ta〉, where 

S = O* 

X = O 

Y = ∅ 

E = {nil} 

P = ∅ 

δint(list, nil) = list 

δext((list, e), nil, x)  = [x | list]    if x ≠ finish 

 = list    if x = finish 

λ(s) = ∅ 

ρ(s) = (∅,∅) 

ta(s) = ∞ 
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The output processes store the events they receive in a list. This list is used 

to generate a stream of events for entities which are external to the simulation. 

This will be formally defined in section 3.3.2. 

 

Simulation 
 

Environments and processes are parts of the broader notion of simulation. A 

simulation is basically a container of simulation elements with some additional 

information. Besides the environment and a set of processes, it also defines the 

event coupling structure between these elements and a view-process coupling 

map. The event coupling structure defines the recipients of events generated by 

any element, while the view-process coupling map defines which environment 

view is accessible to each process. 

In the formal definition of a simulation, the operator “·” (dot) is used to 

access a property of a given structure. Therefore, “S·p” should be interpreted as 

“property p of structure S”. 

A simulation is formally defined as 

 

SIM = 〈SE, s0, P0, cs, vmap, τ〉 

 

where 

SE is the set of all simulation elements, which must include a single 

environment element. We define the following subsets of SE and single out 

the environment in SE: 

Pin is the set of input processes in SE 

Pout is the set of output processes in SE 

ε = 〈S, V, X, Y, δint, δext, λ, ta〉 is the (only) environment in SE 

s0: SE → U
SEe

Se
∈

· , where s0(elem) ∈ elem·S, is the initial state map 

P0 is the initial set of running processes, which must be a subset of the set of 

processes in SE 

cs: SE × SE → {true, false} is the event coupling structure 

vmap: SE – {ε} → ε·V is the view-process coupling map 
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τ: 2
FC

 – {∅} → FC is the tiebreak function, where FC = {itf_call(e) | e∈SE} 

∪ {etf_call(e, evt) | e∈SE ˄ evt∈(e·X ∪ {finish})} is the set of all 

possible transition function calls, which is explained below 

 

During the lifetime of a simulation run, a number of elements are 

simultaneously simulated. An element can be either a process or the environment. 

The special predicate isEnvironment(e) will be used when it is necessary to 

differentiate between both types. For any given element e, isEnvironment(e) 

implies that the constraints of the environment definition apply to e. Likewise, 

¬isEnvironment(e) implies that the constraints of the process definition apply to e. 

The set SE contains, besides the environment, all processes that can be 

executed in a simulation run. It is possible that some of the processes in SE are 

never started, depending on the course of the simulation run. Function s0 maps 

each element into its initial internal state. The set P0 defines the processes that are 

started exactly at the simulation start time. Each simulation is allowed to have 

only one environment ε.  

When an element outputs an event, the coupling structure cs determines 

which elements are receiving it. cs(Esend, Ereceive) = true means that the element 

Ereceive should receive events from the element Esend. The view-process coupling 

map serves a similar purpose with respect to the capabilities of processes to query 

the internal state of the environment. vmap(p) returns the environment view that the 

process p is allowed to access. 

The tiebreak function τ defines the order in which concurrent events are 

processed. State changes in simulation elements are caused either by the receiving 

of an event from another element or by the expiration of the time returned by the 

time advance function (ta) of the element in its last state transition. In the first 

case, the external transition function (δext) of the element is called, while in the 

second case the internal transition function (δint) is called. In both cases, the call 

to the transition function returns the next state of the element. The set FC in the 

definition of the tiebreak function τ contains all possible calls to any transition 

function of any simulation element, where itf_call(e) and etf_call(e, evt) represent, 

respectively, calls to the internal and external transition functions of e with their 
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respective parameters. Given any set of transition function calls, the tiebreak 

function defines a total ordering over it. 

Let SIM = 〈SE, s0, P0, cs, vmap, τ〉 be a simulation. Recall that  

Pin is the set of input processes in SE 

Pout is the set of output processes in SE 

ε = 〈S, V, X, Y, δint, δext, λ, ta〉 is the (only) environment in SE 

The simulation SIM must obey the following constraints: 

(1) (P0 ⊆ SE) 

(2) (∀e ∈ SE)(e·P ⊆ (SE – {e, ε})) 

(3) isEnvironment(ε) 

(4) (∀e ∈ SE)(isEnvironment(e) ⇒ e = ε) 

(5) (∀efrom ∈ SE) (∀eto ∈ SE)(cs(efrom, eto) = true ⇒ efrom·Y ⊆ eto·X) 

(6) (∀pin ∈ Pin)(∀p ∈ SE)(cs(p, pin) = false) 

(7) (∀pout ∈ Pout)(∀p ∈ SE)(cs(pout, p) = false) 

(8) (∀p ∈ SE)(vmap(p) = (Vi, µi) ⇒ Vi ⊆ p·E) 

(9) (∀S ∈ 2
FC

)(∀c ∈ FC)(τ(S) = c) ⇒  

(c∈S ˄ (∀S′ ∈ 2
FC

)((S′ ≠ ∅ ˄ S′ ⊂ S) ⇒ τ(S′) = c)) 

 

Constraint (1) assures that the initial processes are all simulation elements of 

SE (the I/O processes and the environment are simulation elements in SE, by 

definition). Constraint (2) assures that all dynamically-created elements are 

processes of this simulation. Constraints (3) and (4) determine that there must be 

only one environment in a simulation. Constraint (5) assures that any element that 

receives an event from another element will know how to handle it. Constraints 

(6) and (7) state that no process can send events to input processes or receive 

events from output processes. The I/O processes are one-way event streams. 

Constraint (8) assures that all processes will receive an understandable state when 

they query their environment view. Constraint (9) assures that the tiebreak 

function τ represents, in fact, a total ordering over the set of all possible transition 

function calls. 

The basic working model of a simulation is illustrated in Figure 3.5. Process 

P1 has two child processes P11 and P12. All of them, including the parent P1 can 

send events to the environment and to other processes. Processes Pout, Pin1 and Pin2 
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are I/O processes. They are responsible for the communication between human 

players and the rest of the simulation. Through environment views V1 and V2, the 

processes P11 and P12 observe the state of the environment. 

 

 

Figure 3.5. The Simulation Model 

 

The two environment views act as interfaces, providing a mechanism for 

processes to get information about the internal state of the environment at any 

time. The idea is to allow processes to access the environment through simplified 

views. Hence, modularity can be increased because processes need not understand 

the full environment state. The same process can work on any environment that 

provides the view used by that process. 

 

3.3.2  
Operational Semantics 

This section presents the operational semantics of simulations in Process-

DEVS. Before the introduction of the model, it is necessary to define some basic 

notation that will be used throughout the rest of this thesis. 

As in the previous section, the operator “·” (dot) is used to represent a 

property of a given object. Therefore, “O·p” should be interpreted as “property p 

of object O”. Lists are represented in the form [e1, e2, … , en], where [] is the 

empty list. 
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The operator ← is used in expressions of the form f = g ← (d,r), where f  

and g are functions with the same domain and range sets and f(x) is equal to g(x) 

for all the values of x, with the exception of the value d, for which f(d) = r. 

The abstract notion of simulation element will help simplify the definition of 

the operational semantics because most of the time processes and the environment 

are treated in the same way. Whenever it is necessary to distinguish them, the 

special predicate isEnvironment(e) will be used, with the same semantics as in the 

definition of simulation, in section 3.3.1. 

Each element has a definite start time and a definite finish time. No element 

can start before the simulation run starts and no element continues to execute after 

it has finished. The environment is always in execution during the simulation run 

and it does not make sense for it to have start and finish times different from the 

simulation start and finish times. 

Let SIM = 〈SE, s0, P0, cs, vmap, τ〉 be a simulation.  

The execution of SIM is determined by a sequence of simulation states in 

time. The foundations of discrete-event based simulation require that all changes 

to the simulation state be instantaneous. A simulation state change is caused either 

by the creation, destruction, or state transition of any of its simulation elements.  

A simulation execution state of SIM is defined as 

 

SS = 〈t, Eactive, Estate, Elast_t, EQ〉 

where 

t is the current simulation time 

Eactive ⊆ SE is the set of active simulation elements 

Estate: SIM·SE → U
SEe SIM·

e·S
∈

  ∪  {finished} 

where Estate(e) ∈ (e·S ∪ {finished}) is a function that maps each  

element e∈SIM·SE into the current internal state of that element 

Elast_t: SIM·SE → ℜ+
 is the last transition time map 

EQ is the event queue, which stores the next scheduled events 
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The initial state of a simulation SIM is  

〈0, P0, s0, lt0, eq0〉 

where 

(∀e∈SE)(lt0(e) = 0) 

eq0 = {(tinit, itf_call(e)) | e∈P0} 

 

The initial simulation time is 0. It is increased as the simulation advances. 

Each simulation state ss stores the current simulation time t. Naturally, a 

simulation run does not produce a different simulation state for each possible time 

instant. Instead, the state ss may jump directly to another state ss′, with current 

time t+∆t, provided that no event is scheduled to happen in that time interval. The 

simulation state also includes the current execution state of all simulation 

elements, given by Eactive, Estate and Elast_t. The set Eactive contains all elements that 

are currently active. The functions Estate and Elast_t give the internal state and the 

timestamp of the last state transition of each element. Finally, the simulation state 

keeps an event queue, which stores all events currently scheduled to happen. 

The event queue is the main component of most discrete-event simulators. 

In our case, it contains scheduled calls to the transition functions of simulation 

elements. Each element of the queue assumes one of the two forms  

(ts, itf_call(e)), for internal transition function calls, or (ts, etf_call(e, evt)), for 

external transition function calls, where ts is the time instant of the scheduled call, 

e is the simulation element and evt is the event that is passed as parameter in the 

case of external transition function calls. 

All transition function calls are serialized with respect to time. If two calls 

are scheduled to happen at the same time, the tiebreak function of the simulation 

defines the order in which they are called. Given an event queue EQ, the next 

transition function to be called is given by the next_call operation: 

 

(1) next_call(EQ) = (∞, nil)   if EQ = ∅ 

= (t, c)   if EQ ≠ ∅ 

where (t, c)∈EQ ˄ (∀(t′, c′)∈EQ)(t′ ≥ t) ˄ (t, c) = τ({(t, c″)∈EQ}) 

This ensures that the next call always has the least timestamp in EQ. If there 

is more than one call with that timestamp, the tiebreak function defines 

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA



3 A Framework for Modeling and Simulation in Serious Games 73 

which one is the next call. If EQ is empty, it returns a nil call with an 

infinite timestamp. 

 

The next operators are defined in order to provide means of manipulating 

the event queue. Each operator returns another event queue as the result of the 

operation. 

 

(2) remove_calls(EQ, e) = {(ts, c)∈EQ | c·e ≠ e} 

This operator removes all transition functions calls of simulation element e. 

 

(3) schedule_itf_call(EQ, e, ts) =  

(EQ – {(t, c)∈EQ | c = itf_call(e)}) ∪ {(ts, itf_call(e))} 

This operator schedules an internal transition function call for simulation 

element e at ts, replacing all other calls to that function in EQ. 

 

(4) send_events(EQ, Events, Eto, ts) =  

EQ ∪ {(ts, etf_call(eto, evt)) | eto∈Eto ˄ evt∈Events} 

This operator schedules calls to external transition functions generated by 

the act of sending a set of events to a set of simulation elements. That means 

scheduling calls to all receiving elements, one for each event. 

 

(5) destroy(EQ, e, ts) =  

send_events(remove_calls(EQ, e), {finish}, {e}, ts) 

This operator performs the changes in EQ when a simulation element is to 

be destroyed. It removes all calls to e and sends a finish event to it. This is 

done so that, when receiving the finish event, the process has a chance of 

releasing resources and informing others of its destruction. 

 

(6) create_destroy_elements(EQ, Ecreate, Edestroy, ts) =  

schedule_itf_call( … schedule_itf_call(DTQ, ec1, ts) … , ecn, ts) 

where 

 DTQ = destroy( … destroy(destroy(EQ, ed1, ts), ed2, ts) … , edm, ts) 

 Ecreate = {ec1, … , ecn} 
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 Edestroy = {ed1, … , edm} 

This operator performs the changes in EQ relative to the creation of the 

elements in Ecreate and the destruction of those in Edestroy. When creating an 

element, it is only necessary to schedule an initial internal transition 

function call at the time the element is created. 

 

(7) schedule_transition_events(EQ, e, snext, ts, Events, Eto, Ecreate, Edestroy) = 

schedule_itf_call(send_events(create_destroy_elements(EQ, Ecreate, Edestroy, 

ts), Events, Eto, ts), e, ts + e·ta(snext)) 

This operator performs all changes in EQ generated by a state transition of a 

simulation element. First, it creates and destroys the elements defined by 

Ecreate and Edestroy. Then, it propagates the events in the set Events to the 

processes in Eto. Finally, it schedules the next internal transition function of 

e. 

 

Now that the operations on the event queue are defined, we can define the 

operators to manipulate the simulation state. The element_state_transition 

operator defines how the simulation state is changed in the case of a state 

transition of an element. 

 

(8) If snext ≠ finished: 

element_state_transition(SS, e, snext, ts) = 

  〈ts, SS·Eactive ∪ Ecreate, SS·Estate ← (e, snext), SS·Elast_t ← (e, ts),  

  schedule_transition_events(SS·EQ, e, snext, ts, Events,  

  {pto∈SIM·SE | SIM·cs(p, pto) = true} ∩ SS·Eactive, Ecreate, Edestroy)〉 

where 

 Events = e·λ(snext) 

 (Ecreate, Edestroy) = e·ρ(snext) 

This operator produces a new simulation state, after a state transition of 

element e to the state snext, at the time instant ts. The set of elements created 

by the transition is added to the set of currently active elements. However, 

the set of destroyed elements is not subtracted yet, since they still need to 

receive and treat the special event finish, before they are deactivated. The 
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new state snext is assigned as the new internal state of e and ts becomes the 

timestamp of its last transition. Finally, it is only necessary to update the 

event queue with the effects of this state change by invoking the proper 

operator. 

 

(9) If snext = finished:  

element_state_transition(SS, e, snext, ts) = 

  〈ts, SS·Eactive – {e}, SS·Estate ← (e, finished), SS·Elast_t ← (e, ts),  

  remove_calls(EQ, e)〉 

This operator computes the new simulation state when an element performs 

a transition to the special state finished. This operation is relatively simple 

and consists basically of removing all execution information about the 

element e. 

 

The following operators perform transition function calls on elements of the 

simulation:  

 

(10) remove_call(SS, call) = 〈SS·t, SS·Eactive, SS·Estate, SS·Elast_t, SS·EQ – {call}〉 

This simply removes a transition function call from the event queue EQ. 

 

(11) process_call(SS, ts, itf_call(e)) =  

       element_state_transition(remove_call(SS, (ts, itf_call(e))), e, snext, ts) 

where 

 snext = e·δint(SS·Estate(e), view) 

 view = SIM·vmap(e)·µ(SS·Estate(SIM·ε)) 

This operator executes an internal transition function call on element e, at 

time ts. It first removes the scheduled call from the event queue. Then, it 

computes the state change caused by the function call. 

 

(12) If evt ≠ finish:  

process_call(SS, ts, etf_call(e, evt)) = 

element_state_transition(remove_call(SS, (ts, etf_call(e, evt))), e, snext, ts) 

where 
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 snext = e·δext((SS·Estate(e), ts – SS·Elast_t(e)), view, evt) 

 view = SIM·vmap(e)·µ(SS·Estate(SIM·ε)) 

This operator executes an external transition function call on element e, at 

time ts. 

 

(13) If evt = finish: 

process_call(SS, ts, etf_call(e, evt)) = 

  element_state_transition(element_state_transition(remove_call(SS, 

  (ts, etf_call(e, finish))), e, snext, ts), e, finished, ts) 

where 

 snext = e·δext((SS·Estate(e), ts – SS·Elast_t(e)), view, finish) 

 view = SIM·vmap(e)·µ(SS·Estate(SIM·ε)) 

This operator executes an external transition function call on element e, at 

time ts, when the special event finish is received by e. 

 

The basic procedure for computing how the simulation state changes with 

time consists basically of retrieving transition function calls from the event queue 

and executing them in the right order. To determine the simulation state at 

simulation time t, it is necessary to execute all state transitions scheduled to 

happen between the current time and t. The advance function provides a recursive 

procedure for advancing the simulation state. 

 

(14) advance(SS, ∆t) =  

〈SS·t + ∆t, SS·Eactive, SS·Estate, SS·Elast_t, SS·EQ〉, if nc·ts > SS·t + ∆t 

advance(process_call(SS, nc), ∆t – (nc·ts – SS·t)), if nc·ts ≤ SS·t + ∆t 

where 

 nc = next_call(SS·EQ) 

 

The simulation, as defined so far, does not interact with any external 

entities. The advance operator is responsible for updating the simulation execution 

state considering solely the internal dynamics of the simulation. In order to make 

the simulation interactive, it is also necessary to describe how the simulation state 
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changes when receiving input, as well as when generating output to some external 

entity. 

All input and output are handled by the input processes and output 

processes. They are part of the simulation definition. Each input process receives 

events from an external entity and stores them in its internal state. As soon as 

possible, it transmits those events to their recipients. The output processes work in 

the opposite direction. They receive events during the simulation advance and 

store them in their internal states. When the simulator decides to flush the output 

events, the internal states of the output processes are read and cleared. The 

simulation inputs and outputs are represented as lists of the form  

[(e1, p1), (e2, p2), ... , (en, pn)] 

where ei is an event and pi is its corresponding I/O process, as defined in section 

3.3.1. In the case of processing an input, the simulation state is changed as defined 

by the flush_input operator: 

 

(15) flush_input(SS, Input) =  

process_call(…process_call(SS, SS·t, etf_call(p1,e1))…, SS·t, etf_call(pn,en)) 

where 

 Input = [(e1, p1), ... , (en, pn)] 

 {p1, ... , pn} ⊆ (SIM·Pin ∩ SS·Eactive) 

This operator basically generates one external function call on the 

corresponding input process for each received event. 

 

In the case of processing the output generated by the simulation, it is 

necessary to read the information stored in the output processes and clear them 

afterwards, so that the same information is not read again in the next output: 

 

(16) read_output(SS) = CONCAT(SS·Estate(p1), SS·Estate(p2), … , SS·Estate(pn)) 

where 

 CONCAT(l1, l2, … , ln) is the concatenation of lists l1, l2, … , ln 

 {p1, p2, ... , pn} = SIM·Pout ∩ SS·Eactive 

This operator reads all information stored in the output processes. Note that 

the state of an output process is a list of events. Therefore, the elements 

from SS·Estate(p) can be concatenated directly. 
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(17) clear_output_processes(SS) =  

  element_state_transition( … element_state_transition(SS, p1,  

  [], SS·t) … , pn, [], SS·t) 

where 

 {p1, p2, ... , pn} = SIM·Pout ∩ SS·Eactive 

This operator clears all information stored in the output processes by forcing 

a transition to the ∅ state. 

 

The flush_io function consolidates all the input and output operations. It 

receives the current simulation state and an input set, and outputs the next 

simulation state and the output set. 

 

(18) flush_io(SS, Input) =  

(flush_input(clear_output_processes(SS), Input), read_output(SS)) 

 

The advance function describes how the simulation state is changed in time 

considering only the internal simulation mechanisms. The flush_io function 

describes how it changes when the communication with external entities is 

synchronized, without changing the simulation time. A full simulation run with 

external communication is described by a sequence of interleaved calls to these 

two functions, depending on when the external messages were exchanged. There 

are several ways to define how to interleave simulation time advance with 

external communication synchronization. This definition of the Process-DEVS 

operational semantics does not restrict implementations in that sense. Some 

examples of how to implement different interleaving mechanisms are discussed in 

section 5.5. 

 

3.4  
Summary 

In order to design a framework for modeling and simulation in serious 

games, section 3.2 discussed the identified requirements. That discussion led to 

the conception of the process-oriented simulation (POS) paradigm, which helped 

fulfilling the following requirements: 
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• Integration of different formalisms: Modeling processes in a similar 

way as objects in OOS and using the discrete-event paradigm for 

modeling changes in time has been shown to be a good way of 

integrating different simulation formalisms (Praehofer et al. 1993; 

Vangheluwe 2000; Himmelspach and Uhrmacher 2007). 

 

• Game-like user experience: Modeling an environment with 

environment views allows one to represent the internals of the 

environment in specialized data structures, such as those used by 

game engines for increasing realism in audiovisual media, as 

discussed in section 2.1. 

 

• Modularity: The separation between state and behavior imposed by 

POS, the use of environment views and the fact that processes are 

modeled as objects in OOS contribute to increase the modularity and 

composition capabilities of the dynamic models in serious games. 

 

Even though the requirements originated from the domain of serious games 

that simulate real situations, the decisions do not contain any specific semantics of 

this domain. Therefore, it is quite possible that the decisions that resulted from the 

discussion also apply to other simulation domains, especially those that require 

highly specialized data structures for the environment and those that involve 

processes of different nature interfering with each other. 

The abstract framework was instantiated as the Process-DEVS modeling 

and simulation formalism, formally presented in section 3.3.1 as an extension of 

the original DEVS [Zeigler 2000]. Finally, section 3.3.2 formally defined the 

operational semantics of Process-DEVS. 
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