
3 A Framework for Modeling and Simulation in Serious Games 43

3
A Framework for Modeling and Simulation in Serious
Games

3.1
Introduction

This chapter first discusses the desirable characteristics of a framework for

modeling the dynamics of serious games, considering the requirements

enumerated in section 1.3. Very briefly, the framework must allow:

1. The integration of different dynamic models, expressed in a variety

of formalisms, avoiding the creation of dependency relations among

them as much as possible. This is important to achieve modularity,

allow flexible scenario composition, and facilitate reuse of

simulation models.

2. The inclusion of dynamic models into a game architecture with

minimum performance impact.

3. The communication with external asynchronous entities during game

play. This communication may affect the outcome of the game

simulation.

The discussion on the requirements led to the conception of the process-

oriented simulation (POS) paradigm for modeling and simulation, whose

characteristics are described in the form of design decisions, listed in section 3.2.

Then, this chapter introduces a novel modeling and simulation formalism, called

Process-DEVS, which is described in detail in section 3.3.

3.2
A Discussion on the Framework Requirements

This section provides a more detailed discussion on the requirements, which

helps justify the framework design decisions.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 44

The discussion is carried out at a considerably high level of abstraction.

Some decisions are sometimes based on subjective arguments and they are not

intended to suit all possible serious games. However, they do intend to produce a

highly general and extensible architecture that will suffice for most cases. This

discussion also aims at helping detect if the proposed framework is actually the

best option for implementing a particular game.

3.2.1
On the Nature of Time

The requirement for realism in the context of serious games raises the

central question of how to model dynamic systems so that they can be simulated

during game play. With respect to how they model state change in time, dynamic

models can be categorized, at the highest abstraction level, as discrete or

continuous. In discrete models, changes are modeled by state transition functions,

which, at a given point in time, are invoked to determine the next state of the

system, taking the previous one as input. An example of a discrete model is a

banking account which, when receiving a deposit, has its value immediately

updated. In continuous models, the state of the systems changes continuously in

time. At each time instant, the model defines a change rate for each numeric

variable that composes the state of the system. An example of a continuous model

is the level of water in a tank, which changes continuously as a function of the

incoming and outgoing water flows.

Discrete models can be further categorized into discrete event models and

discrete time models. The difference is that discrete event models operate in a

continuous time base, while in discrete time models time may only assume values

from a discrete set. In discrete event models, every state change is called an event,

which always happens at one particular time instant. The bank account example

fits in this category. Discrete time models consist of a stepwise mode of execution

where the state transition functions are invoked at each time step. Cellular

automata are an example of such kind of model.

Since the state changes in discrete time models are modeled by state

transition functions that happen at specific points in time, discrete time models

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 45

can be seen as a specialization of the more general discrete event model class.

Figure 3.1 illustrates the major classes of models.

Figure 3.1 – Continuous, Discrete Event, Discrete Time and Quantized Process Models

Continuous models are usually described as systems of differential

equations. Although these differential equation systems (DES) represent

continuous processes, they may be simplified into discrete models either by

discretization of time or discretization of the variables domains. While the first

leads to a discrete time model, the later leads to a discrete event model, called a

quantized model (Zeigler et al. 2000), which is also illustrated in Figure 3.1.

Continuous models provide potentially unbounded precision with respect to

time. Ideally, DES simulators should be able to solve their models analytically.

However, the great majority of the available simulators use numerical methods

because of performance and scalability issues. Instead of solving models, these

simulators employ numerical methods to run their models, generating an artificial

history of the system and collecting observations to be analyzed (Banks et al.

2005). All that suggests that, even if a continuous formalism is used for describing

the dynamic models, its underlying simulation machine should be of a discrete

nature.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 46

Although some traditional DES formalisms such as Systems Dynamics

(Forrester 1972) and Bond Graphs (Paynter 1961) have been popularly used in

areas such as physics, business, economics, and social modeling, several problems

remain with these continuous approaches (Michel et al. 2009): (1) Only a global

perspective is possible, which hurts modularity; (2) It is hardly possible to

consider micro-level interactions, as in multi-agent systems; (3) It is not possible

to model individual actions; (4) Integrating non-quantitative aspects is hard.

Even though continuous and discrete models are distinct in their nature, it is

not always necessary to make an exclusive choice between them. The creation of

hybrid models (Cellier 1986; Praehofer 1991; Deshpande et al. 1997; Lee and

Zheng 2005) made it possible to simulate both kinds simultaneously. However, as

Zeigler et al. (2000) points out, this incurs in performance loss. What is

commonly seen in practice is the use of discrete formalisms to model continuous

systems (Banks et al. 2005), easing the modeling and simulation tasks at the cost

of some precision.

Considering the two main classes of discrete models, namely discrete time

models and discrete event models, the discrete time class is clearly more specific

and restricted. On the other hand, it is more intuitive and easier to modeling

(Zeigler et al. 2000). However, there are two problems with the discrete time

approach: (1) The granularity of time is fixed, which makes it difficult to integrate

processes modeled with different time granularities (Banks et al. 2005); (2) In

some cases where the state of most simulation elements is changed sparsely in

time, the performance of a discrete time model can be rather poor, as compared to

a corresponding discrete event model. Zeigler et al. (2000) illustrates well this

problem in the domain of cellular automata.

Given this process modeling background, it is now possible to justify the

first decision behind the framework for modeling and simulation in serious

games:

Decision 1: The class of discrete event models will provide the basis on

which to build all dynamic elements of the game.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 47

This decision is grounded on the following arguments:

• Pure continuous or hybrid models were found to be more

performance-costly.

• There are approaches to build platforms on which it is possible to

integrate multiple models defined in any discrete subformalism in a

scalable and parallelizable way (Praehofer et al. 1993; Vangheluwe

2000). This is much more difficult to be accomplished with

continuous or hybrid models.

• Differential equation models can still be used in pure discrete

simulation through discretization. The infinite precision of

continuous systems may not be so important since the error can be

controlled by increasing the granularity of value discretization.

• During the simulation of discrete models, it is easy to make the state

always ready to be rendered for the players. In continuous or hybrid

models, in order to render the state at time t, it is necessary to solve

the equations for t, making rendering less immediate. One option

would be to determine t in advance, but it was shown in section 2.1.1

that this is not possible for uncoupled game loops. Therefore,

rendering performance will be hurt in that case.

3.2.2
On the Nature of Simulation Elements

The types of elements required for modeling and simulation in a serious

game may vary in some aspects. The complexity of their behavior may range from

a simple inanimate physical object to sophisticated artificial intelligence (AI)

algorithms capable of simulating human reasoning in some context. Another

aspect is the role of each game element. Simulation elements may play distinct

roles such as parts of the game environment, proactive actors or natural

phenomena.

We focus the discussion on two main classes of simulation approaches

based on discrete-event time representation: object-oriented simulation (OOS) and

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 48

agent-oriented simulation (AOS). Uhrmacher and Swartout (2003) provide a good

introduction to the main concepts of these approaches.

In OOS, a simulation is typically defined by a network of objects, which

have hidden internal states and interact with each other by sending and receiving

messages. The term object is not consensual in the simulation field. Some specific

frameworks give their simulation components different names such as models

(Eker et al. 2003) or systems (Zeigler et al. 2000).

Although the notion of object in OOS is distinct from that in object-oriented

programming languages, they share some common principles. In object-oriented

programming languages, objects are software entities with an internal state and a

set of operations, through which they can interact with each other. The idea of

object orientation is to increase modularity relative to plain procedural

programming. Ideally software pieces with similar concerns should be brought

together and organized in a single software entity. OOS follows the same principle

by modeling simulation elements as objects with a definite boundary and a hidden

internal state. Typically, OOS approaches also provide the notions of classes and

inheritance, which are important properties to achieve code reuse.

Almost all of the main OOS formalisms support composition. Objects may

be composed of other objects that are kept internal to it. This is the ground for

multi-level modeling in object-oriented models. The DEVS formalism, as

described in section 2.2.1, is a good representative of these object-oriented

simulation concepts.

On the other main group of simulation approaches, agents are defined as

autonomous entities which also have a hidden internal state. They are usually

embedded in a multi-agent system which provides an environment that they can

observe through sensors and change through effectors. They also communicate

with each other by exchanging messages. These basic characteristics are present

in most agent-oriented formalisms. More specialized characteristics of agents are

not entirely consistent among researchers. However, a considerable number of

them analyze the behavior of agents in mental terms such as beliefs, goals and

desires. Therefore, the notion of an agent intuitively communicates the idea of

something more complex than an object.

With respect to their acting, agents are classified as deliberative, purely

reactive or both. Purely reactive agents base their present actions only on stimuli

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 49

received in a recent past. Agent deliberation is the act of predicting the future with

the objective of planning its actions. Acting accordingly to plans based on an

internal model of the world is what distinguishes between deliberative and

reactive agents. Since objects typically intend to reproduce reactive rather than

deliberative behavior by means of their internal states and transitions, the notion

of deliberative agents seems more aggregative to the discussion on simulation

elements for games. Therefore, in the context of this discussion, the term agent

will denote an entity characterized by cognitive properties such as intentions,

beliefs, desires and plans that are responsible for its goal-oriented rational

behavior.

While OOS is aimed at modularity and reuse, AOS intends to improve

interoperability by focusing on the interaction between agents and with a dynamic

environment. It was not by chance that objects have grown as a standard way to

model knowledge about dynamic systems and agents are usually used for the

investigation of distributed AI phenomena such as cooperation and emergent

behavior. Both objectives are useful for serious games. Therefore, a framework

capable of incorporating the main benefits of both approaches would be

appreciated.

The two kinds of dynamic systems are illustrated in Figure 3.2. In both

approaches, entities have a definite boundary, an internal state and interact with

others through message exchanging mechanisms. The difference is that agent-

oriented approaches tend to work with relatively more specialized state and

message sets. This suggests the view of agents as specialized objects (Uhrmacher

1997). Indeed, objects represent individual entities with some degree of autonomy

who exchange messages when events are triggered. As an example, in the DEVS

formalism, introduced in section 2.2.1, an agent can be modeled as an atomic

DEVS model perceiving and effecting the environment through its input and

output ports. It can react to external perturbations using its external transition

function and also proactively with its internal transition function.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 50

Figure 3.2 – Object- and Agent-Oriented Simulation

Several toolkits have been implemented using the AOS approach on top of

OOS, such as JAMES II (Himmelspach and Uhrmacher 2007), SeSAm (Klügl

2009), RePast (North et al. 2006) and Swarm (Minar et al. 1996). Those toolkits

also benefit from the greater maturity of OOS engines, since OOS is considerably

older than AOS in the simulation field. Particularly, pure AOS toolkits tend to use

equidistant time steps for all simulation elements, neglecting the fact that complex

realistic simulations often use different time scales in different sub-elements of it

(Troitzsch 2009). The toolkits mentioned above overcome this simplicity by

inheriting the discrete-event time representation of their underlying OOS

approaches.

By embedding agents into object-oriented simulation systems, it is possible

to overcome some typical restrictions of multi-agent testbeds by combining agents

and other types of objects in the same simulation. This flexibility helps integrating

existing dynamic models within multi-agent systems, thereby producing a more

realistic simulation (Uhrmacher 1997). These observations lead to the following

decision:

Decision 2: The proposed framework will adopt the basic characteristics of

object-oriented simulation. Its simulation elements will keep their internal states

hidden and they will be organized as a network. The simulation elements will

interact with adjacent elements by sending events to each other. Additional

libraries will provide support for more specialized elements, such as agents.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 51

The following arguments further justify the decision:

• If agents are modeled as objects, then the simulation platform will

impose fewer restrictions on the nature of its elements.

• OOS models exhibit greater modularity than AOS models and

thereby facilitate reuse. Additionally, OOS models make it easier to

integrate other dynamic modeling formalisms, such as State Charts,

Petri Nets and Cellular Automata (Himmelspach and Uhrmacher

2007).

• It is still possible to provide agent-oriented or other higher level

formalisms by creating libraries on top of the basic OOS layer.

The adoption of these basic characteristics does not necessarily mean that

the proposed framework is a special case of OOS. Indeed, non-OOS

characteristics will still be considered in what follows. Therefore, it is still useful

to further analyze other characteristics of AOS.

Unlike AOS, OOS lacks the notion of a global environment. Each object has

its own environment defined by its input and output couplings. This is not an issue

specific to OOS, but to all kinds of systems aiming at modularity and code reuse

(Uhrmacher 1997). However, the notion of environment is present in most gaming

frameworks. This happens naturally because one of the main features of games is

precisely the simulation of the interaction of actors that takes place in some

environment.

In OOS, common environments, such as spatial structures, can be modeled

as a specialized object or a composition of objects. Models such as Timed Cell-

DEVS (Wainer and Giambiasi 2001) have been tested in the domain of cellular

spaces. Indeed, if agents are modeled as specialized objects, it seems natural that

their environment is also modeled as specialized objects. This is a good example

of how object-orientation strives for uniformity, treating communication and

interaction with the environment indistinctly as discrete events, as in Figure 3.2.

Although keeping high levels of modularization, modeling the environment

as a regular object has a potentially substantial drawback. Consider a large set of

agents that need to sense a large volume of environmental data with some

frequency. Since the internal states of all objects are hidden, the agents cannot

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 52

read all that data directly. The environment has to copy and transmit all necessary

data to each sensing agent via messages, which may be unacceptable, depending

on the number of agents and the frequency they need to sense the environment. In

fact, this was one of the reasons for the rise of AOS, when OOS was already a

well established modeling paradigm.

In the context of serious games, one may have to sacrifice modularity in

favor of better performance, which in turn implies direct access to the game

environment state. This observation leads to the following decision:

Decision 3: The environment is modeled as a simulation element whose

internal state will be directly queried by other simulation elements. In all other

aspects, it will be treated as a regular simulation element. Since the environment

is an exception to encapsulation, it will not be provided in additional libraries,

like specialized agents. Instead it will be part of the framework specification.

The following argument further justifies the decision:

• If the environment is treated as a regular object, the performance

overhead will be prohibitive, especially in the case of multi-agent

systems.

This decision does not mean that the environment will be modeled

monolithically, as a single data structure. Modularity can still be achieved through

composition of smaller data structures. This form of composition will depend on

the kind of data structure of a particular environment implementation. Therefore,

it is not included in the framework, which is on a more general level of

abstraction.

In OOS, each object is responsible both for keeping its own state and

defining its own behavior. They interact directly by input-output coupling

relations, which are usually organized in a fixed structure. However, in computer

games, as commonly happens in AOS, interaction between game elements is often

determined by spatial proximity. That interaction may be direct or indirect,

through the environment. If two elements are sensing and acting on the same

piece of environment, they will have established an indirect causal relation among

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 53

their actions. That environment in most cases represents a physical space where

these causality links happen by proximity of the physical location of the game

elements. This justifies the high importance given to collision detection in the area

of gaming and, more generally, to spatial algorithms and spatial indexing in AOS.

There are three main reasons why most games use the centralized physical

environment approach. First, as already mentioned in section 2.1, it is important to

group all rendered game elements in a specialized data structure to improve

rendering performance (Sowizral 2000; Metello et al. 2007). Second, it makes it

more natural to model actions that depend on spatial relationships. Lastly, object-

oriented approaches usually offer little support for dynamic changes to the

coupling structure of its objects, which is necessary in the case of moving objects

that interact by proximity, as in computer games.

All these arguments suggest that the environment object should keep not

only the spatial structure of the game but also the physical representation of its

elements. This approach differs from traditional OOS by splitting the physical and

behavioral states of game elements into two different objects. Physical states

should be part of the environment and be deprived of their proactivity. Elements

representing behaviors should be responsible for animating their physical

counterparts. These elements shall be called processes.

Decision 4: There will be two types of simulation elements: environment

and processes. The space and physical state of simulation elements will be

implemented as parts of the environment, which is deprived of any proactive

behavior. Any kind of behavior will be implemented in processes, which are

responsible for providing behavior to all physical elements in the simulation.

The main arguments for this decision are the following:

• It allows the grouping of all physical game elements in a specialized

and possibly spatially indexed data structure, which helps improve

the performance of the rendering algorithms as well as of the spatial

algorithms.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 54

• Depriving the environment of proactivity does not impose any

restrictions to the supported simulation models. If a particular model,

for some reason, considers an environment that evolves in time, that

environment should be divided in two parts: one physical state and

one process that will interact with the physical state and implement

its behavior.

• Both agents and other types of simulation objects can be modeled in

this framework by splitting them into physical and behavioral parts.

The physical part is modeled as part of the environment and the

behavioral part is modeled as a process.

3.2.3
On the Interaction between Elements

Decision 4 stated that a simulation is composed of an environment and a set

of processes. Therefore, the possible types of interaction between elements are

inter-process interaction and interaction between a process and the environment.

Considering the case of inter-process interaction, decision 2 defined that the

simulation elements interact with each other as in OOS, by sending events to each

other. This form of interaction allows the modular design of complex processes as

a composition of interacting sub-processes as, for example, in the coupled DEVS

formalism, described in section 2.2.1. The same form of interaction could also be

used to implement the communication between cognitive agents, where the

processes that model the behavior of the agents need to exchange messages.

The case of process-environment interaction needs further discussion

because processes are allowed to access the internal state of the environment, as

stated in decision 3.

Since the framework provides the notion of a global environment, the

traditional modularity of OOS approaches becomes less characterized. In OOS,

the global state is typically distributed across the objects, which have dependency

relations only with their immediate neighbors in the coupling structure. Therefore,

some special care is necessary to design the interaction between the environment

and other elements in order to keep a reasonable degree of modularity and reuse.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 55

In order to reuse a process in different simulations with different

environments, this process must perceive those different environments in the same

way, with the same set of possible states. One simple approach to accomplish this

is the notion of environment views, which is similar to the concept of interface in

object-oriented programming languages. An interface basically defines a type of

object with a definite set of possible states. An object that implements that

interface can be perceived as an object of that type. The same notion applies to

environment views. Different environments providing the same view can be

perceived in the same way. That helps reducing dependency relations, improving

modularity and reuse of simulation models.

Up to this point, the discussion covered the topic of environment perception,

concluding that external elements should have read access to the internal state of

the environment. This raises the question of whether external elements should also

have write access, which in turn inevitably leads to the problem of concurrency.

This problem also arises in AOS and, more generally, in the broader field of

multi-agent systems (Michel et al 2009). Practically all OOS formalisms provide

some mechanism to deal with it. It has even led to the creation of new formalisms,

such as Parallel DEVS (Zeigler et al. 2000).

Since our approach adopts the main characteristics of OOS, the

straightforward solution is to adopt a well-established concurrency mechanism

from some OOS formalism. In this case, any simulation element that intends to

change the environment state has to do it by sending events to it and not by direct

writing. Modeling actions that alter the state of the environment as regular OOS

events certainly makes the simulation framework more uniform, in the sense that

state transitions are always propagated in the same way throughout the simulation

elements, including the environment.

One might argue that this approach could lead to performance loss due to

the fact that a process is forced to make a copy of the information it sends to the

environment, in order to send it as an event. This is the same case as the

performance problem discussed in decision 3, only in the opposite direction.

However, we believe that this will not be performance-costly in most cases

because of the semantics of sending information to the environment. A process

sends an event to the environment when it acts on it, causing changes. It is

reasonable to assume that a process will know exactly what it wants to change

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 56

when it decides to act on the environment. Therefore, it can send only the

necessary information to perform the change. The problem that led to decision 3 is

that, when the information is flowing in the opposite direction, the environment

hardly knows precisely which information the process will really need. Therefore,

in that case, it is better to let the process query the environment state.

Decision 5: Processes interact with each other by exchanging events, as in

pure OOS. Processes also affect the environment by sending events to it.

However, to observe the environment state, processes will directly access an

environment view. The environment will provide a set of views, each one defined

by a set of perceivable states.

The following arguments further support this decision:

• The propagation of state transitions in the network of simulation

elements is uniformly done by events, as in pure OOS. Hence, many

formal properties of OOS are incorporated, such as concurrency

control.

• Accessing the internal state of the environment indirectly via

environment views increases modularity. The same set of processes

can be reused in different simulations with different environments,

as long as the environments provide the necessary views.

3.2.4
The Process–Oriented Simulation Paradigm

The decisions taken in sections 3.2.2 and 3.2.3 lead to a process-oriented

simulation (POS) paradigm, which is a hybrid paradigm with notions adopted

both from OOS and AOS.

If we consider only the operational characteristics of the simulation

elements, the POS paradigm is very close to OOS, with the exception of the

environment read access method. However, this exception can be abstracted as if

each read access query were composed of two regular events, one for the query

and one for the answer. However, it should not be implemented that way for the

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 57

performance reasons discussed in section 3.2.2. This abstraction gives POS the

possibility of inheriting many interesting formal properties from OOS, such as

universality and closure under coupling/composition (Zeigler et al. 2000).

Figure 3.3 – Process-Oriented Simulation

If we consider the semantics of the simulation elements, the POS paradigm

inherits the notion of environment from AOS. However, there is a conceptual

difference between both. In AOS, the boundaries of the simulation elements are

usually defined by the boundaries of entities in the real system they attempt to

simulate. For example, in the popular case of the simulation of an insect colony,

there is usually an agent for each insect. Likewise, in social simulations, there are

agents representing people or institutions. In POS, the simulation elements are

defined first by their nature – physical or behavior – then they are further divided

according to their complexity in order to achieve modularity. For example, in an

insect colony, there may be a single process responsible for implementing the

behavior of all insects in the simulation. Likewise, in a social simulation, the

behavior of a person could be divided into different parts, such as production,

consumption and leisure, each one implemented by a different process.

These characteristics of POS aim clearly to isolate the physical

representation of whatever is being simulated, while keeping traditional

simulation properties. That makes POS, just like AOS, suitable for simulations

with highly specialized forms of environment representation, such as those

mentioned in section 2.1 and GIS-based spatial structures and databases (Gimblett

2002; Gonçalves et al. 2004).

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 58

3.2.5
Process Creation and Destruction

Predicting in advance what is going to happen in a simulation is usually

hard. In fact, that is one of the reasons simulations exist. On top of that,

simulations may involve sources of non-determinism such as coin flips or human

interactions. That raises a relevant question on whether processes should be

allowed to be created and destroyed during the execution of a simulation. If all

simulation activity could be easily predicted in advance, all necessary processes

could be instantiated at the beginning of the simulation and it would not be

necessary to create or destroy them at execution time.

 If we take for a fact that no process can be created at execution time, a

reasonably complex simulation with many different possible outcomes could

potentially produce one (or both) of the following situations:

• The appearance of complex processes, which can act in a number of

different ways, according to the evolution path of the simulation.

This would hurt modularity.

• A large number of smaller processes instantiated at the beginning of

the simulation to handle every possible scenario that arises during

execution. This potentially leads to huge inefficiencies, because it is

not known in advance which processes will actually play some role

in the simulation.

Allowing processes to be created at execution time makes it possible to

avoid these situations. In fact, AOS-based toolkits typically allow the creation and

destruction of agents at execution time. In opposition, many traditional OOS

approaches, such as the basic DEVS, do not consider this kind of structural

change during simulation execution. This limitation has been felt in a number of

research works and has lead to extensions to some OOS formalisms to support

variable object structures (Uhrmacher 2001).

In the context of discrete-event simulations, the creation of a process may be

considered as an event. In fact, it can be abstracted as an instantaneous state

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 59

transition, where the process leaves the state of non-existence and assumes the

initial state of its lifetime. Likewise, its destruction may also happen

instantaneously as another event. This observation suggests a simple mechanism

for process creation and destruction. Instead of sending events to other processes

or to the environment, a process can output a special type of event causing the

creation or destruction of another process. By analogy with execution threads, one

can say that a process can fork other processes. In fact, processes can be seen as

threads in a multithreaded programming environment. If we continue the analogy,

a process that has forked another process is referred to as its parent process.

Likewise, the forked process is called the child process.

The hierarchical structure of processes induced by the process forking

model provides the additional benefit of allowing abstraction levels when

reasoning about processes. For example, a workflow may be represented as a

single parent process which forks a child process for each action that is executed

in the workflow. Hence, the whole workflow may be seen as one single process or

as a set of actions according to the desired abstraction level.

Decision 6: Processes may fork and destroy other processes by outputting a

special type of event, which is part of the framework definition. The creation and

destruction of processes happen instantaneously with respect to simulation time,

just like regular events.

The following arguments further support this decision:

• Allowing a dynamic simulation structure helps keeping the

simulation models modular and simple.

• Parental processes hierarchies allow reasoning about and designing

processes in multiple abstraction levels.

3.3
The Process-DEVS Formalism for Process Modeling

The result of the discussion in section 3.2 was an abstract framework to

model the dynamics of serious games. This section describes an instantiation of

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 60

the framework, called Process-DEVS, which extends the DEVS formalism

(Zeigler 1972) to work with the process-oriented simulation paradigm. DEVS was

chosen as basis for our framework because of its formal properties, such as

universality and closure under composition (Zeigler et al. 2000).

3.3.1
Formal Model

We start the description of the formal model with the definition of an

abstract simulation element or, simply, an element. Then, we define two classes of

elements, process and environment. Finally, we introduce two specializations of

processes, input processes and output processes, designed for interacting with

external asynchronous entities.

An operational semantics of these concepts is described in section 3.3.2.

Figure 3.4 – The Hierarchy of Simulation Elements in Process-DEVS

Processes and environments have very similar behaviors. Therefore,

defining how they are simulated in terms of the abstract notion of simulation

elements leads to a more concise way of describing the simulation mechanisms.

Simulation Element

A simulation element is defined by a tuple of the form (an intuitive

explanation of the components follows the formal definition):

〈S, V, X, Y, E, P, δint, δext, λ, ρ, ta〉

where

S is the set of possible internal states

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 61

V = {(Vi, µi) | i=1, … n} is a set of views that provide external read

access to the internal state of this element, where

Vi is the set of view states of the i
th

 view

µi: S → Vi is the view mapping function of the i
th

 view

X is the set of acceptable input events

Y is the set of possible output events

E is a set of environment view states

P is the set of elements that this element can create and destroy

δint: S × E → S ∪ {finished} is the internal transition function

δext: Q × E × (X ∪ {finish}) → S ∪ {finished}

is the external transition function, where

Q = {(s, e) | s ∈ S, 0 ≤ e ≤ ta(s)} is the total state set

e is the time elapsed since last transition

λ: S → 2
Y
 is the output function

ρ: S → 2
P
 × 2

P
 is the process structure transition function

ta: S → [0, ∞] is the time advance function

The terms S, X, Y, δint, δext, λ and ta have basically the same meaning as in

the basic DEVS formalism, introduced in section 2.2.1. The set S defines all

possible internal states an element may assume. The sets X and Y define all

possible input and output events of the element, at any time in the simulation.

These three sets have the exact same meaning as in DEVS.

The functions δint and δext define all state transitions of the element. They are

basically the same functions defined in the basic DEVS formalism, with some

minor differences.

The function δint is the internal transition function. It is responsible for

defining the proactive behavior of the element. This function is invoked by the

simulator after ta(s) units of time have passed since the last state transition, where

s is the internal state that resulted in that last transition. The output of this function

defines the next state of the element. The special output value finished means that

this will be the last state transition of this element, which will cease to exist in the

simulation from that time instant on. In order to compute the state transition, δint is

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 62

allowed to read the current state of the element, as well as the environment state,

according to how this element perceives the environment.

The function δext is the external transition function. It is responsible for

defining the reactive behavior of the element. This function is invoked by the

simulator whenever the element receives an event from another element. The

output of this function is handled exactly in the same way as in δint. However, its

input is quite different. It is allowed to read the event that the element is receiving.

If it receives the special event finish, it means that this will be the last state

transition of this element, which will cease to exist in the simulation. This last

transition function call allows the process to finish in a friendly way, releasing

resources and sending events to inform other processes. The external transition

function is also allowed to access the environment state, the current element state

and the time elapsed since the last transition, which is not necessary in δint because

it can be computed by ta(s).

The terms λ and ta have the exact same meaning as in DEVS. λ(s) defines

which events are output by the element after any state transition is performed.

ta(s) defines the time delay the simulator will wait to call δint again, if no events

are received until then.

The terms V and E define the way an element may access the internal state

of another element. The set V defines the views that this element provides,

through which other elements can access a particular view of its internal state.

Note that the internal state is not accessed directly. Instead, external elements are

only allowed to access view states of the views defined by V. Those view states

are determined by the view mapping functions applied to the current internal state.

The set E defines the environment view states in which the element can perceive

its environment. The formalism only allows an element to access the state of

exactly one other element. This follows because there will be only one

environment in a simulation, and this is the only element that will have its internal

state accessed through its views.

Finally, the terms P and ρ define the mechanisms for dynamic creation and

destruction of elements. The set P contains all elements that this element can

create and destroy. The function ρ outputs two sets of elements, one for the

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 63

elements that are created and one for those that are destroyed, whenever a state

transition has been performed.

As defined here, simulation elements do not have input and output ports, as

in the DEVS with ports formalism (Zeigler et al. 2000), described in section 2.2.1.

This is merely for notational simplicity, since this decision is unimportant at a

conceptual level. It is understood here that the main benefit of ports for games is

to improve performance by allowing a more efficient event routing method. Since

performance is extremely important for games, the model should be easily

extendable to embrace port support, even though it is not relevant to the

discussion on an abstract level. Ports could be easily added to the framework with

minor changes in this notation: simply by representing inputs and outputs by pairs

(port, event), exactly as in DEVS with ports.

Environment

An environment is an element 〈S, V, X, Y, E, P, δint, δext, λ, ρ, ta〉 that

satisfies the following constraints:

(1) E = {nil}

(2) P = ∅ ˄ (∀s∈S)(ρ(s) = (∅,∅))

(3) (∀s∈S) (∀e1∈ℜ+
) (∀e2∈ℜ+

) (∀x∈(X ∪ {finish}))

 (δext((s,e1),nil,x) = δext((s,e2),nil,x))

(4) (∀s∈S) (∀e∈ℜ+
) (∀x∈(X ∪ {finish}))

 (δint(s,nil) ≠ finished ˄ δext((s,e),nil,x) ≠ finished)

(5) (∀s ∈ S)(ta(s) ∈ {0, ∞})

Constraint (1) just states that the environment does not directly access the

internal state of any other element. Constraint (2) states that the environment does

not alter the simulation structure. Constraint (3) states that state transitions do not

depend on the elapsed time since the last transition. Constraint (4) guarantees that

the environment never finishes. Constraint (5) deprives the environment of

proactive behavior, which means that its state does not change with the flow of

time, if no events are received. The ta function is allowed to output the value 0 in

order to allow transient states (Zeigler et al. 2000). Transient states are states that

do not have duration. When reached, they are immediately changed again. They

are commonly used as intermediate states in a state transition to produce different

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 64

outputs according to the previous state of a given system. Function ta is also

allowed to output the special value ∞, meaning that its internal transition function

will not be invoked at least until the next received event, when the external

transition function will be invoked and ta will be evaluated again.

Even though the environment does not act proactively, it is still allowed to

output events in response to state changes, which are always caused by the arrival

of another event. The purpose of these output events is to alert processes about

state changes in the environment, which is analogous to the observer pattern in

object-oriented design patterns (Gamma et al. 1995). If we deprived the

environment of the ability to send events to processes, any process that needs to

respond to changes in the environment would have to check it with a minimum

frequency, which would lead to inefficiencies.

For ease of notation, the environment is defined by the simplified structure

E = 〈S, V, X, Y, δint, δext, λ, ta〉, subject to constraints (3) and (5), representing the

element 〈S, V, X, Y, {nil}, ∅, δint, δext, λ, ρ, ta〉, where

(∀s∈S)(ρ(s) = (∅,∅)).

Processes

A process is a simulation element 〈S, V, X, Y, E, P, δint, δext, λ, ρ, ta〉 such

that V = ∅. This means that the internal state of a process is not directly accessible

by any other element. For ease of notation, a process is defined by the structure 〈S,

X, Y, E, P, δint, δext, λ, ρ, ta〉, representing the simulation element 〈S, ∅, X, Y, E, P,

δint, δext, λ, ρ, ta〉.

Intuitively, a process represents an activity carried out in a simulation.

Processes may be created and destroyed dynamically during a simulation. In order

to reason about processes in time, it is possible to determine their start times and

finish times. Process creation and destruction are usually defined by the function

ρ, which is invoked right after every state transition, and before the simulation

time is advanced any further. Therefore, the start and finish times of processes is

determined by the time instants of the state transitions that triggered their creation

and destruction. There is still another way to destroy a process, which is by

suicide. Whenever a state transition leads to the special state finished, the finish

time is naturally defined by the time instant of that transition. Having well-defined

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 65

start and finish times allows some interesting analytical properties such as, for

example, the representation of process execution histories in a very similar way as

in Sowa’s discrete event process model (Sowa 2000).

Whenever a process creates another process, it is said that the parent

process, which is the creator process, has forked a child process, which is the

created process. Process forking, besides providing simulations with structural

dynamism, also provides abstraction level capabilities to process modeling. The

capability of process forking is considered a form of abstraction and modularity of

process modeling in the sense that a process may delegate some of its sub-tasks to

its children. Hence, modularity and abstraction is achieved in a different way, as

compared with the coupled DEVS formalism (Zeigler et al. 2000), described in

section 2.2.1.

I/O Processes

Input processes and output processes are processes dedicated to manage the

communication with asynchronous entities external to the simulation. This

communication is modeled as exchange of events between a process and an

external entity. Hence, any process can communicate with some external entity in

the same way it communicates with other processes. The input and output

processes act as one-way channels. They receive events from the sender side and

store those events in their internal state until the receiving side requests the events

to be flushed. Therefore, I/O processes act as streams of events.

In order to represent event streams, it is necessary to use lists, instead of

sets. The following notation is used to represent lists: S* is the set of all possible

lists formed with elements of S; [e1, e2, … , en] represents the list formed by the

elements e1, e2, … , en, in that order; [] represents the empty list; [head | tail]

represents a list that has the element head as its first element, followed by all the

elements in the list tail, in the same order. For example,

[e1 | [e2, e3]] represents the list [e1, e2, e3].

An input process receives events from external entities, where the events are

taken from a set I, and sends them to other processes. An input process over I is

formally defined as pin = 〈S, X, Y, E, P, δint, δext, λ, ρ, ta〉, where

S = I* × (I ∪ {nil})

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 66

X = I

Y = I

E = {nil}

P = ∅

δint((list, out), nil) = (list, nil) if list = []

 = ([e1, … ,en-1], en) if list = [e1, … ,en] ≠ []

δext(((list, out), e), nil, x) = ([x | list], nil) if x ≠ finish

 = (list, nil) if x = finish

λ((list, out)) = {out} if out ≠ nil

 = ∅ if out = nil

ρ(s) = (∅,∅)

ta((list, out)) = ∞ if list = []

 = 0, if list ≠ []

When an event is received by the input process, it is stored in the internal

state. As soon as possible, the input process outputs the events stored in its

internal state to other processes in the same way as any other simulation element.

An output process receives events from other processes, taken from a set O

of events, and sends them to external entities. An output process over O is

formally defined as pout = 〈S, X, Y, E, P, δint, δext, λ, ρ, ta〉, where

S = O*

X = O

Y = ∅

E = {nil}

P = ∅

δint(list, nil) = list

δext((list, e), nil, x) = [x | list] if x ≠ finish

 = list if x = finish

λ(s) = ∅

ρ(s) = (∅,∅)

ta(s) = ∞

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 67

The output processes store the events they receive in a list. This list is used

to generate a stream of events for entities which are external to the simulation.

This will be formally defined in section 3.3.2.

Simulation

Environments and processes are parts of the broader notion of simulation. A

simulation is basically a container of simulation elements with some additional

information. Besides the environment and a set of processes, it also defines the

event coupling structure between these elements and a view-process coupling

map. The event coupling structure defines the recipients of events generated by

any element, while the view-process coupling map defines which environment

view is accessible to each process.

In the formal definition of a simulation, the operator “·” (dot) is used to

access a property of a given structure. Therefore, “S·p” should be interpreted as

“property p of structure S”.

A simulation is formally defined as

SIM = 〈SE, s0, P0, cs, vmap, τ〉

where

SE is the set of all simulation elements, which must include a single

environment element. We define the following subsets of SE and single out

the environment in SE:

Pin is the set of input processes in SE

Pout is the set of output processes in SE

ε = 〈S, V, X, Y, δint, δext, λ, ta〉 is the (only) environment in SE

s0: SE → U
SEe

Se
∈

· , where s0(elem) ∈ elem·S, is the initial state map

P0 is the initial set of running processes, which must be a subset of the set of

processes in SE

cs: SE × SE → {true, false} is the event coupling structure

vmap: SE – {ε} → ε·V is the view-process coupling map

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 68

τ: 2
FC

 – {∅} → FC is the tiebreak function, where FC = {itf_call(e) | e∈SE}

∪ {etf_call(e, evt) | e∈SE ˄ evt∈(e·X ∪ {finish})} is the set of all

possible transition function calls, which is explained below

During the lifetime of a simulation run, a number of elements are

simultaneously simulated. An element can be either a process or the environment.

The special predicate isEnvironment(e) will be used when it is necessary to

differentiate between both types. For any given element e, isEnvironment(e)

implies that the constraints of the environment definition apply to e. Likewise,

¬isEnvironment(e) implies that the constraints of the process definition apply to e.

The set SE contains, besides the environment, all processes that can be

executed in a simulation run. It is possible that some of the processes in SE are

never started, depending on the course of the simulation run. Function s0 maps

each element into its initial internal state. The set P0 defines the processes that are

started exactly at the simulation start time. Each simulation is allowed to have

only one environment ε.

When an element outputs an event, the coupling structure cs determines

which elements are receiving it. cs(Esend, Ereceive) = true means that the element

Ereceive should receive events from the element Esend. The view-process coupling

map serves a similar purpose with respect to the capabilities of processes to query

the internal state of the environment. vmap(p) returns the environment view that the

process p is allowed to access.

The tiebreak function τ defines the order in which concurrent events are

processed. State changes in simulation elements are caused either by the receiving

of an event from another element or by the expiration of the time returned by the

time advance function (ta) of the element in its last state transition. In the first

case, the external transition function (δext) of the element is called, while in the

second case the internal transition function (δint) is called. In both cases, the call

to the transition function returns the next state of the element. The set FC in the

definition of the tiebreak function τ contains all possible calls to any transition

function of any simulation element, where itf_call(e) and etf_call(e, evt) represent,

respectively, calls to the internal and external transition functions of e with their

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 69

respective parameters. Given any set of transition function calls, the tiebreak

function defines a total ordering over it.

Let SIM = 〈SE, s0, P0, cs, vmap, τ〉 be a simulation. Recall that

Pin is the set of input processes in SE

Pout is the set of output processes in SE

ε = 〈S, V, X, Y, δint, δext, λ, ta〉 is the (only) environment in SE

The simulation SIM must obey the following constraints:

(1) (P0 ⊆ SE)

(2) (∀e ∈ SE)(e·P ⊆ (SE – {e, ε}))

(3) isEnvironment(ε)

(4) (∀e ∈ SE)(isEnvironment(e) ⇒ e = ε)

(5) (∀efrom ∈ SE) (∀eto ∈ SE)(cs(efrom, eto) = true ⇒ efrom·Y ⊆ eto·X)

(6) (∀pin ∈ Pin)(∀p ∈ SE)(cs(p, pin) = false)

(7) (∀pout ∈ Pout)(∀p ∈ SE)(cs(pout, p) = false)

(8) (∀p ∈ SE)(vmap(p) = (Vi, µi) ⇒ Vi ⊆ p·E)

(9) (∀S ∈ 2
FC

)(∀c ∈ FC)(τ(S) = c) ⇒

(c∈S ˄ (∀S′ ∈ 2
FC

)((S′ ≠ ∅ ˄ S′ ⊂ S) ⇒ τ(S′) = c))

Constraint (1) assures that the initial processes are all simulation elements of

SE (the I/O processes and the environment are simulation elements in SE, by

definition). Constraint (2) assures that all dynamically-created elements are

processes of this simulation. Constraints (3) and (4) determine that there must be

only one environment in a simulation. Constraint (5) assures that any element that

receives an event from another element will know how to handle it. Constraints

(6) and (7) state that no process can send events to input processes or receive

events from output processes. The I/O processes are one-way event streams.

Constraint (8) assures that all processes will receive an understandable state when

they query their environment view. Constraint (9) assures that the tiebreak

function τ represents, in fact, a total ordering over the set of all possible transition

function calls.

The basic working model of a simulation is illustrated in Figure 3.5. Process

P1 has two child processes P11 and P12. All of them, including the parent P1 can

send events to the environment and to other processes. Processes Pout, Pin1 and Pin2

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 70

are I/O processes. They are responsible for the communication between human

players and the rest of the simulation. Through environment views V1 and V2, the

processes P11 and P12 observe the state of the environment.

Figure 3.5. The Simulation Model

The two environment views act as interfaces, providing a mechanism for

processes to get information about the internal state of the environment at any

time. The idea is to allow processes to access the environment through simplified

views. Hence, modularity can be increased because processes need not understand

the full environment state. The same process can work on any environment that

provides the view used by that process.

3.3.2
Operational Semantics

This section presents the operational semantics of simulations in Process-

DEVS. Before the introduction of the model, it is necessary to define some basic

notation that will be used throughout the rest of this thesis.

As in the previous section, the operator “·” (dot) is used to represent a

property of a given object. Therefore, “O·p” should be interpreted as “property p

of object O”. Lists are represented in the form [e1, e2, … , en], where [] is the

empty list.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 71

The operator ← is used in expressions of the form f = g ← (d,r), where f

and g are functions with the same domain and range sets and f(x) is equal to g(x)

for all the values of x, with the exception of the value d, for which f(d) = r.

The abstract notion of simulation element will help simplify the definition of

the operational semantics because most of the time processes and the environment

are treated in the same way. Whenever it is necessary to distinguish them, the

special predicate isEnvironment(e) will be used, with the same semantics as in the

definition of simulation, in section 3.3.1.

Each element has a definite start time and a definite finish time. No element

can start before the simulation run starts and no element continues to execute after

it has finished. The environment is always in execution during the simulation run

and it does not make sense for it to have start and finish times different from the

simulation start and finish times.

Let SIM = 〈SE, s0, P0, cs, vmap, τ〉 be a simulation.

The execution of SIM is determined by a sequence of simulation states in

time. The foundations of discrete-event based simulation require that all changes

to the simulation state be instantaneous. A simulation state change is caused either

by the creation, destruction, or state transition of any of its simulation elements.

A simulation execution state of SIM is defined as

SS = 〈t, Eactive, Estate, Elast_t, EQ〉

where

t is the current simulation time

Eactive ⊆ SE is the set of active simulation elements

Estate: SIM·SE → U
SEe SIM·

e·S
∈

 ∪ {finished}

where Estate(e) ∈ (e·S ∪ {finished}) is a function that maps each

element e∈SIM·SE into the current internal state of that element

Elast_t: SIM·SE → ℜ+
 is the last transition time map

EQ is the event queue, which stores the next scheduled events

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 72

The initial state of a simulation SIM is

〈0, P0, s0, lt0, eq0〉

where

(∀e∈SE)(lt0(e) = 0)

eq0 = {(tinit, itf_call(e)) | e∈P0}

The initial simulation time is 0. It is increased as the simulation advances.

Each simulation state ss stores the current simulation time t. Naturally, a

simulation run does not produce a different simulation state for each possible time

instant. Instead, the state ss may jump directly to another state ss′, with current

time t+∆t, provided that no event is scheduled to happen in that time interval. The

simulation state also includes the current execution state of all simulation

elements, given by Eactive, Estate and Elast_t. The set Eactive contains all elements that

are currently active. The functions Estate and Elast_t give the internal state and the

timestamp of the last state transition of each element. Finally, the simulation state

keeps an event queue, which stores all events currently scheduled to happen.

The event queue is the main component of most discrete-event simulators.

In our case, it contains scheduled calls to the transition functions of simulation

elements. Each element of the queue assumes one of the two forms

(ts, itf_call(e)), for internal transition function calls, or (ts, etf_call(e, evt)), for

external transition function calls, where ts is the time instant of the scheduled call,

e is the simulation element and evt is the event that is passed as parameter in the

case of external transition function calls.

All transition function calls are serialized with respect to time. If two calls

are scheduled to happen at the same time, the tiebreak function of the simulation

defines the order in which they are called. Given an event queue EQ, the next

transition function to be called is given by the next_call operation:

(1) next_call(EQ) = (∞, nil) if EQ = ∅

= (t, c) if EQ ≠ ∅

where (t, c)∈EQ ˄ (∀(t′, c′)∈EQ)(t′ ≥ t) ˄ (t, c) = τ({(t, c″)∈EQ})

This ensures that the next call always has the least timestamp in EQ. If there

is more than one call with that timestamp, the tiebreak function defines

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 73

which one is the next call. If EQ is empty, it returns a nil call with an

infinite timestamp.

The next operators are defined in order to provide means of manipulating

the event queue. Each operator returns another event queue as the result of the

operation.

(2) remove_calls(EQ, e) = {(ts, c)∈EQ | c·e ≠ e}

This operator removes all transition functions calls of simulation element e.

(3) schedule_itf_call(EQ, e, ts) =

(EQ – {(t, c)∈EQ | c = itf_call(e)}) ∪ {(ts, itf_call(e))}

This operator schedules an internal transition function call for simulation

element e at ts, replacing all other calls to that function in EQ.

(4) send_events(EQ, Events, Eto, ts) =

EQ ∪ {(ts, etf_call(eto, evt)) | eto∈Eto ˄ evt∈Events}

This operator schedules calls to external transition functions generated by

the act of sending a set of events to a set of simulation elements. That means

scheduling calls to all receiving elements, one for each event.

(5) destroy(EQ, e, ts) =

send_events(remove_calls(EQ, e), {finish}, {e}, ts)

This operator performs the changes in EQ when a simulation element is to

be destroyed. It removes all calls to e and sends a finish event to it. This is

done so that, when receiving the finish event, the process has a chance of

releasing resources and informing others of its destruction.

(6) create_destroy_elements(EQ, Ecreate, Edestroy, ts) =

schedule_itf_call(… schedule_itf_call(DTQ, ec1, ts) … , ecn, ts)

where

 DTQ = destroy(… destroy(destroy(EQ, ed1, ts), ed2, ts) … , edm, ts)

 Ecreate = {ec1, … , ecn}

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 74

 Edestroy = {ed1, … , edm}

This operator performs the changes in EQ relative to the creation of the

elements in Ecreate and the destruction of those in Edestroy. When creating an

element, it is only necessary to schedule an initial internal transition

function call at the time the element is created.

(7) schedule_transition_events(EQ, e, snext, ts, Events, Eto, Ecreate, Edestroy) =

schedule_itf_call(send_events(create_destroy_elements(EQ, Ecreate, Edestroy,

ts), Events, Eto, ts), e, ts + e·ta(snext))

This operator performs all changes in EQ generated by a state transition of a

simulation element. First, it creates and destroys the elements defined by

Ecreate and Edestroy. Then, it propagates the events in the set Events to the

processes in Eto. Finally, it schedules the next internal transition function of

e.

Now that the operations on the event queue are defined, we can define the

operators to manipulate the simulation state. The element_state_transition

operator defines how the simulation state is changed in the case of a state

transition of an element.

(8) If snext ≠ finished:

element_state_transition(SS, e, snext, ts) =

 〈ts, SS·Eactive ∪ Ecreate, SS·Estate ← (e, snext), SS·Elast_t ← (e, ts),

 schedule_transition_events(SS·EQ, e, snext, ts, Events,

 {pto∈SIM·SE | SIM·cs(p, pto) = true} ∩ SS·Eactive, Ecreate, Edestroy)〉

where

 Events = e·λ(snext)

 (Ecreate, Edestroy) = e·ρ(snext)

This operator produces a new simulation state, after a state transition of

element e to the state snext, at the time instant ts. The set of elements created

by the transition is added to the set of currently active elements. However,

the set of destroyed elements is not subtracted yet, since they still need to

receive and treat the special event finish, before they are deactivated. The

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 75

new state snext is assigned as the new internal state of e and ts becomes the

timestamp of its last transition. Finally, it is only necessary to update the

event queue with the effects of this state change by invoking the proper

operator.

(9) If snext = finished:

element_state_transition(SS, e, snext, ts) =

 〈ts, SS·Eactive – {e}, SS·Estate ← (e, finished), SS·Elast_t ← (e, ts),

 remove_calls(EQ, e)〉

This operator computes the new simulation state when an element performs

a transition to the special state finished. This operation is relatively simple

and consists basically of removing all execution information about the

element e.

The following operators perform transition function calls on elements of the

simulation:

(10) remove_call(SS, call) = 〈SS·t, SS·Eactive, SS·Estate, SS·Elast_t, SS·EQ – {call}〉

This simply removes a transition function call from the event queue EQ.

(11) process_call(SS, ts, itf_call(e)) =

 element_state_transition(remove_call(SS, (ts, itf_call(e))), e, snext, ts)

where

 snext = e·δint(SS·Estate(e), view)

 view = SIM·vmap(e)·µ(SS·Estate(SIM·ε))

This operator executes an internal transition function call on element e, at

time ts. It first removes the scheduled call from the event queue. Then, it

computes the state change caused by the function call.

(12) If evt ≠ finish:

process_call(SS, ts, etf_call(e, evt)) =

element_state_transition(remove_call(SS, (ts, etf_call(e, evt))), e, snext, ts)

where

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 76

 snext = e·δext((SS·Estate(e), ts – SS·Elast_t(e)), view, evt)

 view = SIM·vmap(e)·µ(SS·Estate(SIM·ε))

This operator executes an external transition function call on element e, at

time ts.

(13) If evt = finish:

process_call(SS, ts, etf_call(e, evt)) =

 element_state_transition(element_state_transition(remove_call(SS,

 (ts, etf_call(e, finish))), e, snext, ts), e, finished, ts)

where

 snext = e·δext((SS·Estate(e), ts – SS·Elast_t(e)), view, finish)

 view = SIM·vmap(e)·µ(SS·Estate(SIM·ε))

This operator executes an external transition function call on element e, at

time ts, when the special event finish is received by e.

The basic procedure for computing how the simulation state changes with

time consists basically of retrieving transition function calls from the event queue

and executing them in the right order. To determine the simulation state at

simulation time t, it is necessary to execute all state transitions scheduled to

happen between the current time and t. The advance function provides a recursive

procedure for advancing the simulation state.

(14) advance(SS, ∆t) =

〈SS·t + ∆t, SS·Eactive, SS·Estate, SS·Elast_t, SS·EQ〉, if nc·ts > SS·t + ∆t

advance(process_call(SS, nc), ∆t – (nc·ts – SS·t)), if nc·ts ≤ SS·t + ∆t

where

 nc = next_call(SS·EQ)

The simulation, as defined so far, does not interact with any external

entities. The advance operator is responsible for updating the simulation execution

state considering solely the internal dynamics of the simulation. In order to make

the simulation interactive, it is also necessary to describe how the simulation state

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 77

changes when receiving input, as well as when generating output to some external

entity.

All input and output are handled by the input processes and output

processes. They are part of the simulation definition. Each input process receives

events from an external entity and stores them in its internal state. As soon as

possible, it transmits those events to their recipients. The output processes work in

the opposite direction. They receive events during the simulation advance and

store them in their internal states. When the simulator decides to flush the output

events, the internal states of the output processes are read and cleared. The

simulation inputs and outputs are represented as lists of the form

[(e1, p1), (e2, p2), ... , (en, pn)]

where ei is an event and pi is its corresponding I/O process, as defined in section

3.3.1. In the case of processing an input, the simulation state is changed as defined

by the flush_input operator:

(15) flush_input(SS, Input) =

process_call(…process_call(SS, SS·t, etf_call(p1,e1))…, SS·t, etf_call(pn,en))

where

 Input = [(e1, p1), ... , (en, pn)]

 {p1, ... , pn} ⊆ (SIM·Pin ∩ SS·Eactive)

This operator basically generates one external function call on the

corresponding input process for each received event.

In the case of processing the output generated by the simulation, it is

necessary to read the information stored in the output processes and clear them

afterwards, so that the same information is not read again in the next output:

(16) read_output(SS) = CONCAT(SS·Estate(p1), SS·Estate(p2), … , SS·Estate(pn))

where

 CONCAT(l1, l2, … , ln) is the concatenation of lists l1, l2, … , ln

 {p1, p2, ... , pn} = SIM·Pout ∩ SS·Eactive

This operator reads all information stored in the output processes. Note that

the state of an output process is a list of events. Therefore, the elements

from SS·Estate(p) can be concatenated directly.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 78

(17) clear_output_processes(SS) =

 element_state_transition(… element_state_transition(SS, p1,

 [], SS·t) … , pn, [], SS·t)

where

 {p1, p2, ... , pn} = SIM·Pout ∩ SS·Eactive

This operator clears all information stored in the output processes by forcing

a transition to the ∅ state.

The flush_io function consolidates all the input and output operations. It

receives the current simulation state and an input set, and outputs the next

simulation state and the output set.

(18) flush_io(SS, Input) =

(flush_input(clear_output_processes(SS), Input), read_output(SS))

The advance function describes how the simulation state is changed in time

considering only the internal simulation mechanisms. The flush_io function

describes how it changes when the communication with external entities is

synchronized, without changing the simulation time. A full simulation run with

external communication is described by a sequence of interleaved calls to these

two functions, depending on when the external messages were exchanged. There

are several ways to define how to interleave simulation time advance with

external communication synchronization. This definition of the Process-DEVS

operational semantics does not restrict implementations in that sense. Some

examples of how to implement different interleaving mechanisms are discussed in

section 5.5.

3.4
Summary

In order to design a framework for modeling and simulation in serious

games, section 3.2 discussed the identified requirements. That discussion led to

the conception of the process-oriented simulation (POS) paradigm, which helped

fulfilling the following requirements:

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

3 A Framework for Modeling and Simulation in Serious Games 79

• Integration of different formalisms: Modeling processes in a similar

way as objects in OOS and using the discrete-event paradigm for

modeling changes in time has been shown to be a good way of

integrating different simulation formalisms (Praehofer et al. 1993;

Vangheluwe 2000; Himmelspach and Uhrmacher 2007).

• Game-like user experience: Modeling an environment with

environment views allows one to represent the internals of the

environment in specialized data structures, such as those used by

game engines for increasing realism in audiovisual media, as

discussed in section 2.1.

• Modularity: The separation between state and behavior imposed by

POS, the use of environment views and the fact that processes are

modeled as objects in OOS contribute to increase the modularity and

composition capabilities of the dynamic models in serious games.

Even though the requirements originated from the domain of serious games

that simulate real situations, the decisions do not contain any specific semantics of

this domain. Therefore, it is quite possible that the decisions that resulted from the

discussion also apply to other simulation domains, especially those that require

highly specialized data structures for the environment and those that involve

processes of different nature interfering with each other.

The abstract framework was instantiated as the Process-DEVS modeling

and simulation formalism, formally presented in section 3.3.1 as an extension of

the original DEVS [Zeigler 2000]. Finally, section 3.3.2 formally defined the

operational semantics of Process-DEVS.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

