
1
Introduction

Traditionally, software engineering has focused on developing one sys-
tem at a time. In contrast, software product line engineering (Pohl et al. 2005,
Clements and Northrop 2001) focuses on the mass development of simi-
lar but different software systems in one specific market segment. Differ-
ences between software systems are often managed in terms of features
(Czarnecki and Eisenecker 2000), where one specific feature is considered as
a potential configuration option (Apel and Kästner 2009). Although the re-
sulting products are similar, each one is tailored to the specific needs of one
customer. We consider a software system derived from a software product line
a product. Products are described in terms of a set of feature.

Software product line engineering promises several benefits com-
pared to one-single-system software engineering (Pohl et al. 2005,
Clements and Northrop 2001). First, due to the systematic reuse of features
in several products, software product line engineering offers faster production
of customer-specific products with higher quality and lower costs. Second, the
level of flexibility achieved by software product lines allows companies to adapt
to changing markets and increment their portfolio quickly (Krueger 2001).
Especially, in the domain of enterprise software systems, in which market
changes frequently and the communication platforms are heterogeneous, op-
timized products can be fast produced to a specific environment or use case
(Recker et al. 2006).

While the massive production of customer-specific products from soft-
ware product lines brings many benefits, for most organizations, the associ-
ated risks, efforts, and costs might represent an adoption barrier. For exam-
ple, building the initial core assets requires a nontrivial investment. Moreover,
the adoption of new practices, processes, and tools also requires investment.
One way to reduce investment and eliminate the many of the adoption bar-
riers is to systematically extract the product line core assets from existing
source code (Krueger 2001). The idea is to identify and distinguish features
in previous developed products. Experience has shown that extract features
from existing source code is an efficient way to build a software product line

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 1. Introduction 12

(Kästner et al. 2008). First, because this practice demands more lightweight
technologies and techniques that support the reuse of existing source code
without much reengineering. Second, the adoption of lightweight technologies
and techniques reduces the need of drastic changes on organizational struc-
ture, leading organizations to reuse their existing software, tools, process and
practices.

Today, there are several means for identifying and distin-
guish features in existing products, ranging from code-oriented tech-
niques (Kästner et al. 2008, pure systems 2012) to model-driven ones
(Kelly and Tolvanen 2008, Voelter and Groher 2007). In practice, develop-
ers often rely on code-oriented techniques (Kästner et al. 2008). In such
techniques, they identify one feature code for example annotating the source
code with #ifdef Term and #endif directives, where Term stands for a
feature. Based on a set of feature provided as a description of the desired
product, developers can later derive customer-specific products using tools
that exclude the code related with non-selected features.

We refer to such mechanisms as code-oriented because they directly refer
to source code elements. Code-oriented techniques are attractive because they
provide a simple and reusable programming model. For example, the code
is annotated and removed. They are often easy to learn. The adoption is
also easy. Preprocessors are already included in many languages, for example.
Even modern techniques like CIDE (Kästner et al. 2008) and pure::variants
(pure systems 2012) are considered as lightweight technologies that are easy
to adopt in existing projects. Moreover, many code-oriented techniques are
language independent and provide a uniform way of annotating the source
code of different types of artifact. For example, preprocessors provide the same
mechanism (i.e., #ifdef Term and #endif directives) for annotating source
code elements of different granularity (e.g., classes, methods, attributes). The
same mechanisms are also used for annotating different types of artifacts (e.g.,
C code, Java code or XML and HTML files).

Nevertheless, in some situations, specially in the engineering of enterprise
software product lines, identifying feature code in existing source code might
be a laborious and error-prone task. It is so because the successful development
of modern enterprises software requires the convergence of multiple views.
Domain experts, interface designers, database experts and developers with
singular expertise and background, all take part in the process of building such
a software system. Their singularities must be managed via domain-specific
concepts. In this case, each participant of the development process has an
individual language to solve the problems specific to its expertise. Therefore, a

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 1. Introduction 13

remarkable property of enterprise software product lines is the reuse of a range
of implementation technologies in concert for addressing a series of concerns
(e.g., business process, state persistency, service orchestration, graphical user
interface).

Object-oriented framework (Greenfield et al. 2004, Booch 2004,
Fayad and Schmidt 1997) is an example of development technology where
software systems are made using domain-specific concepts as first-order con-
cepts. One of the main advantages of object-oriented frameworks is that
developers do not have to comprehend the implementation of the framework;
instead, they create software systems by writing code that instantiates the
framework-provided concept. The instantiation of the concepts require the
developers to perform implementation choices (e.g., writing some XML code
our implementing a defined interface) that are governed by the framework’s
programming interface.

Unfortunately, the knowledge required to identify feature code in the
presence of domain concepts cannot be well captured by current code-oriented
techniques. First, they do not provide views that visually discriminate the
base code from feature code in terms of the used domain concepts. This is
essential because code instantiating concepts often crosscut the entire product
line source code and is also entangled with the code of other related concept
instances. Second, code-oriented techniques are designed to operate at the
level of programming language, without observing the existence of concepts
and their programming interfaces. As a consequence, using the current code-
oriented techniques, developers can easily introduce errors when they are
identifying feature code. In general, such errors are very difficult to detect.

Despite the widespread use of code-oriented techniques,
in fact, the model-driven perspective (Kelly and Tolvanen 2008,
Voelter and Groher 2007) tends to be promising for identifying feature code in
the context of enterprise software product lines. The model-driven techniques
use domain-specific models to encapsulate the knowledge about feature code.
They provide a concrete visualization of domain-specific concepts and their
assignment to features, which promote improvements to the understandability
of the software product line in general. The models developed can be also
checked for correctness (semi-)automatically. This characteristic ensures that
products always will meet a set of desired constraints. The constraints can
be both rules applied over feature composition and framework’s programming
interface that governs the concept instantiation task.

However, the model-driven programming model might imposes several
obstacles to efficiently identify features in existing source code. First, this

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 1. Introduction 14

programming model uses general-purpose transformation languages to assign
one feature to its respective source code elements. This knowledge is used
further to configure the source code in accordance with a set of desired
features. As a drawback, it forces developers to learn intricate details of the
model-driven technique. For example, as transformation languages are often
based on abstract or concrete syntax manipulation (Beydeda and Book 2005),
they require detailed knowledge of the metamodel where the product line is
expressed. In most of cases, it would be inadvisable to force the developers to
manipulate the syntax of the models. Moreover, transformations are language-
specific, which make them harder to adapt and adjust to different usage
scenarios. This obligates developers to create transformations that are specific
for each new product line. Therefore, they do not provide a simple, uniform
and easy to reuse technique, in contrast to code-oriented.

In this thesis we argue that the existing support for engineering soft-
ware product line in the context of enterprise software system can be
significantly improved by taking a language-oriented perspective. To ob-
tain the benefits of the domain-specific modeling (Kelly and Tolvanen 2008,
Voelter and Groher 2007) and code-oriented techniques (Kästner et al. 2008,
pure systems 2012) we propose a novel technique based on domain knowledge
modeling languages (DKMLs). DKML is a refinement of the concept of domain-
specific languages. While domain-specific languages is a set of models that can
be expressed using a collection of concepts and their mutual relations within
a certain domain, DKMLs also delineate how to identify features in existing
source code as domain-specific concepts.

For that, they provide means of specifying clear references across de-
sign boundaries, that is, the overlaps between source code instantiating
framework-provided concepts and its conceptual definition. As a result, these
languages offer concretely means of visualizing features in terms of domain
concepts and consistency checking, always providing a uniform and reusable
programming model. Our proposal encompasses previous domain specific-
based techniques such as Language-oriented Programming (Rosenan 2010,
Völter 2011, Völter and Visser 2011) and Framework-specific modeling lan-
guages (Antkiewicz and Czarnecki 2006).

We concretely present this idea in a tool, called GenArch+, that has
its architecture based on an universal configuration schema. This schema is
essential to support the easy constructions of DKMLs. Given the well-defined
semantics of DKMLs and due to the universal configuration schema, we also
propose some initial editor operators that support the developers during the
software product line implementation activity. Finally, we investigate the use of

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 1. Introduction 15

meta-data attached to DKMLs abstract syntax in order to provide mechanisms
for automating the creation of domain knowledge models from existing source
code.

We distinguish four different scenarios in which DKMLs improve visu-
alization and support the enforcement of the programming interface provided
by the frameworks. At the most basic level, the developer can simply visual-
ize what source code elements belong to a feature as framework concepts and
ensure that they are annotated accordingly. A more advanced support is visu-
alizing and checking references between concept instances in which both must
be identified as implementing compatible features. The third scenario involves
searching for and validating the use of concept instances inside code customiza-
tion. Finally, DKMLs support the developers reasoning about concept config-
uration overloading in scenarios in which the constraints that enforce concept
instantiation are context sensitive.

Furthermore, we evaluate the use of DMKLs in software product line
development and the exemplar languages. The evaluation is both empirical
and analytical. The empirical evaluation involved measuring the influence of
DKMLs on configuration knowledge comprehensibility, modularity and com-
plexity. The evaluation showed that DKMLs in fact help to reduce the replica-
tion and verbosity when compared with traditional code-oriented techniques.
The analytical evaluation focused on the validity of the languages, evaluating
in what extends their application in software product line development. The
results showed that in fact DKMLs improve configuration knowledge compre-
hension.

1.1
Contributions

We claim the following punctual research contributions of this thesis.

– The concept of DKMLs and its integration to a product line engineering
process based on the extractive adoption approach.

– The identification and comprehensive description of the heterogeneous
configuration knowledge problem.

– The analysis of four different scenarios in which DKMLs improve vi-
sualization and support the enforcement of the programming interface
provided by the frameworks.

– Nine of the exemplar languages: Spring DKML, Jadex DKML, Struts
DKML, Hibernate DKML, Spring-OSGi DKML, Spring MVC DKML.

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 1. Introduction 16

– Empirical evaluation of the use of domain-specific modeling on the
context of enterprise software product lines.

– The generic infrastructure for building software product lines using
DKMLs and a set of algorithms for checking the entire software product
line for consistency and reverse engineering DKMs from existing source
code.

1.2
Outline of the Thesis Structure

Chapter 2: Problem Formulation. This Chapter discusses the problem
addressed in this thesis. In particular, it illustrates some scenarios where
the heterogeneous configuration knowledge problem occurs and provide some
evidences that show that such a problem might be recurrent in practice. This
Chapter also presents the main limitations of existing related work.

Chapter 3: Supporting Heterogeneous Configuration Knowledge of Soft-
ware Product Lines with Domain Knowledge Modeling Languages. This Chap-
ter presents the key ideas behind engineering enterprise software product lines
with domain-knowledge modeling languages. It explains how DKMLs improve
feature code visualization by putting in evidence which source code elements
belong to a feature as domain concepts. Finally, it describes how framework’s
programming interfaces encoded in DKMLs support consistency checking and
guided software product line development.

Chapter 4: GenArch+: Building Software Product Lines with Domain
Knowledge Modeling Languages. This Chapter completes the effort to improve
the engineering of enterprise software product lines. It presents the proposed
code-oriented technique based on DKMLs with tool support. Finally, it de-
scribes that DKMLs elements represent code patterns in the source code and
that domain knowledge model can be automatically projected by attaching
such patterns definition to some elements of the DKML abstract syntax.

Chapter 5: Evaluation. This chapter presents an evaluation of three differ-
ent code-oriented techniques regarding some criteria: modularity, complexity,
comprehensibility. It provides some evidences that the use of domain knowledge
models reduces the number of features assignments but significantly increases
the complexity of the software product line implementation. It also shows that,
in general, the use of domain knowledge models does not require for develop-
ers less time to comprehend the product line. Nevertheless, it demonstrates
that domain-knowledge models are useful for developers when they need to
correctly comprehend the feature assignments.

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 1. Introduction 17

Chapter 6: Final Remarks and Future Work. This chapter presents the
final remarks and future work.

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA




