
4
Fragmentation Simulation

4.1
Simulation definitions

We propose a simple but effective finite element mesh representation for

fracture, microbranching, and fragmentation simulations. For a 2D simulation,

we have given support for linear (T3) and quadratic (T6) triangular elements.

The finite element types include bulk elements the corresponding cohesive

elements, which are explicitly represented as an independent element (3).

Our data structure implicitly represents facets corresponding to interfaces

between two adjacent bulk elements. The intrinsic cohesive model assumes

that all cohesive elements are embedded in the mesh before the simulation

begins (21). This leads to an unchanged mesh connectivity during the whole

simulation process, but introduces an artificial reduction of stiffness. We adopt

an extrinsic cohesive model, which assumes that separation between bulk

elements only occurs when the interfacial traction reaches a finite strength

(27, 21). Challenges emerge when using an extrinsic model, since it requires

an adaptive insertion of cohesive elements and topological changes of finite

element mesh during the simulation process.

Figure 4.1: T3 mesh attributes belonging to the simulation.

The problem of fracture and fragmentation evolution occurs when a

strain is applied on a finite element model that may contain an initial

notch. During the simulation, internal, external, and cohesive forces at the

nodes generate stresses along element interfaces, which may lead to fracture

and fragmentation evolution. New nodes and cohesive elements are created

whenever a facet fractures. Node attributes such as displacement, position,

velocity, and acceleration are also updated from the internal, external, and

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA



Many-core Fragmentation Simulation 19

cohesive forces. In order to obtain a precise and stable simulation, one must

properly adjust parameters such as material properties and adopt small time

steps together with a highly discretized model.

1: Compute Stiffness Matrix

2: Update Nodal Mass

3: current step ← 0

4: while current step <= maximum step do

5: Update Displacements

6: if current step == check step then

7: Compute Stresses

8: if stresses > stress threshold then

9: Insert Cohesive Elements

10: Update Nodal Masses

11: end if

12: end if

13: Compute Internal Forces

14: Compute Cohesive Forces

15: Update Velocities and Accelerations

16: Update Boundary Conditions

17: current step + = 1

18: end while

Table 4.1: Fragmentation algorithm

4.2
Pre-processing and updating

Given an initial triangular decomposition of the domain, during the pre-

processing phase, mid-side node positions are computed in the mesh. This is

done by linearly interpolating each facet edge nodes’ positions. The stiffness

matrix is then calculated for each bulk element. We consider the stiffness

matrix to remain constant during the whole simulation. Each element’s lumped

mass matrix is initialized before the simulation. The lumped mass matrix

contains mass values relative to each bulk element node. Therefore, the nodal

masses are updated from the lumped mass matrix by going through the node’s

incident elements. The lumped mass matrix has to be upated every time the

mesh changes. This occurs when cohesive element insertion results from a

fractured facet between two bulk elements.

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA



Many-core Fragmentation Simulation 20

The simulation loop starts as the nodal displacements are updated with

previous nodal velocity and accelerations using Euler´s integration rule shown

in Equation 4-1.

⃗ui+1 = u⃗i + v⃗i∆t+
1

2
a⃗i∆t2 (4-1)

4.3
Stresses

The stresses computation is the most costly step of the simulation. At a

certain number of steps (we use ten), we compute the stress and strain at each

bulk element node from their Gauss point evaluations using an extrapolation

method. This whole procedure almost dominates the simulation time with

excessive arithmetic operations and could be considered the bottleneck of the

simulation loop if executed for all steps. To compute the stresses and strains

at Gauss points of each bulk element, (for each of the three Gauss points

considered in this work) in 2D, we first obtain the shape functions and its

derivatives, compute the Jacobian matrix and its inverse, and compute the

strains and displacements relation matrix. Using the material properties of

the element, the constitutive matrix is calculated, followed by the stresses and

strains at the Gauss points.

σGelement
=

σ1,1 σ1,2 σ1,3 σ1,4

σ2,1 σ2,2 σ2,3 σ2,4

σ3,1 σ3,2 σ3,3 σ3,4


3x4

(4-2)

Using an extrapolation method, the stresses and strains matrices at the

elements’ nodes are obtained using the previous calculated stresses and strains

matrices at the Gauss points and the element shape functions.

Unode i = Shape function

σnode 0 = Unode 0 ∗ σGelement j
(4-3)

(
σxx σxy σyx σyy

)
node i

=

u1,1

u1,2

u1,3


T

node i

σ1,1 σ1,2 σ1,3 σ1,4

σ2,1 σ2,2 σ2,3 σ2,4

σ3,1 σ3,2 σ3,3 σ3,4


3x4

(4-4)

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA



Many-core Fragmentation Simulation 21

The principal stresses and their directions are calculated for each node.

The principal stresses at each facet between two bulk elements are checked by

analyzing if they exceed a limit for each of its three nodes. Average cohesive

strengths are computed to check for cohesive element insertion. We indicate

that a facet is fractured if a given stress value exceeds a threshold and the

cohesive strength exceeds a material dependent limit.

4.4
Insertion of cohesive elements

Insertion of cohesive elements imposes topological changes in the mesh

(21). After inserting the new cohesive element, each facet node is checked for

duplication. Figure 4.2 illustrates a CPU algorithm for duplicating nodes on

a T3 mesh. In 2D, the facet mid-side node must be duplicated. However, this

assertion does not apply to the corner nodes, which must be checked by going

through incident elements to which they belong. For each fractured facet, we

verify if each of its corner nodes needs duplication. From a node, we traverse

all its incident elements starting with one of the two adjacent elements the

facet belongs to. If we reach the other adjacent element to the facet, the node

is not duplicated. However, if not reached, the node must be duplicated. The

global node counter is incremented and the new node index is retrieved from it.

Once again we must traverse the adjacent elements to update incidence with

the new node index. Finally, the facet mid-side node is updated with the node

index also retrieved from the node incremented global counter.

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA



Many-core Fragmentation Simulation 22

Figure 4.2: Cohesive element insertion algorithm on a T3 mesh. (1) Mesh with

initial facets that need to be fractured. Elements belonging to each node are

traversed and cohesive element is inserted but no node is duplicated. (2, 3) The

other fractured facet is checked for node duplication, the cohesive element is

inserted and the node is marked as needing duplication. (4) Node is duplicated

by traversing through the elements and updating the node index of the node

belonging to them.

If there were new cohesive elements added to the mesh, the topological

changes indicate that some nodal masses also changed since bulk elements loose

adjacency relationship. Therefore, the nodal mass must be updated again like

on the pre-processing phase. We then initialize the nodal internal, external,

and cohesive forces for future computations.

4.5
Internal and cohesive forces

The nodal internal force computation is another bottleneck for the

simulation loop, since it must be done every step and requires a large number

of arithmetic operations. The internal force vector results from a product of the

stiffness matrix and the element displacement vector containing displacements

for its six nodes in a T6 mesh, as shown in Equation 4-5. This means we

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA



Many-core Fragmentation Simulation 23

are multiplying a 12x12 matrix with a 12x1 vector, and it greatly reduces the

performance of our parallel implementation due to its numerous global memory

accesses.

Rint12,12 =


k1,1 k1,2 · · · k1,12

k2,1 k2,2 · · · k2,12
...

...
. . .

...

k12,1 k12,2 · · · k12,12



u1x

u1y

...

u6y

 (4-5)

The cohesive forces are then calculated by traversing through all cohesive

elements and calculating their contributions to each node attached to them.

The element vector of the deformed configuration is obtained, followed by the

cohesive separations in the local coordinate system. Then, the separations and

tractions at each Gauss point are calculated, together with the cohesive shape

functions. Finally, the nodal cohesive force vector is obtained from cohesive

traction and shape function. Together with the internal force and stresses,

calculating the cohesive forces is one of the most costly computation steps

within the simulation loop.

Accelerations are then computed from the cohesive and internal forces

and nodal masses, which are then used to update the nodal velocities according

to the following equations:

a⃗i = ⃗ai+1

⃗ai+1 =
⃗Rcohi
− ⃗Rinti

mi

⃗vi+1 = v⃗i +
1

2
(a⃗i + ⃗ai+1)∆t (4-6)

Boundary conditions are then applied for each node belonging to the external

model boundary by either imposing velocity or nodal force.

4.6
Node and element update

One key topological adjacent information needed to perform the simu-

lation is the set of adjacent elements of a given node. This is necessary, for

instance, to update element incidence when a node is duplicated due to the

insertion of a new cohesive element. During the simulation step, we can also

identify computations where such topological relationship can be used. As an

example, we can consider the mass associated to a node, which depends on

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA



Many-core Fragmentation Simulation 24

contributions of all adjacent elements. However, accumulating contributions of

adjacent elements to nodes is more efficiently handled by traversing all the ele-

ments in the model. For each element, we then accumulate its contribution to

all incident nodes. In the end, the contributions of all corresponding adjacent

elements will be accumulated for each node. In a serial code, this algorithm

is straightforward and very efficient. In a parallel environment, writing con-

flicts arise, and one needs to ensure consistency, as we shall discuss. Figure

4.3 illustrates both strategies to compute nodal information from its adjacent

elements.

Figure 4.3: Node update algorithms. Incident elements traversal, or gather (1)

and element sweep, or scatter (2).

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA


	Many-core Fragmentation Simulation
	Abstract
	Contents
	Introduction
	Related Work
	CUDA and GPU Concepts
	GPU Architecture
	Optimization

	Fragmentation Simulation
	Simulation definitions
	Pre-processing and updating
	Stresses
	Insertion of cohesive elements
	Internal and cohesive forces
	Node and element update

	Data Structure
	Retrieving adjacency relationship

	Parallel Implementation
	Coloring model
	Pre-processing and update
	Stresses
	Insertion of cohesive elements
	Internal Forces
	Cohesive forces and simulation outcome
	Overview

	Experimental Results
	Insertion of cohesive elements
	Fragmentation simulation

	Conclusion
	Bibliography
	Optimized insertion of cohesive elements



