
9
Bibliography

[1] CECKA, C.; LEW, A. J. ; DARVE, E. International Journal for

Numerical Methods in Engineering. Assembly of finite element

methods on graphics processors, journal, 2010.

[2] CELES, W.; PAULINO, G. H. ; ESPINHA, R. Journal of Computing

and Information Science in Engineering. Efficient handling of implicit

entities in reduced mesh representations, journal, v.5, n.4, p. 348–359, 2005.

[3] CELES W, PAULINO GH, E. R. Int J Numer Methods Eng. A

compact adjacency-based topological data structure for finite element mesh

representation, journal, v.64, p. 15291565, 2005.

[4] CIRAK, F.; ORTIZ, M. ; PANDOLFI, A. Computer Methods in

Applied Mechanics and Engineering. A cohesive approach to thin-

shell fracture and fragmentation, journal, v.194, n.21-24, p. 2604 – 2618,

2005. Computational Methods for Shells.

[5] DE SOUZA LIMA ESPINHA, R. Suporte topológico em paralelo

para malhas de elementos finitos em análises dinâmicas de

fratura e fragmentação. 2011. PhD thesis - PUC-Rio.

[6] DOOLEY, I.; MANGALA, S.; KALE, L. ; GEUBELLE, P. J. Sci.

Comput. Parallel simulations of dynamic fracture using extrinsic cohesive

elements, journal, v.39, p. 144–165, April 2009.

[7] ESPINHA, R.; CELES, W.; RODRIGUEZ, N. ; PAULINO, G. Engineer-

ing with Computers. Partops: compact topological framework for parallel

fragmentation simulations, journal, v.25, p. 345–365, 2009. 10.1007/s00366-

009-0129-2.

[8] GEBREMEDHIN, A. H.; MANNE, F.; MANNE, G. F. ; OPENMP, P.

Scalable parallel graph coloring algorithms, 2000.

[9] GÖDDEKE, D.; STRZODKA, R. ; TUREK, S. Accelerating double

precision FEM simulations with GPUs. In: PROCEEDINGS OF ASIM

2005 - 18TH SYMPOSIUM ON SIMULATION TECHNIQUE, Sep 2005.

[10] G.T., C.; M., O. International Journal of Solids and Structures.

Computational modelling of impact damage in brittle materials, journal, v.33,

n.20, p. 2899–2938, 1996.

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA



Many-core Fragmentation Simulation 53

[11] KIRK, B. S.; PETERSON, J. W.; STOGNER, R. H. ; CAREY, G. F.

Eng. with Comput. libmesh: a c++ library for parallel adaptive mesh

refinement/coarsening simulations, journal, v.22, p. 237–254, December 2006.

[12] KIRK, D. B.; HWU, W.-M. W. Programming Massively Parallel

Processors: A Hands-on Approach. 1st. ed., San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc., 2010.

[13] KLEIN, P. A.; FOULK, J. W.; CHEN, E. P.; WIMMER, S. A. ; GAO,

H. J. Theoretical and Applied Fracture Mechanics. Physics-based

modeling of brittle fracture: cohesive formulations and the application of

meshfree methods, journal, v.37, n.1-3, p. 99 – 166, 2001.

[14] KOMATITSCH, D.; MICHÉA, D. ; ERLEBACHER, G. J. Parallel

Distrib. Comput. Porting a high-order finite-element earthquake modeling

application to nvidia graphics cards using cuda, journal, v.69, p. 451–460, May

2009.

[15] LAWLOR, O.; CHAKRAVORTY, S.; WILMARTH, T.; CHOUDHURY,

N.; DOOLEY, I.; ZHENG, G. ; KALÉ, L. Engineering with Com-

puters. Parfum: a parallel framework for unstructured meshes for scalable dy-

namic physics applications, journal, v.22, p. 215–235, 2006. 10.1007/s00366-

006-0039-5.

[16] MICIKEVICIUS, P. 3D finite difference computation on GPUs

using CUDA. In: Kaeli, D. R.; Leeser, M., editors, PROCEEDINGS OF

2ND WORKSHOP ON GENERAL PURPOSE PROCESSING ON GRAPHICS

PROCESSING UNITS, ACM International Conference Proceeding Series, p.

79–84. ACM, 2009.

[17] CUDA C Programming Guide 3.2, Nov. 2010.

[18] ORTIZ, M.; PANDOLFI, A. International Journal for Numerical

Methods in Engineering. Finite-deformation irreversible cohesive ele-

ments for three-dimensional crack-propagation analysis, journal, v.44, n.9, p.

1267–1282, 1999.

[19] PANDOLFI, A.; ORTIZ, M. Engineering with Computers. Solid

modeling aspects of three-dimensional fragmentation, journal, v.14, p. 287–

308, 1998. 10.1007/BF01201761.

[20] PARK, K.; PAULINO, G. H. ; ROESLER, J. R. Journal of the

Mechanics and Physics of Solids. A unified potential-based cohesive

model of mixed-mode fracture, journal, v.57, n.6, p. 891 – 908, 2009.

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA



Many-core Fragmentation Simulation 54

[21] PAULINO, G. H.; CELES, W.; ESPINHA, R. ; ZHANG, Z. J. Eng.

with Comput. A general topology-based framework for adaptive insertion

of cohesive elements in finite element meshes, journal, v.24, p. 59–78, January

2008.

[22] RADOVITZKY, R.; SEAGRAVES, A.; TUPEK, M. ; NOELS, L. Com-

puter Methods in Applied Mechanics and Engineering. A scalable

3d fracture and fragmentation algorithm based on a hybrid, discontinuous

galerkin, cohesive element method, journal, v.200, n.1-4, p. 326 – 344, 2011.

[23] RODRIGUEZ-NAVARRO, J.; SUSIN, A. Eurographics. Non structured

meshes for cloth gpu simulation using fem, journal, p. 1–7, 2006.

[24] SANDERS, J.; KANDROT, E. CUDA by Example: An Introduction

to General-Purpose GPU Programming. 1. ed., Addison-Wesley

Professional, July 2010.

[25] SEOL, E. S.; SHEPHARD, M. S. Engineering With Computers.

Efficient distributed mesh data structure for parallel automated adaptive

analysis, journal, v.22, p. 197–213, 2006.

[26] WELSH, D. J. A.; POWELL, M. B. The Computer Journal. An upper

bound for the chromatic number of a graph and its application to timetabling

problems, journal, v.10, n.1, p. 85–86, 1967.

[27] ZHANG, Z.; PAULINO, G. H. ; CELES, W. International Journal for

Numerical Methods in Engineering. Extrinsic cohesive modelling of

dynamic fracture and microbranching instability in brittle materials, journal,

v.72, p. 893–923, 2007.

[28] ZHOU, F.; MOLINARI, J. F. International Journal for Numerical

Methods in Engineering. Dynamic crack propagation with cohesive

elements: a methodology to address mesh dependency, journal, v.59, n.1,

p. 1–24, 2004.

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA



A
Optimized insertion of cohesive elements

To optimize the cohesive elements insertion and node duplication, and also

avoid writing on the same global memory address using the atomic operation, we

tested a new strategy where each thread block will have its own node counter.

Each thread within the block is responsible for updating the node counter that

resides in shared memory, and only one thread in the block (not necessarily the

first) will be responsible for accumulating the shared counter on the global counter

residing in global memory. The advantages of this strategy are that writing in shared

memory is much faster and fewer number of threads will be updating the same

global memory address simultaneously as well as few threads updating the same

node counter in shared memory. Retrieving the new node index is done by using

the atomic functions return values. For each thread, when adding one to the block

counter in shared memory, we retrieve the number of block’s duplicated nodes until

that moment, representing the node index offset within the block. Threads are then

synchronized. One thread in each block adds its block counter to the global node

counter and the atomic function returns the number of nodes immediately before

the sum. This result represents the current number of nodes for all of the other

blocks. Threads are synchronized, and adding the atomic intrinsic result from global

counter with the shared counter index will give the current new node index for this

thread. This strategy is best taken use for when many nodes are duplicated (such as

test case reported in Section 7.1). In actual simulation, however, cohesive element

insertion is checked at a number of steps in which few nodes are duplicated, so

the increase in performance is unremarkable. Figure A.1 illustrates the algorithm

for retrieving the node index inside the current block. Using the atomic function to

accumulate the shared memory counter when accumulating the number of nodes

inside the current block gives us the node offset inside the block. Figure A.2

illustrates retrieving the node index offset from all other blocks. Using the atomic

function to add the current number of nodes in the global counter with the current

number of nodes inside the block (stored in the shared node counter) gives us the

current node offset for this block. Adding it with the current node offset inside the

block gives the new node index. Table A.1 presents the algorithm.

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA



Many-core Fragmentation Simulation 56

Figure A.1: Getting part of the new node index for each thread node counter

offset inside the block. This value is added to the current node counters from

each block.

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA



Many-core Fragmentation Simulation 57

Figure A.2: Getting part of the new node index from current block node

counters.

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA



Many-core Fragmentation Simulation 58

1: n← Node to duplicate

2: if first thread then

3: Number of New Nodes Per Block ← 0

4: Block Offset ← 0

5: end if

6: syncthreads

7: Node Thread Offset ← atomicAdd(Number of New Nodes Per Block, 1)

8: syncthreads

9: if first thread then

10: Block Offset ← atomicAdd(Global Node Counter, Number of New Nodes

Per Block)

11: end if

12: syncthreads

13: New Node Index ← Block Offset + Node Thread Offset

14: NodeArray[New Node Index] = n

Table A.1: Node index retrieving and appending using shared memory when

inserting cohesive elements.

To test the optimized insertion of cohesive elements, we fractured 5 to 5

percent of the facets (as discussed in Section 7.1) and launched a kernel for each

color. To color the mesh, we used the Welsh Powell algorithm (26). It is important

to highlight the performance boost when using a node counter in shared memory

for each block. The results below show that the speedup rose, indicating that

thousands to millions of threads updating the same memory address simultaneously

is a bottleneck, and that shared memory’s fast access as well as few threads

updating the same address can be a useful technique when duplicating nodes. Table

A.2 shows the GPU results for T6 disc mesh and its refined versions compared to

the CPU results, as well as mesh attributes before and after the simulation. Graphs

A.3 and A.4 compare the GPU speedup and time of using and not using atomic

functions in shared memory when inserting cohesive elements in T6 disc mesh and

its refined versions.

Bulk elements Initial nodes Final nodes CZ elements CPU Time (s) GPU Time (s) Speedup

240,000 481,200 1,440,000 359,400 9.29 0.0363 255.9

960,000 1,922,400 5,760,000 1,438,800 36.946 0.0778 474.9

2,160,000 4,323,600 12,960,000 3,238,200 84.94 0.1161 731.6

3,840,000 7,684,800 23,040,000 5,757,600 150.04 0.1761 852.0

Table A.2: Mesh attributes performance results for T6 disc mesh [7.1] and its

refined versions.

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA



Many-core Fragmentation Simulation 59

Figure A.3: Cohesive elements insertion time for T6 meshes using atomic

functions in global or shared memory.

Figure A.4: Cohesive elements insertion speedup for T6 meshes using atomic

functions in global or shared memory.

DBD
PUC-Rio - Certificação Digital Nº 0921324/CA


	Many-core Fragmentation Simulation
	Abstract
	Contents
	Introduction
	Related Work
	CUDA and GPU Concepts
	GPU Architecture
	Optimization

	Fragmentation Simulation
	Simulation definitions
	Pre-processing and updating
	Stresses
	Insertion of cohesive elements
	Internal and cohesive forces
	Node and element update

	Data Structure
	Retrieving adjacency relationship

	Parallel Implementation
	Coloring model
	Pre-processing and update
	Stresses
	Insertion of cohesive elements
	Internal Forces
	Cohesive forces and simulation outcome
	Overview

	Experimental Results
	Insertion of cohesive elements
	Fragmentation simulation

	Conclusion
	Bibliography
	Optimized insertion of cohesive elements



