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A
Optimized insertion of cohesive elements

To optimize the cohesive elements insertion and node duplication, and also

avoid writing on the same global memory address using the atomic operation, we

tested a new strategy where each thread block will have its own node counter.

Each thread within the block is responsible for updating the node counter that

resides in shared memory, and only one thread in the block (not necessarily the

first) will be responsible for accumulating the shared counter on the global counter

residing in global memory. The advantages of this strategy are that writing in shared

memory is much faster and fewer number of threads will be updating the same

global memory address simultaneously as well as few threads updating the same

node counter in shared memory. Retrieving the new node index is done by using

the atomic functions return values. For each thread, when adding one to the block

counter in shared memory, we retrieve the number of block’s duplicated nodes until

that moment, representing the node index offset within the block. Threads are then

synchronized. One thread in each block adds its block counter to the global node

counter and the atomic function returns the number of nodes immediately before

the sum. This result represents the current number of nodes for all of the other

blocks. Threads are synchronized, and adding the atomic intrinsic result from global

counter with the shared counter index will give the current new node index for this

thread. This strategy is best taken use for when many nodes are duplicated (such as

test case reported in Section 7.1). In actual simulation, however, cohesive element

insertion is checked at a number of steps in which few nodes are duplicated, so

the increase in performance is unremarkable. Figure A.1 illustrates the algorithm

for retrieving the node index inside the current block. Using the atomic function to

accumulate the shared memory counter when accumulating the number of nodes

inside the current block gives us the node offset inside the block. Figure A.2

illustrates retrieving the node index offset from all other blocks. Using the atomic

function to add the current number of nodes in the global counter with the current

number of nodes inside the block (stored in the shared node counter) gives us the

current node offset for this block. Adding it with the current node offset inside the

block gives the new node index. Table A.1 presents the algorithm.
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Figure A.1: Getting part of the new node index for each thread node counter

offset inside the block. This value is added to the current node counters from

each block.
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Figure A.2: Getting part of the new node index from current block node

counters.
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1: n← Node to duplicate

2: if first thread then

3: Number of New Nodes Per Block ← 0

4: Block Offset ← 0

5: end if

6: syncthreads

7: Node Thread Offset ← atomicAdd(Number of New Nodes Per Block, 1)

8: syncthreads

9: if first thread then

10: Block Offset ← atomicAdd(Global Node Counter, Number of New Nodes

Per Block)

11: end if

12: syncthreads

13: New Node Index ← Block Offset + Node Thread Offset

14: NodeArray[New Node Index] = n

Table A.1: Node index retrieving and appending using shared memory when

inserting cohesive elements.

To test the optimized insertion of cohesive elements, we fractured 5 to 5

percent of the facets (as discussed in Section 7.1) and launched a kernel for each

color. To color the mesh, we used the Welsh Powell algorithm (26). It is important

to highlight the performance boost when using a node counter in shared memory

for each block. The results below show that the speedup rose, indicating that

thousands to millions of threads updating the same memory address simultaneously

is a bottleneck, and that shared memory’s fast access as well as few threads

updating the same address can be a useful technique when duplicating nodes. Table

A.2 shows the GPU results for T6 disc mesh and its refined versions compared to

the CPU results, as well as mesh attributes before and after the simulation. Graphs

A.3 and A.4 compare the GPU speedup and time of using and not using atomic

functions in shared memory when inserting cohesive elements in T6 disc mesh and

its refined versions.

Bulk elements Initial nodes Final nodes CZ elements CPU Time (s) GPU Time (s) Speedup

240,000 481,200 1,440,000 359,400 9.29 0.0363 255.9

960,000 1,922,400 5,760,000 1,438,800 36.946 0.0778 474.9

2,160,000 4,323,600 12,960,000 3,238,200 84.94 0.1161 731.6

3,840,000 7,684,800 23,040,000 5,757,600 150.04 0.1761 852.0

Table A.2: Mesh attributes performance results for T6 disc mesh [7.1] and its

refined versions.
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Figure A.3: Cohesive elements insertion time for T6 meshes using atomic

functions in global or shared memory.

Figure A.4: Cohesive elements insertion speedup for T6 meshes using atomic

functions in global or shared memory.
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