
4
Description of the Repository

Since there are dissimilar implementation architectures, platforms and

programming languages to develop software agents, to model heterogeneous

agents in a generic way is a challenge. In this section, we analyze the main

requirements that were used to propose an innovative methodology to allow the

reuse of agent-based artifacts. We develop a semantic-based approach for building

repositories of a broad variety of agent-oriented artifacts which are potentially

reusable in many situations and across various application domains. Based on this

approach, we implement a prototype repository capable of providing an effective

identification, representation, storing and retrieval mechanism of reusable agent

components modeled mainly according to their functionalities, structure and

interfaces. Next, we describe our developed repository and its internal

architecture, and give an explanation about the methods used for agent component

modeling, recommendation, subscription and retrieval.

Our notion of the development for agent reuse process is briefly illustrated

in Figure 1, in which there are four stages to be followed using the knowledge

base, which starts from identifying agent components related to a given

description, modeling and classifying agents, searching reusable agent

components according some parameter and delivering them to the end-user.

Figure 1: General Process of Development for Agent Reuse.

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 4 Description of the Repository 45

The identification of a software agent given a user’s requirement is

elementary based on the functionalities and interfaces of the agent. We identify

some attributes of an agent which are expected to be reusable. These properties

include a set of common functionalities, well-defined interfaces, general

descriptions, and the ability to be reusable in several different software

applications.

One way to make agents easier to find and retrieve from the repository is

using metadata. In case of software reuse, metadata is a representation that

describes a software asset from all aspects including how to use it and how it

relates to other assets which helps locating an asset and determining if it is

suitable to be used. Our metadata avoids the fact of having a purely textual

specification of an agent. We use semantic web technologies to represent the

agents, offering also a methodology for building an agent-oriented system, with a

focus on an agent’s detailed specification.

The classification process employs natural language and domain knowledge

to support the potential user’s selection process and contributes to the

development of a standard vocabulary for software attributes. A value of a

controlled and structured vocabulary relies on a predefined set of keywords used

as indexing terms. These keywords are derived and defined by software engineers,

and designed to best describe or represent concepts relevant to the application

domain.

The system provides an interface that implements the searching and

browsing mechanisms to allow the user to view and browse identifying agents that

offer certain functions in a particular domain category or with particular

specification, furthermore submit search queries. The user query, made in natural

language, is translate into semantic representation formats in order to overcome

the keyword-based barrier, and augmenting retrieval recall and precision. The

search process not only discovers the requested artifacts based on a user query,

but additional relevant ones that the user may not be aware of. One of the

difficulties in the search process is mainly to define the criterion for measuring the

relevance of an agent respect to a query. This approach enhances the retrieval by

semantically matching between a user query semantic representation and agent-

oriented artifact semantic descriptions against a domain ontology.

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 4 Description of the Repository 46

The task of searching artifacts, in our case, is supported by a

recommendation system, whose facility provides assistance to finding artifacts by

employing hyper-textually connected data.

In contrast to existing repositories that only retrieve a limited set of artifacts,

the proposed meta-model enables the recommendation of interrelated agents that

advance the search process and the subscription of agent specific application

domains by users. These subscriptions will update users when new agents are

inserted or another modification is realized in their domains.

Accordingly, we posit that applying a semantically enhanced approach to

agent model, classification, sharing, and searching will significantly increase the

efficiency of retrieving software agent-oriented artifacts.

4.1.
Architecture of the Repository

The reuse in the agent-oriented architecture relies on a set of related

specifications of agents, which defines how reusable agents should be specified

and advertised to users. These specifications explain how agents can be

discovered and reused, and how they interact. A critical step in the process of

reusing existing agent-based artifacts for building applications is the discovery of

potentially relevant artifacts.

Our repository does not only facilitate retrieving candidate agent

components which match the query, but also permits browsing among the

components that share some functionality or are in the same application domain.

Moreover, the repository proposes a recommendation system of agent components

that are related according some predefined parameters and offers a subscription

service of agents grouped in categories. Figure 2 summarizes an overview of the

repository with the main operations that can be executed on it.

Hence, the main goal of the repository is to model, classify and retrieve

existing agent components into various groups based on their characteristics.

Users can search through semantic-based retrieval mechanisms for appropriate

agent components from the repository according to one or more characteristics.

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 4 Description of the Repository 47

Figure 2: Overview of the Repository.

In the repository, agent components can be added (self-contained and

encapsulated in a package JAR or ZIP files, for example), edited and replaced by

newer versions over time meaning that multiple versions of the same agent

component may exist simultaneously in the system. The repository has support for

the following operations on agent components.

 Register: In order to register an agent component, a description of the

agent has to be provided by the user. Once the agent is uploaded, other

users of the system are notified through their preferred notification

channel (email or RSS). Users can edit only agent components added by

them. Users that have already made use of earlier versions of this edited

agent component are informed about the change and can decide whether

to update their agent instance or not. Each update is validated to avoid

repeated components with the same functionalities in different shapes,

which might provoke ambiguity in the search and avoidable recurrent

development.

 Indexing: After an agent component is registered, automatically the

information related to the component is indexed and its index terms are

extracted as well, to help the recommendation and search processes. An

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 4 Description of the Repository 48

index term is a word or group of consecutive words that captures the

essence topic of a document [50]. In order to properly index agent

components, a semantic knowledge is used rather than only operation

and attribute-level names, types, formal specifications or natural

language comments.

 List: To list all agent components of a particular category.

 Browse: It reduces the searching space where users can easily browse

available components in the repository together with their older

versions, and choose the one needed. It also helps the end-user to be

acquainted with the components already stored in the repository.

 Recommend: The user can establish relationships among agents already

stored in the repository. The description content of the component is

automatically read and indexed by the system. Afterwards, the system

will recommend to the user which agent components, already stored too,

are similar to the new one attending their properties. This

recommendation facilitates the search.

 Delete: To delete an agent component. Users can delete only agent

components added by them.

 Export: To allow the download of an originally created agent component

from the repository, a newer version of existing component, or a

modified existing component as a different component and save its

predecessor’s history.

 Search: Users are able to search and retrieve agents with some specific

purposes. There are different types of search, all based on the semantic

knowledge, for example keyword-based approach, custom search facets,

tag-based queries and an advance search methods by some properties of

the agents like programming language, platform, behaviors and

interfaces.

 Subscribe: Users can subscribe to a RSS feed of agents according to a

specific category. If there is any change in a subscribed channel, the

subscribed users will receive a notification.

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 4 Description of the Repository 49

The repository has an agent-based architecture like depicted in Figure 3.

Multi-agent systems are a promising technology for information retrieval [80][5].

An agent-based approach means that IR systems can be more scalable, flexible,

extensible, and interoperable. Agents need a way to process and understand their

information, both on the level of individual items as well as collection-wide

entities. In this architecture agents are equipped with domain ontologies and use

the semantic knowledge to provide efficient and accurate results.

Figure 3: Multi-Agent Architecture of the Repository.

The architecture of the repository is formally represented by an UML class

diagram depicted in Figure 4 (all operations in each class were removed to makes

possible the easy visualization and understanding of the diagram).

Agent Artifact is the main class in the repository. It represents the agent

component. Message Interface defines the interface of the agent component,

which declares how the agent interacts in its environment. We define a

Middleware to listening user’s requests allowing the user to define his

requirements, and the User Agent therefore replicates the requests to the

subsystems responsible for the execution of such requests. Depends on the user

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 4 Description of the Repository 50

requirements, User Agent delegates the actions to execute to the Recommender

Agent and whatever type of searching agent like Tag Searcher Agent to find the

matched software artifacts.

Figure 4: UML Class Diagram of the Repository.

4.1.1.
Agent Modeling

The (re-)utilization of software components, especially if we are not the

developer of them, is a difficult operation. To succeed at a reasonable cost, the

software components must be properly described. It is fundamental not only to

have metadata that give a detailed description of characteristics including what the

purpose of the component is, but also how the component can be interrelated with

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 4 Description of the Repository 51

others, or what are its needs. Hence, modeling software components turns into a

challenge.

In the agent-oriented work to date, each methodology has its own concepts

and system structure, without a common factor among them. Consequentially,

when trying to create a new methodology an agent meta-model becomes critical.

In this context, in order to help agent software engineers, we have defined a

new type of metadata schema that details all the characteristics about agent

components, and supports the storage and retrieval of software agents considering

domain semantic information based on ontologies and taxonomies. In addition, we

also state a model to describe and represent explicitly the agent variability making

use of a feature model.

Although agents are developed under dissimilar architectures, platforms and

languages and agent components are different in their interfaces, internal

architecture and functionalities, we observed they could be modeled within a

standard representation. Moreover, it is noted that software agents or some

specific parts of them are not reused in all projects in the same way, but there are

also many points of variability among these software artifacts.

Variability specification is crucial on the representation of reusable artifacts

because it distinguishes how the common and variable modeling concepts differ

on the applications of a family [47]. Such notion influences directly in the

selection and adaptation of the concepts for future product composition. The

variability is expedient to modularize changeable parts of the internal agent

architecture and to make them satisfactorily generic for reuse in different contexts.

The variability facilitates the design of agent component that supports various

roles with alternatives operations, depending on current context and end-user

preferences.

To compose our retrieval system, we propose an agent component structure

modeling following the semantic of: (i) feature modeling in order to manage agent

component commonality and variability and, (ii) a meta-model that provides a

common and essential representation of heterogeneous agents.

 The selective partitioning of the agent specification variability allows

agent-oriented artifact reuse and adaptation according to the requirement for many

different reuse contexts. The specification of the agents in the repository is

composed of the following characteristics.

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 4 Description of the Repository 52

 Roles: Mandatory feature. Define the purposes and functionalities in an

application domain of the agent or its identification within a group.

There could be a precondition to perform a role. In order to a role be

accomplished, it has a set of operations.

 Operations: Optional feature. Sequences of actions that an agent can

perform to achieve one or more of its respective purposes. There could

be an action to perform if the operation failures.

 Parameters: Optional feature. The set of conditions required to execute

the operations. A parameter has a name, type, value, and an order.

Figure 5 illustrates the feature model of an agent component of the

repository.

Figure 5: Feature Model of an Agent Component.

A concrete example of feature model of an agent is illustrated in the Figure

6. It consists on an agent that buys a specific book at the lower price at online

seller libraries. The lowest price can be interpreted in three different ways: (i) the

cheapest price of the book from all libraries without taking into account the

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 4 Description of the Repository 53

deliver price, or (ii) the cheapest price of the book plus the deliver, or (iii) no

matter what the prices of the book and deliver are, the book is seller in the first

library it is available.

Figure 6: Feature Model of a Book Buyer Agent.

Ontologies for formally representing software agents would enable

knowledge reuse and a standardized model for the cataloguing of agent-based

artifacts. Ontologies are also relevant for describing interfaces and architecture of

agent components, in addition to establishing how a software agent can be defined

or classified; and the concepts, dependencies and relationships that apply to all or

a subset of the totality them. An importance advantage of ontologies to maximize

the reusability is also to allow the extensibility of agents, i.e., maximal possibility

to extend the features of an agent without breaking the previous architecture

neither the reusability of the agent in the system that contains it.

We define a meta-model to translate the dissimilar agent components into a

comprehensible and logical representation. This common and essential

representation establishes a precise and formal description that shares the

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 4 Description of the Repository 54

understanding of agent components regardless of the types of components that are

in the repository, and their domain relationships. Therefore, heterogeneous agent

components developed using the many existing implementation frameworks and

languages can be stored and retrieved without losing any of their own

characteristics.

For structuring the meta-data with the information of agents provided by the

user, the system uses an ontology. After a thorough examination of available

research on ontologies that describe software agents (functionalities, structure and

interfaces), including the Watson Semantic Web Search4, no appropriate result for

modeling the common structure of heterogeneous agent components was found.

Hence, we complement existing ontologies since some agent characteristics are

not still covered, for example the structure and interfaces of heterogeneous agent

components. Therefore, we propose the ontology depicted in Figure 7 to formalize

the description of heterogeneous agent components. The description of the other

concepts is showed in the appendix A.

Figure 7: Ontology to Model an Agent Component.

A reusable agent component should have a number of attributes that are

essential in determining the appropriateness of this construct in the reuse process.

4 http://kmi-web05.open.ac.uk/WatsonWUI/

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 4 Description of the Repository 55

These attributes, which are considered as meta-data for the agent component

specification, are the following.

 ID: The identifier given to the agent. It is unique in the system.

 Name: The name given to the agent.

 Description: A description of the agent in natural language, which can

describe whatever information related to the agent.

 Version: The development version of the agent.

 Ancestor: If the version is not the first one, so the agent is a new one

based on its ancestor.

 Date: The date when the agent was developed, in the format yyyy-MM-

dd.

 Language: The programming language the agent was developed with.

 Platform: The platform the agent was developed with.

 User: The user responsible for implementing the agent.

 Behaviors: The characteristics of the agent according its nature, like

autonomy, reactiveness, etc.

 Roles: The roles the agent performs.

 Operations: The operations each role executes.

 Parameters: The requirements an operation has to execute.

 Categories: The categories associated to kind of roles.

 Tags: The tags the agent can be described with a few of words.

 File: The file which contains the agent. The file path is the physical

location of the agent in the repository.

 Related: There are the agents related to the current one respect to some

characteristics (description, roles, ancestor, interfaces, categories and

tags).

 Interfaces: In diverse architectures, software agents interactive with

others in different way. There is not a standard format to document

agent’s interfaces like software components, based on the interfaces of

public functions that include restrictions on the behavior of objects, such

as the order in which the functions/operations should be invoked. To

support a communication, compatibility or interoperability among all of

these heterogeneous agents, we propose an interface model that

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 4 Description of the Repository 56

describes the context (cooperation, coordination, and negotiation) of

relations among the agents, the types of messages the agent senders or

receives (Inform, Agree, Not_Agree, Cancel, Failure, Not_Understood,

Propagate, among others), the content of the message that can include

ontologies, and the other agent participants.

An individual example of this ontology is depicted in Figure 8. We refer to

the same agent explicated in Figure 6. We did not expand the behaviors Reactive

Agent and Interact Agent neither the tags commerce and Book trading, to help to

the visualization, since their representation is similar to Autonomous Agent and

Book Buyer respectively.

Figure 8: An Individual of the Ontology.

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 4 Description of the Repository 57

4.1.2.
Classifying Agent Components

Our repository is organized in such a way that locating the most appropriate

agents is easy for the current user. In particular, the repository assists the user in

locating agents that meet some specified functionality.

Classifying agent-based artifacts allows software engineers to organize

collections of them into structures that they can look easily for in future searches.

Hierarchical taxonomies of application domains are been adopted, producing a

manageable grouping of agent components according to established criteria, like

the tasks they perform [19] and according to the agent’s behaviors, but there are

several perspectives to classify existing software agents, which are not unique.

The proposed taxonomies are used to identify and associate general categories

corresponding within domain concepts and behaviors, which map onto the

common properties of agent components and to enable agents to have shared

understanding of the semantics for standard terms used in the search. These

concepts are represented by facets in the taxonomy. The taxonomies are built

using one or several facets that compose these agent characteristics, using a

common vocabulary that is familiar to the domain artifacts.

User’s queries can be represented and organized more efficiently following

pre-defined taxonomies, because the retrieval system can be used without any

prior knowledge about the existing terms and their relationships. The taxonomies

facilitate to the user during a search, to access to not only the agents related to

keywords in the query, but also those agents that are interrelated semantically to

them, such as those with equivalent characteristics or terms, reducing the search

space and making the search results more relevant. The taxonomies target

concepts and relationships that make them more understandable and usable during

the search.

Several knowledge categories can be related with agents like intelligent

human-computer interface agents and adaptive user modeling agents, personal

knowledge retrieval agents, mobile software technologies, cooperative software

agents (e.g., resource discovery and, mediators and facilitators), etc. Firstly,

agents may be grouped by their mobility, i.e., by their ability to move around

some environment. This yields the classes of static or mobile agents. Secondly,

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 4 Description of the Repository 58

they may also be classified as reactive and thirdly, along several attributes which

ideally and primarily they should exhibit [55]: including autonomy, cooperation

and learning.

These characteristics of agents are used to derive some behaviors of agents

included in our taxonomy shown in Figure 9.

Figure 9: Agent Behaviors Taxonomy.

Agents may be likewise grouped by their roles in dissimilar application

domains, like Figure 11 shows, e.g., WWW information gathering agents that

basically help the management of the vast amount of information in wide area

networks like Internet. This type of agent is named Information or Internet agents.

Other example is the personal software agents that help manage the increasing

amount of electronic information available. As this sort of agents are capable of

initiating tasks without any explicit user prompting, they are good in undertaking

tasks running in the background such as searching for information.

For instance, the facet Ecommerce indicates an agent is used in applications

for trading goods, services and business functions such as advertising and

negotiating online. The facet Book Trading indicates an accounting book agent

that includes all securities that an organization or user regularly buys and sells on

the stock market.

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 4 Description of the Repository 59

Figure 10: Application Domains Taxonomy.

As agents are inserted in the repository, the repository allows users to tag

them with semantic references that correspond to facets from the taxonomies. The

taxonomies can be evolved, increasing the diversity of the elements available to

search.

To avoid an uncontrolled vocabulary for these application domains and

behaviors, we propose the taxonomies illustrated in Figure 9 and Figure 10 to

represent, group, and browse these items. To support browsing the taxonomies we

develop an agent, Category Searcher Agent, to carry out this functionality.

4.1.3.
Indexing Agent Components

We index the agent components and queries convert them into a format that

the search is rapid and efficient. The indexing process is performed by means of

the Lucene [48] search library. After the raw content is indexed, it is converted

into units, called documents [52], used by the search engine. Lucene generates

two indexes: an agent index containing all the component terms included in each

agent representation and also those terms obtained through WordNet lexical

ontology [82]; and a text index, containing the stems of text words that are not

related to the agent entities. These component terms represent the entries in a

vector for the corresponding document.

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 4 Description of the Repository 60

Lucene contains implementations of well-known algorithms such as the

inverted file index, a stop word remover and the stemming algorithm [52]. It can

index data from numerous sources, for instate, from ontologies and databases.

WordNet is used to solve, during the indexing process, problems like ambiguity

providing semantic knowledge i.e., synonyms. A word, in the agent representation

or query, can be expanded to get its synonyms with WordNet [52] increasing the

index terms of the agents, or enriching the query and probably the results as well.

A term vector is a collection of term-frequency pairs that could include

information about the position for each term occurrence. Once there are more than

one document vectors, associated to agent components, the similarity between

them can be computed using the cosine similarity [50].

4.1.4.
Recommendation System

Recommendation systems allow users to discover reusable artifacts, which

are likely to be useful to user’ requirement. Besides that objective, our RS has

other one very important: to recommend agent components that a user is actively

interested in but is unaware of such artifacts existence or the need for such

artifacts.

The main problem of whatever recommendation system faces, it determines

which artifacts can be similar or related with each other. Consequently, the first

step is to determinate how measure the degree of similarity or relationship among

the artifacts in the repository. Usually, this similarity can be measured in some

ways: string matching/comparison, same vocabulary used, probability that

documents arise from same model, same meaning of text, among others [36].

Our RS includes an alternative way (recommendations) to suggest related

agents, based on a proposed methodology. The system adapts the tf-idf algorithm,

to compute weights of terms belonging to the agent components, and advises the

user which agents would be related. Later, the user can establish the relations, and

a degree of relationship is assigned automatically. The RS tracks usage histories

of a group of agents to recommend agents expected being needed by that user. In

that way, an ontology network, that contains the discovered data and their

associative relations, is constructed.

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 4 Description of the Repository 61

Methodology:

Description: Given the index terms those characterize a specific agent

component.

(i) To compare the extracted index terms to the index terms that

characterize each component in the repository, discovering which

agents are related with.

(ii) To know if two index terms match, as we explained above, we create

vectors for the index terms and calculate the cosine similarity

between them.

Be advised: The comparison between two index terms is based on a

semantic similarity, related to computing the similarity between concepts

which are not necessarily lexically similar.

Method:

Description: Based on specific attributes that describe the underlying agent

components, the degree of relationship among them is calculated. The

attributes taken into account are the description, roles, interfaces, ancestor,

categories and tags.

(i) To know if the description of the proposed related agent, X, matches

with the description of the current agent, Y, where both descriptions

are typical strings, we follow the steps of the proposed methodology,

but in this case the index terms are extracted just from the

descriptions.

ݐ݄݅
ௗ
ሺX, Yሻ ൌ 	

ଵሻ݊݅ݐ݅ݎܿݏ݁݀_ܿԦሺ݀ݒ ∗ ଶሻ݊݅ݐ݅ݎܿݏ݁݀_ܿԦሺ݀ݒ	
|ଵሻ݊݅ݐ݅ݎܿݏ݁݀_ܿԦሺ݀ݒ| ∗ 	 |ଶሻ݊݅ݐ݅ݎܿݏ݁݀_ܿԦሺ݀ݒ|

(ii) A role matches another role if their descriptions, preconditions,

description of the operations, or super roles (recursively) match. For

the descriptions and preconditions, it is an analogous process to the

explained above in (i). So, a role of X match a role of Y as:

ݐ݄݅

ሺܺଵ, ܻଶሻ ൌ

∑ cos ܽ
ସ
ୀଵ

4

where 4 is the quantities of attributes taking into account, and cos ܽ

is the degree of similarity of the i-th attribute of the both agents.

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 4 Description of the Repository 62

Assuming X has fewer roles than Y, this function is calculated for

each role of X.

(iii) An interface matches another interface if their contents and

participants match. For the contents, it is an analogous process to the

explained above in (i). In the case of the participants the interfaces ܫଵ

and ܫଶ match, if the agent that sends messages in ܫଵ matches with the

agent that send messages in ܫଶ; and at least one of the agents that

receives messages in ܫଵ matches with one agent that receives

messages in ܫଶ.

(iv) The ancestors of X and Y match if:

ݐ݄݅

ሺX, Yሻ ൌ ൜

		1, ሺܺሻݎݐݏ݁ܿ݊ܽ_ݐݏݎ݂݅ ≅ ሺܻሻݎݐݏ݁ܿ݊ܽ_ݐݏݎ݂݅
0, ݁ݏܽܿ	ݎ݄݁ݐ	݊݅

(v) The categories of X and Y match as follows:

ݐ݄݅

ሺX, Yሻ ൌ

| ሺXሻݏ݁݅ݎ݃݁ݐܽܿ 		∩ |ሺYሻݏ݁݅ݎ݃݁ݐܽܿ		
minሺ| ,	|ሺXሻݏ݁݅ݎ݃݁ݐܽܿ ሺYሻ|ሻݏ݁݅ݎ݃݁ݐܽܿ|

(vi) The tags of X and Y match as follows:

ݐ݄݅

ሺX, Yሻ ൌ

| ሺXሻݏ݃ܽݐ 		∩ |ሺYሻݏ݃ܽݐ		
minሺ| ,	|ሺXሻݏ݃ܽݐ ሺYሻ|ሻݏ݃ܽݐ|

All hits calculated are already normalize (the range is into the interval [-

1…1]). Now we calculate the degree of relationship between X and Y as follows:

,ሺ݄ܺ݅ݏ݊݅ݐ݈ܽ݁ݎ ܻሻ ൌ 	
∑ ݐ݄݅	

ୀଵ

6

where 6 is the quantity of attributes we are taking into account to find the

relationships between X and Y.

An example of related agents is depicted in Table 1, where the degree of

relationship between both using the method is 0.889.

Table 1: Example of Related Agents.

ID: ag1
Name: BookSellerAgent
Description: seller agent has a minimal
GUI by means of which the user can
insert new titles (and the associated
price) in the local catalog of books for

ID: ag5
Name: BookBuyerAgent
Description: agent that buys books on
behalf of their users. It takes as input
some books (at least name, maybe
author too) to buy and tries to find

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 4 Description of the Repository 63

sale.

Version: 1.4
Ancestor: -
Date: 2010-10-08
Platform: Jadex
Language: Java
User: jadex-admin
Behaviors: Reactive, Interactive

Roles:
 R1: selling books online.
 Mandatory.
 Super Role: -

 Precondition: -
 Operation 1: to check if the

requested book is in the catalogue and
in this case reply with the price.

 Mandatory.
 Failure: -
 Parameter 1:
 Optional.
 request from buyer agents

(the request includes some information
about the book to sell/buy).

 Operation 2: to serve the order
and remove the requested book from
their catalogue.

 Mandatory.
 Failure: -
 Parameter 1:
 Mandatory.
 purchase order.

Categories: e-commerce
Tags: Book trading, book seller
File:
C:\repository\jadex\BookSellerAgent-
1.4.jar
Related: ag5
Interfaces:
 I1:
 Sender:
 Context: Negotiation
 Types of the message: Inform
 Content: the book costs 50.99
reais and the shipping costs 9.99 reais.
 Receiver: ag5

agents selling them at an acceptable
price.
Version: 4.1
Ancestor: -
Date: 2011-11-13
Platform: Jade
Language: Java
User: Giovanni
Behaviors: Interactive, Autonomous,
Reactive
Roles:
 R1: buying books online.
 Mandatory.
 Super Role: buying items online
 Precondition: -
 Operation 1: requests all known
seller agents to provide an offer.
 Optional.

 Failure: -
 Parameter 1: more than one

seller agent provides an offer.
 Operation 2: to accept the

received offer and to issue a purchase
order.

 Mandatory.
 Failure: -
 Parameter 1: purchase order.
Operation 3: to accept the best

offer and to buy it.
 Mandatory.
 Failure: -
 Parameter 1:
 Alternative.
 more than one seller

agent provides an offer.
Categories: e-commerce
Tags: Book trading, book buyer
File:
C:\repository\jade\BookBuyerAgent-
4.1.zip
Related: ag1, ag4
Interfaces:
 I1:
 Receiver:

Context: Negotiation
Type of message: Inform
Content: the price of the book and

the shipping.
Sender: ag1

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 4 Description of the Repository 64

The agent with ID equals to 4 is the Buyer Agent, that its main role is buying

items online.

Our recommendation system is designed and implemented as a multi-agent

system, where agents cooperate to organize and search knowledge of artifacts on

behalf of their users, interacting in the same environment. Figure 11 shows the

RS’s architecture.

Figure 11: Multi-Agent-based Recommendation System.

Each user is assisted by a personal User Agent, which communicates with a

Recommender Agent by means of message exchange. The main tasks of the

Recommender Agent are: to filter and collect agents components satisfying certain

requests or offering some functionalities for a particular user; to process queries of

users or from other agents retrieving the agent components according to some

parameters; to learn which agent components by other users’ query address related

characteristics to the current agent component; and to make thus suited

recommendations in response. The Recommender Agent calculates the degree of

relationship between the specific agent component and the candidate ones through

combining both component specific knowledge and general domain knowledge,

and the related components are returned in descending order. Within the system,

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 4 Description of the Repository 65

recommendation agents interact with one another, share knowledge and use

similarities among users’ behaviors in order to increase quality of the

recommendations.

4.1.5.
Semantic-based Search System

A fundamental goal of our repository approach is to make it easier for

software engineers to formulate high-level queries for agents and have access to

high-level information about the agent components retrieved. For retrieving

suitable agent-based artifacts for reuse, we have developed a suite of search

methods that utilizes the semantics of the agent descriptions to measure the

similarity between queries and agent components. Given a textual description of

the desired agent, a semantic information retrieval method can be used to identify

and order the most similar agent components.

The search is driven by the taxonomies that represent the dissimilar types of

the agent components and cover application domain specific knowledge, to

express more appropriate queries for component retrieval. Thus, the search is

performed by the semantic matching (semantic comparison) of user’s requests

expressed using concepts from the taxonomies with agent component descriptions

found in the ontology and in the knowledge base, and also based on the syntactic

structure of the specifications and the natural-language semantics of the agent’s

descriptions. The semantic knowledge base contains the ontological instances, the

indexes, the index terms and the learned knowledge during the search process.

As we explained above, each agent component is represented by index

terms. A pre-selected set of index terms can be used to summarize the contents of

the agents’ specification. Index terms compound a controlled vocabulary, using

them as keywords to retrieve documents in an information system. An index term

has some properties that are beneficial for evaluating its importance in a corpus.

For example, if a word appears in the entire corpus of a collection, it is entirely

useless for retrieval tasks.

There are different ways to retrieve agents in the repository, described next.

 Keyword-based Searching: Initially, we create a vector for the query

with its terms. Afterwards, we calculate the cosine similarities between

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 4 Description of the Repository 66

the query vector and the vectors that represent the index terms of all

agent components already stored in the repository.

 Custom Search Facets: The hierarchical taxonomy represents a search

objective to find agent-based artifacts in a specific context or application

domain, which would provide more expressive semantics than simple

keyword-based searches. A tree-structure-based search representation

model is conceived to allow users to browse, locate and filter their

search intention by defining their own taxonomy topology. The facets

are defined by the users to describe features about the agent-oriented

artifacts. Features serve as descriptors, such as the agent’s functionality.

Nevertheless, they can be extended for other agent’s implementation

details, as it is possible that the artifacts could be browsed by these

attributes too.

 Tag-based Searching (Tag Cloud): It is a weighted list that exemplifies

the density of keywords present according to its relevance on the agent

characteristics using a variety of fonts in the visual design. This allows a

user to quickly identify what archetypes of agents are more common in

the repository. Selecting a tag, the tag cloud will work as a browser

leading to a collection of agent components that are associated with that

tag.

 Platform-based Searching: It is looked up on the ontology all agent

components already stored in the repository that were developed in the

platform passed as parameter. It is an analogous process respect to the

programming language.

 Interface-based Searching: It is looked up all the agents that interact in a

certain context, e.g. cooperation, coordination and negotiation, to

achieve a specific role. In addition, it can be looked up the specification

of message exchange or the description of the participants to accomplish

this interaction.

The whole search process combines the following phases: (i) pre-processing

the agent’s descriptions and queries i.e., conflating related words to a common

word stem; (ii) interpreting user queries to choose the specific domains and

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 4 Description of the Repository 67

establish the search method and parameters in terms of the characteristics of

agents; (iii) splitting these domains into sub-queries and executes them; (iv)

retrieving the agent components, rating and filtering them according to their

semantic relevance with user parameters; (v) analysis and classification of the

results; and (vi) presenting the results to the user in the way further exploration of

each component is enabled.

A multi-agent system outlines the core of the search system of the

repository. These agents collect information from the repository by taking

advantage of the semantic annotations of the agent components, accessing

information on behalf of the users, and also through some mechanisms they may

be able to find relevant agent components and if it is necessary, to compose them

to generate the results expected by the user. A multi-agent based semantic-search

not only guarantees efficiency and reliability of search, but also enables automatic

and effective cooperation for semantic integration [24]. The users of the

repository, mostly software engineers, can compose their applications by choosing

the features for the desired product. Figure 12 gives a general idea of the

architecture of the proposed mechanism of searches based on a multi-agent

system.

Users provide an initial query, which takes the form of free-text-based

terms. The Indexer Agent preprocesses the query, being supported by the WordNet

Engine Agent. The latter, for indexing, uses WordNet. During the indexing

process, it is removed apostrophes, other intra-word punctuation and stop words;

letters with diacritics are normalized; it is reduced words to a root form

(stemming) or changed words into the basic form (lemmatization). The new terms

go to become a new query. In this step, the domain application taxonomy is used

by the Semantic Query Agent to transform the free-text-based query into standard

terms used in the internal system. The Semantic Query Agent determines the

actions in the actuator according to the types of the query. The respective type

Search Agent looks for this information and gives the results, which are analyzed

by the Semantic Result Collection Agent. This agent learns, taking into account

the query and the results, and inferences if there is new relevant information that

can enrich the current semantic knowledge base; and passes the top matched

results to the Semantic Query Agent. The last agent provides the results to the

user. Besides data from the taxonomies and ontology, the semantic knowledge

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 4 Description of the Repository 68

base also contains learned and inferred knowledge about semantic similarity

provided by the feedback after a search.

Figure 12: Multi-Agent-based Semantic Search.

4.1.6.
Subscription Service

We create a subscription service of agents, or RSS Agent, in the repository

that allows users being update of the existence of agent-oriented artifacts already

stored. The user can subscribe in some application domains and will receive all

the information about them. The RSS feed is easily rendered like any other format

(json [32], html). Because it is delivered as XML, content from various agent

application domains can be linked into novel presentations without difficulty.

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 4 Description of the Repository 69

4.2.
A Usage Scenario

The main purpose of this thesis was to propose a new methodology that

would relief the large effort required for the development and set-up of agent-

based solutions by extending the scope of the applications.

Our representation and usage of agents are part of a repository for managing

reusable agent-based artifacts. Agents are but one kind of reusable components

that developers can search for, browse, and integrate into their own applications.

A typical agent reuse cycle looks like [15]:

1. Formulate a description of the problem to be solved.

2. Based on this description, perform searches in the agent component

repository (not necessarily the description itself).

3. Evaluate the retrieval agent components for their reusability. If one of

these components is close enough to the stated requirement, proceed to

the next step.

4. (not in all the cases) Adapt or extend the retrieved component to the

current problem.

5. Integrate the component in the system, and test it.

A developer can make use of the abovementioned search methods to support

the Step 2 and the design process of the agent-based system that is being

developed, and get support in the early implementation phase. The keyword-based

search could be preferentially used at this point even it would be imprecise, since

the developer has no clear ideas of the agents which has to be developed (this is

not a critical problem but rather a logical consequence), or does not always know

the form of the solution to his problem restricting himself to formulate effectively

queries.

The repository helps users, through search methods or a subscription

service, to know which agent components exist or can be extended, promoting the

agent reuse, An agent component can be set up to be reused on multiple systems

at design phase. Sometimes, some aspect details are mandatory if the component

is to be reused, others are optional in some situations. For this, the proposed

feature model is a good option to provide a basis for the reuse process of agents

since it is capable to represent in a structured way the dissimilar characteristics

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 4 Description of the Repository 70

(mandatory, optional, or, alternative) of the agents in a given domain. The feature

model assists the software engineers in the integration of the component produce

agent-based applications without being needed to know agent’s specification in

detail.

An agent component can be set up to be reused at runtime as well. It is just

to be aware of how the interfaces of the agent are. The interface description of an

agent can be obtained by requesting it to the agent itself. Nevertheless, the

repository brings a type of search based on the agent interfaces. So, knowing the

interfaces of a specific agent, other agents can interact with this one.

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

