
III

intuitionistic PUC-Logic

In human speech, one may change his opinion about the truth of a given

counterfactual sentence if his knowledge about the subject grows. For example:

– (Pedro) I found Ana sad during the party.

– (Jonas) If her boyfriend had come to party, then Ana would have been

happy during the party.

A day after this speech, Jonas discovered that Ana was sad during the party,

because his boyfriend betrayed her. So, he may think that his counterfactual

sentence is no longer valid.

The intuitionistic approach is a traditional way to deal with knowledge

growth. We discuss one alternative approach over the counterfactual logic

to express this property of the human speech, presenting the intuitionistic

reformulation of the PUC-logic, called iPUC-Logic for short.

We avoid the repetition in this chapter of definitions and lemmas of

PUC-Logic that are the same for iPUC-Logic.

Definition 61 Given a set of worlds W, a nested sets function $ over W and

a truth evaluation function V for each atomic formula, we define a relation

of accessibility from a world u to a world v, denoted by u � v, as a reflexive

and transitive relation such that $(v) = $(u) and, if u ∈ V(α) and u � v, then

v ∈ V(α). Given a world u, the set of worlds v, such that u � v, is denoted by

A(u).

The restriction $(v) = $(u) means that the proximity notions are

preserved by the accessible worlds. This restriction was meant to preserve

lemma 63. But since we are interested in knowledge growth, it is not an artificial

restriction. In the example above, the perception of Jonas about how things

works did not changed much from the additional knowledge. It means that,

for him, the notions of similarity were just the same as in the day before.
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Definition 62 Given a variable assignment function σ, the relation |= of

satisfaction between wff, labels, models and templates is given by:

2. 〈W , $,V , χ〉 |= ¬ (αΣ) iff: ¬ (αΣ) ∈ F n and, ∀λ ∈ A(χ) : 〈W , $,V , λ〉 6|=
αΣ;

5. 〈W , $,V , χ〉 |= αΣ → βΩ iff: αΣ → βΩ ∈ F n and, ∀λ ∈ A(χ), if

〈W , $,V , λ〉 |= αΣ, then 〈W , $,V , λ〉 |= βΩ;

14. 〈W , $,V , χ,N〉 |= ¬ (αΣ) iff: ¬ (αΣ) ∈ F w and, ∀λ ∈ A(χ) :

〈W , $,V , λ,N〉 6|= αΣ;

17. 〈W , $,V , χ,N〉 |= αΣ → βΩ iff: αΣ → βΩ ∈ F w and ∀λ ∈ A(χ): if

〈W , $,V , λ,N〉 |= αΣ, then 〈W , $,V , λ,N〉 |= βΩ.

The iPUC Natural Deduction System is obtained from the PUC-ND by

removing the rule 7 (classical absurd rule).

III.1 iPUC Soundness and Completeness

Lemma 63 Given ∆ without existential quantifiers, if (αΣ → βΩ)∆ is wff,

then it implies αΣ,∆ → βΩ,∆.

Proof : We proceed by induction on the size of ∆:

If ∆ is empty, then the implication is true;

(base) If ∆ contains only one label, it must be a neighbourhood label:

- (αΣ → βΩ)~ means, by definition, that ∀N ∈ $(χ) : 〈W , $,V , χ,N〉 |=
αΣ → βΩ. Then we know that ∀N ∈ $(χ) : ∀λ ∈ A(χ) : if

〈W , $,V , λ,N〉 |= αΣ, then 〈W , $,V , λ,N〉 |= βΩ. Given an arbitrary

λ ∈ A(χ), if 〈W , $,V , λ〉 |= αΣ,~, then ∀M ∈ $(λ) : 〈W , $,V , λ,M〉 |=
αΣ. Since $(λ) = $(χ), by the definition of the accessibility rela-

tion, we have ∀M ∈ $(χ) : 〈W , $,V , λ,M〉 |= αΣ. So, by a conclu-

sion above, we know that ∀M ∈ $(χ) : 〈W , $,V , λ,M〉 |= βΩ and

∀M ∈ $(λ) : 〈W , $,V , λ,M〉 |= βΩ, then 〈W , $,V , λ〉 |= βΩ,~. In other

words, αΣ,~ → βΩ,~;

- (αΣ → βΩ)N means, by definition, that σ(N) ∈ $(χ) and

〈W , $,V , χ, σ(N)〉 |= αΣ → βΩ. Then we know that ∀λ ∈ A(χ) :

if 〈W , $,V , λ, σ(N)〉 |= αΣ, then 〈W , $,V , λ, σ(N)〉 |= βΩ. Given an

arbitrary λ ∈ A(χ), if 〈W , $,V , λ〉 |= αΣ,N , then σ(N) ∈ $(λ) and

〈W , $,V , λ, σ(N)〉 |= αΣ. Since $(λ) = $(χ), we know that σ(N) ∈ $(χ)

and by a conclusion above, we know that 〈W , $,V , λ, σ(N)〉 |= βΩ, so

〈W , $,V , λ〉 |= βΩ,N . In other words, αΣ,N → βΩ,N ;
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(base) If ∆ contains two labels, it may be {~, ∗}, {N, ∗}, {~, u} or {N, u}.
But we just need to look at the distributivity for the ∗ label and for world

variables, because we have already seen the distributivity of the → connective

for the label ~ and for any neighbourhood variable.

- (αΣ → βΩ)∗,~ means, by definition, that ∀N ∈ $(χ) : ∀w ∈ N :

〈W , $,V , w〉 |= αΣ → βΩ. Then we know that ∀N ∈ $(χ) : ∀w ∈
N : ∀λ ∈ A(w) : if 〈W , $,V , λ〉 |= αΣ then 〈W , $,V , λ〉 |= βΩ.

Given an arbitrary λ ∈ A(χ), if we have 〈W , $,V , λ〉 |= αΣ,∗,~, then

∀M ∈ $(λ) : ∀z ∈ M : 〈W , $,V , z〉 |= αΣ. Since $(λ) = $(χ),

∀M ∈ $(χ) : ∀z ∈ M : 〈W , $,V , z〉 |= αΣ. From z ∈ A(z) and a

conclusion above, we know that ∀M ∈ $(χ) : ∀z ∈M : 〈W , $,V , z〉 |= βΩ

and ∀M ∈ $(λ) : ∀z ∈ M : 〈W , $,V , z〉 |= βΩ, so 〈W , $,V , λ〉 |= βΩ,∗,~.

It means that αΣ,∗,~ → βΩ,∗,~;

- The proofs of (αΣ → βΩ)∗,N , (αΣ → βΩ)u,~ and (αΣ → βΩ)u,N are

analogous.

(induction) If C(αΣ → βΩ) = ‡ and s(∆) = n + 1, then the scope must be a

neighbourhood label and αΣ,∆ → βΩ,∆ may be written as αΣ,φ,∆′ → βΩ,φ,∆′ ,

where s(∆′) = n. Then, by the induction hypothesis, αΣ,φ,∆′ → βΩ,φ,∆′ =

(αΣ,φ → βΩ,φ)∆′ . From the base assertions, (αΣ,φ → βΩ,φ)∆′ = ((αΣ →
βΩ)φ)∆′ = (αΣ → βΩ)φ,∆

′
= (αΣ → βΩ)∆;

(induction) If C(αΣ → βΩ) = † and s(∆) = n + 2, then the scope must

be a world label and αΣ,∆ → βΩ,∆ may be written as αΣ,φ,Θ,∆′ → βΩ,φ,Θ,∆′ ,

where s(∆′) = n. Then, by the induction hypothesis, αΣ,φ,Θ,∆′ → βΩ,φ,Θ,∆′ =

(αΣ,φ,Θ → βΩ,φ,Θ)∆′ . By the base, (αΣ,φ,Θ → βΩ,φ,Θ)∆′ = ((αΣ → βΩ)φ,Θ)∆′ =

(αΣ → βΩ)φ,Θ,∆
′
= (αΣ → βΩ)∆. �

Lemma 64 iPUC-ND without the rules 5, 11, 18, 20, 27, 28 and 29 preserves

resolution.

Proof : ConsiderM = 〈W , $,V , χ〉. We present the proof for rule 12, because

the proof for the other rules are equal as in lemma 26.

(12) If M |=∆ αΣ → βΩ, then M |= (αΣ → βΩ)∆, then, by lemma 63,

M |= αΣ,∆ → βΩ,∆. Then, by definition, ∀λ ∈ A(χ) : if 〈W , $,V , λ〉 |=
αΣ,∆, then 〈W , $,V , λ〉 |= βΩ,∆. Since χ ∈ A(χ), then, if 〈W , $,V , χ〉 |=
αΣ,∆, then 〈W , $,V , χ〉 |= βΩ,∆. But we already know that 〈W , $,V , χ〉 |= αΣ,∆

and we can conclude M |=∆ βΩ. �
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Lemma 65 If 〈W , $,V , χ〉 |= αΣ, then ∀λ ∈ A(χ) : 〈W , $,V , λ〉 |= αΣ

Proof : If 〈W , $,V , χ〉 |= α, α atomic, then, by the definition of the accessi-

bility relation, then ∀λ ∈ A(χ) : 〈W , $,V , λ〉 |= α. If 〈W , $,V , χ〉 |= αΣ, Σ non

empty, then ∀λ ∈ A(χ) : 〈W , $,V , λ〉 |= αΣ because ∀λ ∈ A(χ) : $(χ) = $(λ).

The systems of neighbourhoods being the same makes equal the evaluation of

the formula. So, if 〈W , $,V , χ〉 |= αΣ, then ∀λ ∈ A(χ) : 〈W , $,V , λ〉 |= αΣ

because the evaluation of all subformulas of αΣ are the same at all worlds of

A(χ), including χ itself. �

Lemma 66 iPUC-ND preserves resolution.

Proof : During the proof M = 〈W , $,V , χ〉. We present the proof for each

remaining rule of the iPUC-ND inside an induction. Base argument:

5. If M |=∆ αΣ ∨ βΩ, then M |= (αΣ ∨ βΩ)∆, then, by lemma 23,

M |= αΣ,∆ ∨ βΩ,∆, then, by definition, M |= αΣ,∆ or M |= βΩ,∆. This

means, by definition, that M |=∆ αΣ or M |=∆ βΩ. So, if Π1 and Π2

only contains the rules from lemma 64,M |=Θ γΛ in both cases, because

of the preservation of the resolution relation. And, for that conclusion,

the hypothesis are no longer necessary and may be discharged;

11. If Π only contains the rules of lemma 64, then, from the hypothesis that

M |=∆ αΣ, the derivation gives us M |=∆ βΩ. If C(βΩ) = †, then, by

the fitting relation and lemma 19, we know that s(∆) is even. If we take

some model H = 〈W , $,V , z〉, such that M (s(∆) H and H |= βΩ,

then, by lemma 65, ∀w ∈ A(z) : 〈W , $,V , w〉 |= βΩ and, by definition,

H |= αΣ → βΩ. So, by definition, βΩ |=M:s(∆) α
Σ → βΩ, which means,

by lemma 21, that M |=∆ αΣ → βΩ. If C(βΩ) = ‡, then, by the fitting

relation and lemma 19, we know that s(∆) is odd. If we take some

template T = 〈W , $,V , z, L〉, such that M (s(∆) T and T |= βΩ,

then, by lemma 65, ∀w ∈ A(z) : 〈W , $,V , w, L〉 |= βΩ and, by definition,

T |= αΣ → βΩ. So, by definition, βΩ |=M:s(∆) α
Σ → βΩ, which means,

by lemma 21, that M |=∆ αΣ → βΩ. So the hypothesis is unnecessary

and may be discharged;

18. If M |=∆,• αΣ, then, by the rule 14, M |=∆ αΣ,•. From C(αΣ,•) = ‡, the

fitting relation and lemma 19, we know that s(∆) is odd. If we take some

template T = 〈W , $,V , z, N〉, such that M (s(∆) T and T |= αΣ,•,

then, N ∈ $(z) and ∃w ∈ N : 〈W , $,V , w〉 |= αΣ. Since the variable u

occurs nowhere else in the derivation, u can be taken as a denotation

of the given existential and we conclude that 〈W , $,V , u〉 |= αΣ, what
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means that T |= αΣ,u. So, by definition, αΣ,• |=M:s(∆) α
Σ,u, which means,

by lemma 21, that M |=∆ αΣ,u. We conclude, using the rule 13, that

M |=∆,u αΣ. If Π only contains rules of the lemma 64, then we can

conclude M |=Θ βΩ. Then we can discharge the hypothesis because

we know that any denotation of the existential may provide the same

conclusion;

20. If M |=∆,} αΣ, then, by the rule 14, M |=∆ αΣ,}. From C(αΣ,}) = †,
the fitting relation and lemma 19, we know that s(∆) is even. If we take

some model H = 〈W , $,V , z〉, such that M (s(∆) H and H |= αΣ,},

then ∃M ∈ $(z) : 〈W , $,V , z,M〉 |= αΣ. Since the variable N occurs

nowhere else in the derivation, N can be taken as a denotation of the

given existential and we conclude that 〈W , $,V , z, N〉 |= αΣ, what means

that H |= αΣ,N . So, by definition, αΣ,} |=M:s(∆) α
Σ,N , which means,

by lemma 21, that M |=∆ αΣ,N . We conclude, using the rule 13, that

M |=∆,N αΣ. If Π only contains rules of the lemma 64, then we can

conclude M |=Θ βΩ. Then we can discharge the hypothesis because

we know that any denotation of the existential may provide the same

conclusion.

Inductive case: the same argument as in lemma 28. �

Theorem 67 Γ ` αΣ implies Γ |= αΣ (Soundness).

Proof : The fitting restriction of the rules of iPUC-ND ensures that αΣ has

neighbourhood characteristic because it appears in the empty context. The

same conclusion follows for every formula of Γ. The derivability assures that

there is a derivation that concludes αΣ and takes as open hypothesis a subset

of Γ, which we call Γ′. If we take a modelM that satisfies every formula of Γ,

then it also satisfies every formula of Γ′. So, M |= γΘ, for every γΘ ∈ Γ′. But

this means, by definition, that for every wff of Γ′ the resolution relation holds

with the empty context. Then, from lemma 66, we know that M |= αΣ. So,

every model that satisfies every formula of Γ also satisfies αΣ and, by definition,

Γ |= αΣ. �

We use prime theories to prove completeness. The reader can see the

intuitionistic logic case of this way of proving completeness in [17].

Lemma 68 Given Γ ⊂ Sn (Γ ⊂ Sw), if there is a model (template) that

satisfies every formula of Γ, then Γ is n-consistent.

Proof : This proof is analogous to the classical case, with the addition that

here we use theorem 67 instead of theorem 31. �
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Lemma 69 Given Γ ⊂ Sn (Γ ⊂ Sw), if Γ ∪ {φΘ} ` ⊥n, then Γ ` ¬φΘ.

Proof : The assumption implies that there is a derivation D with with

hypothesis in Γ∪{φΘ} and conclusion ⊥n. If we apply the rule→-introduction

and eliminate all occurrences of φΘ as hypothesis, then we obtain a derivation

with hypothesis in Γ and conclusion ¬φΘ. The same argument holds for

Γ ⊂ Sw. �

Definition 70 Γ ⊂ Sn (Γ ⊂ Sw) is a prime n-theory (prime w-theory) iff (i)

Γ ` αΣ (Γ `NN αΣ) implies αΣ ∈ Γ and (ii) if αΣ ∨ βΩ ∈ Γ implies αΣ ∈ Γ or

βΩ ∈ Γ.

Lemma 71 Given Γ ∪ {αΣ} ⊂ Sn (Γ ∪ {αΣ} ⊂ Sw), if Γ 6` αΣ (Γ 6`NN αΣ),

then there is a prime n-theory (w-theory) Γ′, such that Γ ⊂ Γ′ and Γ′ 6` αΣ.

Proof : According to lemma 37, we may have a list ϕ0, ϕ1, . . . of all wff in Sn.

We build a non-decreasing sequence of sets Γi such that the union is a prime

theory. We put Γ0 = Γ. Then we take the first disjunctive sentence that has

not been treated and Γn ` ϕ0 ∨ ϕ1: Γn+1 = Γn ∪ {ϕ0} if Γn ∪ {ϕ0} 6` αΣ,

Γn+1 = Γn ∪ {ϕ1} otherwise. It cannot be the case that Γn ∪ {ϕ0} ` αΣ

and Γn ∪ {ϕ1} ` αΣ, because, in this case, Γn ` αΣ by ∨-elimination. So,

Γ′ =
⋃
{Γn | n ≥ 0}.

(a) Γ′ 6` αΣ: by induction, since Γ0 6` αΣ and Γn+1 6` αΣ by the definition of

the induction step. (b) Γ′ is a prime theory: (i) if ψ1 ∨ ψ2 ∈ Γ′, then take the

least number k such that Γk ` ψ1 ∨ ψ2. So, ψ1 ∨ ψ2 cannot have been treated

at a stage before k and Γh ` ψ1 ∨ ψ2, for h ≥ k. At some point ψ1 ∨ ψ2 must

be treated at a stage h ≥ k. Then, ψ1 ∈ Γh+1 or ψ2 ∈ Γh+1 and, by definition,

ψ1 ∈ Γ′ or ψ2 ∈ Γ′. (ii) if Γ′ ` ψ, then Γ′ ` ψ ∨ ψ, then by (i) ψ ∈ Γ′.

The same argument holds for wsents. �

Definition 72 Given a prime n-theory Γ and a prime w-theory Λ, we say that

Γ accepts Λ (Γ ∝ Λ) if αΣ ∈ Λ implies αΣ,} ∈ Γ. If αΣ ∈ Γ implies αΣ,• ∈ Λ,

then Λ ∝ Γ.

Definition 73 Given prime w-theories Γ and Λ, we say that Γ subordinates

Λ (Λ < Γ) iff αΣ,• ∈ Λ implies αΣ,• ∈ Γ and αΣ,∗ ∈ Γ implies αΣ,∗ ∈ Λ.
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Lemma 74 If Γ ⊂ Sn is n-consistent, then there is a model M, such that

M |= αΣ, for every αΣ ∈ Γ.

Proof : By definition, Γ 6` ⊥n and, by lemma 71, Γ is contained in a prime

n-theory Γ′, such that Γ′ 6` ⊥n. We take every prime n-theory Ψ as a

representation of one world ofW , denoted by χΨ. Every prime w-theory will be

seen as a set of worlds that may be a neighbourhood. We take ∝ as the nested

neighbourhood function $ and < as the total order among neighbourhoods. We

take the subset relation among prime n-theories as the accessibility relation

among worlds. To build the truth evaluation function V , we require, for every

prime n-theory Ψ and for every α atomic: (a) χΨ ∈ V(α) if α ∈ Ψ; (b)

χΨ 6∈ V(α) if α 6∈ Ψ. If we take M = 〈W , $,V , χΓ′〉, then, for every wff

αΣ ∈ Γ′, M |= αΣ. We proceed by induction on the structure of αΣ:

(Base) If αΣ is atomic, M |= αΣ iff αΣ ∈ Γ′, by the definition of V ;

αΣ = βΩ ∧ γΘ. M |= αΣ iff M |= βΩ and M |= γΘ iff (induction hypothesis)

βΩ ∈ Γ′ and γΘ ∈ Γ′. We conclude that αΣ ∈ Γ̂ by a single application of the

∧-introduction rule and the fact that a prime theory is closed by derivability.

Conversely αΣ ∈ Γ′ iff βΩ ∈ Γ′ and γΘ ∈ Γ′ by ∧-elimination and the fact

that a prime theory is closed by derivability. The rest follows by the induction

hypothesis;

αΣ = βΩ ∨ γΘ. By the definition of prime theory, βΩ ∈ Γ′ or γΘ ∈ Γ′ and we

proceed by induction.

αΣ = βΩ → γΘ. M 6|= αΣ iff ∃χΨ ∈ A(χΓ′) such that 〈W , $,V , χΨ〉 |= βΩ and

〈W , $,V , χΨ〉 6|= γΘ iff (induction hypothesis) βΩ ∈ Ψ and γΘ 6∈ Ψ. So, by the

fact that a prime theory is closed by derivability and by →-elimination, we

conclude that βΩ → γΘ 6∈ Ψ. By the definition of accessibility among worlds,

Γ′ ⊂ Ψ and βΩ → γΘ 6∈ Γ′. Conversely, βΩ → γΘ 6∈ Γ′ implies that, if βΩ ∈ Γ′,

then γΘ 6∈ Γ′, because, on the contrary, for every prime n-theory Ψ, such that

Γ′ ⊂ Ψ, γΘ ∈ Ψ and by i.h. 〈W , $,V , χΨ〉 |= γΘ. So, by the definition of

accessibility of worlds, for every χΨ ∈ A(χΓ′) : 〈W , $,V , χΨ〉 |= γΘ and, by

definition, M |= βΩ → γΘ. From βΩ ∈ Γ′ we know that by i.h. M |= βΩ. So,

from χΓ′ ∈ A(χΓ′) and M |= βΩ → γΘ, we get M |= γΘ and by i.h. γΘ ∈ Γ′.

But, in this case, βΩ → γΘ ∈ Γ′ by a single →introduction and the fact that

a prime theory is closed by derivability;

αΣ = ¬βΩ. This case is treated by the previous case, because ¬βΩ ≡ βΩ → ⊥n;

αΣ = βΩ,~. This wff do not require the existence of a prime w-theory to

represent a neighbourhood in which βΩ holds, on the contrary, it only requires

that there is no prime w-theory, accepted by Υ, in which γΘ does not hold.
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αΣ = βΩ,}. We take any enumeration ρ1, ρ2, . . . in F w, such that ρ}i ∈ Γ′ and

ρ0 = βΩ. We construct a w-theory by following:

– Υ0 = {βΩ};

– Υi = Υi−1∪{ρi}, if (ϕ0∧. . .∧ϕm∧ρi)} ∈ Γ′, where Υi−1 = {ϕ0, . . . , ϕm}.
Υi = Υi−1 otherwise;

– Υ =
⋃
n∈N Υn.

Now we must prove the following:

1. Υ is a w-theory:

– Υ 6` ⊥w. A derivation in iPUC build only with wff from F w must

have all rules with odd sized context. To do so, we choose a neigh-

bourhood variable, that do not occur during the derivation, to be

the leftmost label at every context that appears during the deriva-

tion. This new variable may be understood as the representation

of the neighbourhood in which the inference is made. So, if Υ is

not w-consistent, then, given some derivation D that concludes ⊥w
from wff of Υ, there is an index n ∈ N, such that Υn contains

all wff that appears in D. So, by definition, that there is a wff

(ϕ0 ∧ . . . ∧ ϕm)} ∈ Γ′, such that ϕ0, . . . , ϕm represent all wff of Υn

and ⊥n ∈ Γ′ by the derivation below, which is a contradiction by

the definition of Γ′.

(ϕ0 ∧ . . . ∧ ϕm)}

(ϕ0 ∧ . . . ∧ ϕm)}
}ϕ0 ∧ . . . ∧ ϕm

[ϕ0 ∧ . . . ∧ ϕm]
ND′

N⊥w
⊥n

⊥n
The derivation D′ is obtained from D by 1) adding ϕ0 ∧ . . .∧ϕm in

the place of the hypothesis ϕi and the following ∧-eliminations to

recover ϕi; 2) binding the variable N added to produce D.

– If $ ∨ ϑ ∈ Υ, then ∃i ∈ N : ρi = $ ∨ ϑ ∈ Υi and (ϕ0 ∧ . . . ∧ ϕm ∧
($∨ϑ))} ∈ Γ′. By the distribution of ∨ over ∧, we know that ((ϕ0∧
. . .∧ϕm∧$)∨(ϕ0∧ . . .∧ϕm∧ϑ))} ∈ Γ′. By the following derivation

(Π1), we know that (ϕ0 ∧ . . .∧ϕm ∧$)} ∨ (ϕ0 ∧ . . .∧ϕm ∧ϑ)} ∈ Γ′

and, by the definition of prime theory, (ϕ0 ∧ . . . ∧ ϕm ∧ $)} ∈ Γ′

or (ϕ0 ∧ . . . ∧ ϕm ∧ ϑ)} ∈ Γ′. We proceed now considering the

possibilities of the order provided by the enumeration ρ. Without

loss of generality, we suppose that ρk = $, ρl = ϑ and k < l. In the

case l < i, we are done, because, from (ϕ0 ∧ . . . ∧ ϕm ∧ $)} ∈ Γ′
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or (ϕ0 ∧ . . . ∧ ϕm ∧ ϑ)} ∈ Γ′, we can eliminate the extra formulas

to recover Υk or Υl by the rule of construction of the set Υ. In

the case i < m, at the moment of verification of ρm, we know that

for all formulas of Υm−1 = {ϕ0, . . . , ($ ∨ ϑ), . . . , ϕt} we have a

conjunction (ϕ0 ∧ . . . ∧ ($ ∨ ϑ) ∧ . . . ∧ ϕt)} ∈ Γ′. By a derivation

similar to Π1, we know that (ϕ0 ∧ . . . ∧ $ ∧ . . . ∧ ϕt)} ∈ Γ′ or

(ϕ0 ∧ . . . ∧ ϑ ∧ . . . ∧ ϕt)} ∈ Γ′ and by means of a ∨-introduction in

another derivation we know that (ϕ0∧ . . .∧($∨ϑ)∧ . . .∧ϕt∧$)} ∈
Γ′ or (ϕ0 ∧ . . . ∧ ($ ∨ ϑ) ∧ . . . ∧ ϕt ∧ ϑ)} ∈ Γ′. If we have

(ϕ0 ∧ . . .∧ ($∨ϑ)∧ . . .∧ϕt ∧$)} ∈ Γ′, then Υm and Υ contain $.

If we have (ϕ0 ∧ . . . ∧ ($ ∨ ϑ) ∧ . . . ∧ ϕt ∧ ϑ)} ∈ Γ′, at the moment

of verification of ρl, we make the distribution of the disjunction

($ ∨ ϑ) again. Given Υl−1 = {ϕ0, . . . , ($ ∨ ϑ), . . . , ϕs} we have a

conjunction (ϕ0 ∧ . . . ∧ ($ ∨ ϑ) ∧ . . . ∧ ϕs)} ∈ Γ′. By a derivation

similar to Π1, we know that (ϕ0 ∧ . . . ∧ $ ∧ . . . ∧ ϕs)} ∈ Γ′ or

(ϕ0 ∧ . . . ∧ ϑ ∧ . . . ∧ ϕs)} ∈ Γ′ and by means of a ∨-introduction

in another derivation we know that (ϕ0 ∧ . . . ∧ ($ ∨ ϑ) ∧ . . . ∧
ϕs ∧ $)} ∈ Γ′ or (ϕ0 ∧ . . . ∧ ($ ∨ ϑ) ∧ . . . ∧ ϕs ∧ ϑ)} ∈ Γ′. If

(ϕ0 ∧ . . . ∧ ($ ∨ ϑ) ∧ . . . ∧ ϕs ∧ ϑ)} ∈ Γ′, then we are done. If

(ϕ0∧. . .∧($∨ϑ)∧. . .∧ϕs∧$)} ∈ Γ′, then we have a contradiction,

because we supposed that (ϕ0 ∧ . . . ∧ ($ ∨ ϑ) ∧ . . . ∧ ϕt ∧$)} ∈ Γ′

were not the case and we can recover it by eliminating the extra

formulas. The the case m < i < l is analogous.

DBD
PUC-Rio - Certificação Digital Nº 0812635/CA



C
h
ap

ter
III.

in
tu
ition

istic
P
U
C
-L
ogic

76

((ϕ0 ∧ . . . ∧ ϕm ∧$) ∨ (ϕ0 ∧ . . . ∧ ϕm ∧ ϑ))}

((ϕ0 ∧ . . . ∧ ϕm ∧$) ∨ (ϕ0 ∧ . . . ∧ ϕm ∧ ϑ))}
}

(ϕ0 ∧ . . . ∧ ϕm ∧$) ∨ (ϕ0 ∧ . . . ∧ ϕm ∧ ϑ)

(ϕ0 ∧ . . . ∧ ϕm ∧$) ∨ (ϕ0 ∧ . . . ∧ ϕm ∧ ϑ)
N

Π2

(ϕ0 ∧ . . . ∧ ϕm ∧$)} ∨ (ϕ0 ∧ . . . ∧ ϕm ∧ ϑ)}
Π1

(ϕ0 ∧ . . . ∧ ϕm ∧$)} ∨ (ϕ0 ∧ . . . ∧ ϕm ∧ ϑ)}

(ϕ0 ∧ . . . ∧ ϕm ∧$) ∨ (ϕ0 ∧ . . . ∧ ϕm ∧ ϑ)
N

(ϕ0 ∧ . . . ∧ ϕm ∧$) ∨ (ϕ0 ∧ . . . ∧ ϕm ∧ ϑ)

[ϕ0 ∧ . . . ∧ ϕm ∧$]
Nϕ0 ∧ . . . ∧ ϕm ∧$

Π3

(ϕ0 ∧ . . . ∧ ϕm ∧$)} ∨ (ϕ0 ∧ . . . ∧ ϕm ∧ ϑ)}

[ϕ0 ∧ . . . ∧ ϕm ∧ ϑ]
N

ϕ0 ∧ . . . ∧ ϕm ∧ ϑ
Π4

(ϕ0 ∧ . . . ∧ ϕm ∧$)} ∨ (ϕ0 ∧ . . . ∧ ϕm ∧ ϑ)}

(ϕ0 ∧ . . . ∧ ϕm ∧$)} ∨ (ϕ0 ∧ . . . ∧ ϕm ∧ ϑ)}
Π2

(ϕ0 ∧ . . . ∧ ϕm ∧$)} ∨ (ϕ0 ∧ . . . ∧ ϕm ∧ ϑ)}

((ϕ0 ∧ . . . ∧ ϕm ∧$) ∨ (ϕ0 ∧ . . . ∧ ϕm ∧ ϑ))}

((ϕ0 ∧ . . . ∧ ϕm ∧$) ∨ (ϕ0 ∧ . . . ∧ ϕm ∧ ϑ))}
}

((ϕ0 ∧ . . . ∧ ϕm ∧$) ∨ (ϕ0 ∧ . . . ∧ ϕm ∧ ϑ))
ϕ0 ∧ . . . ∧ ϕm ∧$

Nϕ0 ∧ . . . ∧ ϕm ∧$
}

ϕ0 ∧ . . . ∧ ϕm ∧$
(ϕ0 ∧ . . . ∧ ϕm ∧$)}

Π3
(ϕ0 ∧ . . . ∧ ϕm ∧$)} ∨ (ϕ0 ∧ . . . ∧ ϕm ∧ ϑ)}

Π4 is analogous.
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– Υ is closed by derivation. Given a derivation D of wff in F w that

concludes $ and that has a new neighbourhood variable N like

described above. Then there is i ∈ N, such that Υi = {ϕ0, . . . , ϕm}
contains all hypothesis in D. It means that (ϕ0 ∧ . . . ∧ ϕm)} ∈ Γ′

and, by the following derivation, we know that (ϕ0∧. . .∧ϕm∧$)} ∈
Γ′ because Γ′ is a prime theory. If ρk = $ and k ≤ i, then

$ ∈ Υ, because we can obtain (ϕ0 ∧ . . . ∧ ϕj ∧ $)} ∈ Γ′, where

Υk−1 = {ϕ0, . . . , ϕj}, by eliminating the extra formulas. If k > i,

then, from (ϕ0 ∧ . . . ∧ ϕj)}, we can obtain, by a similar derivation,

(ϕ0 ∧ . . . ∧ ϕj ∧$)} because all the wff of Υi are in Υk.

(ϕ0 ∧ . . . ∧ ϕm)}

(ϕ0 ∧ . . . ∧ ϕm)}
}

ϕ0 ∧ . . . ∧ ϕm

(ϕ0 ∧ . . . ∧ ϕm)}

(ϕ0 ∧ . . . ∧ ϕm)}
}

ϕ0 ∧ . . . ∧ ϕm

[ϕ0 ∧ . . . ∧ ϕm]
Nϕ0 ∧ . . . ∧ ϕm

[ϕ0 ∧ . . . ∧ ϕm]
ND′

N$
Nϕ0 ∧ . . . ∧ ϕm ∧$ }

ϕ0 ∧ . . . ∧ ϕm ∧$ }
ϕ0 ∧ . . . ∧ ϕm ∧$

(ϕ0 ∧ . . . ∧ ϕm ∧$)}

The derivation D′ is obtained from D by 1) adding ϕ0 ∧ . . .∧ϕm in

the place of the hypothesis ϕi and the following ∧-eliminations to

recover ϕi; 2) binding the variable N added to D.

2. Υ is accepted by Γ′: for every wff $ ∈ Υ, there is i ∈ N, such that $ ∈ Υi,

what means that there is a conjunction such that (ϕ0∧. . .∧ϕm∧$)} ∈ Γ′.

We obtain $} ∈ Γ′ by a derivation with some ∧-eliminations.

3. The wff of the form γΘ,• ∈ Υ demand a prime n-theory to represent a

world in which γΘ holds. The argument is, like in the classical situation,

analogous to the case of the wff βΩ,} ∈ Γ′.

4. The wff of the form γΘ,∗ ∈ Υ do not require the existence of a prime

n-theory to represent a world in which γΘ holds, on the contrary, it only

requires that there is no prime n-theory, accepted by Υ, in which γΘ does

not hold.

�

Corollary 75 Γ 6` αΣ iff there is a model M, such that M |= φΘ, for every

φΘ ∈ Γ, and M 6|= αΣ.

Proof : Γ 6` αΣ iff Γ ∪ {¬αΣ} is n-consistent by lemma 69 and the definition

of n-consistent set. By lemmas 68 and 74, Γ ∪ {¬αΣ} is n-consistent iff there

is a model M, such that M |= φΘ, for every φΘ ∈ Γ ∪ {¬αΣ}. It means that

M satisfies every formula of Γ and M 6|= αΣ. �
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Theorem 76 Γ |= αΣ implies Γ ` αΣ (Completeness).

Proof : Γ 6` αΣ implies Γ 6|= αΣ, by the corollary 75 and the definition of

logical consequence. �

Theorem 77 Every derivation of iPUC-Logic is normalizable.

Proof : To the PUC normalization arguments we add some permutation re-

ductions following the approach of van Dalen [19] for the operators not in L−.�

The arguments about decidability and complexity of iPUC are analogous

to PUC and produce analogous results.

Theorem 78 The problem of satisfiability is PS-complete for iPUC-Logic.

Proof : We repeat the arguments for theorem 57, but with reference to the

article of Statman[24]. �

III.2 Constructive Counterfactuals

In the proof of the relative completeness of PUC-Logic for the Lewis V-

Logic, the proofs of CONNEX and CPR demanded the classical absurd rule.

In order to do provide a constructive approach over the counterfactual logic,

we need to find another way to prove them. Lewis [1] gave us (page 124) an

alternative formulation for the CPR rule with a simpler rule and an axiom

schema:
φ→ ψ

ψ 4 φ
and (φ 4 (φ ∨ ψ)) ∨ (ψ 4 (φ ∨ ψ))

That rule is a derived rule in iPUC as we can see by the derivation below,

using lemma 59 (proof Π):

1[φ•]
N

φ•
N, •

φ

2[φ]
N, u

φ
Π N, u

φ→ ψ
N, u

ψ
N, u

ψ
N, •

ψ
N

ψ•
N

ψ•
1 N
φ• → ψ•

~
φ• → ψ•

(φ• → ψ•)~

Inside iPUC-Logic, the axioms (φ 4 (φ ∨ ψ)) ∨ (ψ 4 (φ ∨ ψ)) are

unnecessary to recover the completeness of the V-Logic, because they are

derived formulas in the presence of CONNEX:

DBD
PUC-Rio - Certificação Digital Nº 0812635/CA



C
h
ap

ter
III.

in
tu
ition

istic
P
U
C
-L
ogic

79

(φ• → ψ•)~ ∨ (ψ• → φ•)~

(φ• → ψ•)~ ∨ (ψ• → φ•)~

3[(φ• → ψ•)~]

(φ• → ψ•)~
~

φ• → ψ•

1[φ•]
~

φ•

ψ•
~, •

ψ
~, •

φ ∨ ψ
~

(φ ∨ ψ)•
1 ~
φ• → (φ ∨ ψ)•

((φ• → (φ ∨ ψ)•)~

((φ• → (φ ∨ ψ)•)~ ∨ ((ψ• → (φ ∨ ψ)•)~

3[(ψ• → φ•)~]

(ψ• → φ•)~
~

ψ• → φ•

2[ψ•]
~

ψ•

φ•
~, •

φ
~, •

φ ∨ ψ
~

(φ ∨ ψ)•
2 ~
ψ• → (φ ∨ ψ)•

((ψ• → (φ ∨ ψ)•)~

((φ• → (φ ∨ ψ)•)~ ∨ ((ψ• → (φ ∨ ψ)•)~
3

((φ• → (φ ∨ ψ)•)~ ∨ ((ψ• → (φ ∨ ψ)•)~
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So, in order to recover the full V-Logic expressivity, we need to introduce

some rules into the iPUC-Logic. The first approach is a single rule, motivated

by the article of López-Escobar [15].

[αΣ,• → βΩ,•]
∆,~

Π1
Θ

γΛ

[βΩ,• → αΣ,•]
∆,~

Π2
Θ

γΛ

31: Θ
γΛ

(a) the formulas fit into their contexts; (b) ∆ has no universal quantifier.

Given the rule 31, the CONNEX axioms are theorems:

[αΣ,• → βΩ,•]
~

αΣ,• → βΩ,•

(αΣ,• → βΩ,•)~

(αΣ,• → βΩ,•)~ ∨ (βΩ,• → αΣ,•)~

[βΩ,• → αΣ,•]
~

βΩ,• → αΣ,•

(βΩ,• → αΣ,•)~

(αΣ,• → βΩ,•)~ ∨ (βΩ,• → αΣ,•)~

(αΣ,• → βΩ,•)~ ∨ (βΩ,• → αΣ,•)~

Definition 79 Given any model M = 〈W , $,V , χ〉, the set of testimonials of

αΣ is the set of neighbourhoods T (αΣ) = {N ∈ $(χ) | 〈W , $,V , χ,N〉 |= αΣ,•}
and the set of believers of αΣ is the set of neighbourhoods B(αΣ) = {N ∈
$(χ) | 〈W , $,V , χ,N〉 |= αΣ,∗}.

T (αΣ) is an hereditary set [6] in $(χ), because given any neighbourhood

M ∈ T , for every L ∈ $(χ), such that M ⊂ L, then 〈W , $,V , χ, L〉 |= ˆM
and, by world existential propagation, 〈W , $,V , χ, L〉 |= αΣ,• and L ∈ T . But

the hereditary sets are in total order in $(χ), so, given any set T (βΩ), either

T (αΣ) ⊂ T (βΩ) or T (βΩ) ⊂ T (αΣ). In the case where T (αΣ) ⊂ T (βΩ), we

know that every neighbourhood, that has a αΣ-world, must have a βΩ-world

and we conclude that M |= (αΣ,• → βΩ,•)~. By analogy, in the other case

M |= (βΩ,• → αΣ,•)~. So, by definition,M |= (αΣ,• → βΩ,•)~∨ (βΩ,• → αΣ,•)~

and the rule 31 is sound.

We can see that the soundness of rule 31 relies upon the hereditary sets

definition. But the rule depends on the index of two formulas, the operator

→ and the scope of the rule and it makes this rule two much complex. So,

instead of adding rule 31 into iPUC-Logic, we prefer to add the representation

of the hereditary sets into the system. We can also treat the hereditary sets

of believers to recover some symmetry between the world quantifiers, because

we have, by a similar argument, M |= (αΣ,∗ → βΩ,∗)~ ∨ (βΩ,∗ → αΣ,∗)~. This

extension of iPUC will be called iPUCV -Logic.
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32: ∆, T (αΣ)
αΣ,•

∆, T (βΩ)
αΣ

33: ∆,~
βΩ,• → αΣ

∆,~
βΩ,• → αΣ

34: ∆, T (βΩ)
αΣ

[αΣ,•]
∆, T (βΩ)

Π1
Θ

γΨ

[βΩ,•]
∆, T (αΣ)

Π2
Θ

γΨ

35: Θ
γΨ

36: ∆,B(αΣ)
αΣ,∗

∆,B(βΩ)
αΣ

37: ∆,~
βΩ,∗ → αΣ

∆,~
βΩ,∗ → αΣ

38: ∆,B(βΩ)
αΣ

[αΣ,∗]
∆,B(βΩ)

Π1
Θ

γΨ

[βΩ,∗]
∆,B(αΣ)

Π2
Θ

γΨ

39: Θ
γΨ

Figure III.1: The additional rules of iPUCV -ND

Restriction for rules from 32 to 39: All formulas must fit into their contexts.

Restriction for the rules 32 and 39: ∆ has no universal quantifier.

Lemma 80 iPUCV is sound.

Proof : First of all, we need to add T and B as labels. Those sets may be

empty and may be defined by an universal quantification. For example, T (αΣ)

may be defined by the sentence: for all N ∈ $(χ), such that αΣ holds in some

of its worlds. So, we consider T and B as restrictions of the label ~, thus as

universal quantifiers over neighbourhoods. For the semantics:

19. 〈W , $,V , χ〉 |= βΩ,T (αΣ) iff: αΣ ∈ F n, βΩ ∈ F w and ∀λ ∈ A(χ),

∀N ∈ $(λ) : if 〈W , $,V , λ,N〉 |= αΣ,•, then 〈W , $,V , λ,N〉 |= βΩ;

20. 〈W , $,V , χ〉 |= βΩ,B(αΣ) iff: αΣ ∈ F n, βΩ ∈ F w and ∀λ ∈ A(χ),

∀N ∈ $(λ) : if 〈W , $,V , λ,N〉 |= αΣ,∗, then 〈W , $,V , λ,N〉 |= βΩ.

For the definition of the previous rules, we only need to change the first

restriction of the rule 9: (a) ∆ must have no occurrence of universal quantifiers

over neighbourhoods. For the proof of the lemmas and theorems for soundness

and completeness, the arguments for T and B should follow the arguments for

~. To prove that iPUCV is sound, we follow the strategy for PUC and iPUC.

So, we need to prove that the additional rules preserve resolution.

32. From the fitting relation and lemma 19, s({∆, T (αΣ}) must be odd,

because C(αΣ,•) = ‡. So, s(∆) is even. If we take some model H =

〈W , $,V , z〉, such that M (s(∆) H, then we know, by definition, that

∀λ ∈ A(χ), ∀N ∈ $(λ) : if 〈W , $,V , λ,N〉 |= αΣ,•, then 〈W , $,V , λ,N〉 |=
αΣ, which means that M |=∆ αΣ,•,T (αΣ) and, by rule 13, M |=∆,T (αΣ)

αΣ,•;
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33. If M |=∆,T (βΩ) αΣ, then, by the rule 14, M |=∆ αΣ,T (βΩ). From

C(αΣ,T (βΩ)) = †, the fitting relation and lemma 19, we know that s(∆) is

even. If we take some modelH = 〈W , $,V , z〉, such thatM(s(∆) H and

H |= αΣ,T (βΩ), then ∀λ ∈ A(z), ∀N ∈ $(λ) : if 〈W , $,V , λ,N〉 |= βΩ,•,

then 〈W , $,V , λ,N〉 |= αΣ. By definition ∀λ ∈ A(z) : $(λ) = $(z), then

we know that ∀N ∈ $(z) : ∀λ ∈ A(z), if 〈W , $,V , λ,N〉 |= βΩ,•, then

〈W , $,V , λ,N〉 |= αΣ, what means that ∀N ∈ $(z) : βΩ,• → αΣ. We

conclude that H |= (βΩ,• → αΣ)~ and, by definition, αΣ,T (βΩ) |=M:s(∆)

(βΩ,• → αΣ)~, which means, by lemma 21, that M |=∆ (βΩ,• → αΣ)~

and, by rule 13, M |=∆,~ βΩ,• → αΣ;

34. Analogous to the rule 33, but in the reverse order of the conclusions;

35. From rule 14, the fitting relation, and lemma 19, we know that s(∆) is

even. If we take some model H = 〈W , $,V , z〉, such that M (s(∆) H,

we know that T (αΣ) ⊂ T (βΩ) or T (βΩ) ⊂ T (αΣ). This means that

∀N ∈ $(z) : if 〈W , $,V , z, N〉 |= αΣ,• then 〈W , $,V , z, N〉 |= βΩ,• or

∀N ∈ $(z) : if 〈W , $,V , z, N〉 |= βΩ,• then 〈W , $,V , z, N〉 |= αΣ,•. We

can expressed it by H |= αΣ,•,T (βΩ) ∨ βΩ,•,T (αΣ), because ∀λ ∈ A(z) :

$(λ) = $(z). By definition, H |= αΣ,•,T (βΩ) or H |= βΩ,•,T (αΣ), then, by

definition, M |=∆ αΣ,•,T (βΩ) or M |=∆ βΩ,•,T (αΣ) and, using rule 13,

M |=∆,T (βΩ) αΣ,• or M |=∆,T (αΣ) βΩ,•. Using the same argument for

the subderivations Π1 and Π2 as in lemma 28, then M |=Θ γΨ and the

hypothesis may be discharged;

36. Analogous to the case of rule 32;

37. Analogous to the case of rule 33;

38. Analogous to the rule 37, but in the reverse order of the conclusions;

39. Analogous to the case of rule 35.

�
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Lemma 81 iPUCV is normalizing.

Proof : We consider only the additional rules in this proof. The rules 32

and 36 introduce no maximum formula and no detour, because they take

no hypothesis. The rules 35 and 39 introduce no maximum formula and no

detour, because they do not change the formulas and because they left no

open hypothesis to produce a detour. The rules 33 and 34 can only produce

a maximum formula if the conclusion of the rule 33 is taken as hypothesis of

the rule 34. This situation can also be seen as a detour and is easily removed

by the following reduction rule:

∆, T (βΩ)
αΣ,•

33: ∆,~
βΩ,• → αΣ,•

34: ∆, T (βΩ)
αΣ,•

Π

�
∆, T (βΩ)

αΣ,•

Π

The case of rules 37 and 38 is similar to the case of rules 33 and 34. �

Lemma 82 iPUCV is complete for V -Logic.

Proof :

1[α•]
T (β)

α• ~
β• → α•

(β• → α•)~

(α• → β•)~ ∨ (β• → α•)~

1[β•]
T (α)

β•
~

α• → β•

(α• → β•)~

(α• → β•)~ ∨ (β• → α•)~
1

(α• → β•)~ ∨ (β• → α•)~

Considering the arguments of the beginning of this section, we only need to

prove that the CONNEX axioms are theorems. �
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