
II

Proximity-based Understanding of Conditio-

nals

In [17], we presented a sequent calculus for counterfactual logic based on

a Local Set Theory [4]. In this article, we defined the satisfaction relation for

worlds, for sets of the worlds and for neighbourhoods, where we encapsulated

some quantifications that made it easier to express the operators with fewer

quantifiers. But the encapsulation made the the inference system to have no

control of the quantifications. Here we propose a logic for Proximity-based

Understanding of Conditionals, PUC-Logic for short, that take control of the

quantifications with labels.

Definition 1 Given a non-empty set W (considered the set of worlds), we

define a nesting function $ that assigns to each world of W a set of nested

sets of W. A set of nested sets is a set of sets in which the inclusion relation

among sets is a total order.

Definition 2 A frame is a tuple F = 〈W , $,V〉, in which V is a truth

assignment function for each atomic formula with image on the subsets of

W. A model is a pair M = 〈F , χ〉, F a frame and χ a world of W, called the

reference world of the model. A template is a pair T = 〈M, N〉, N ∈ $(χ) and

N is called the reference neighbourhood of the template.

We use the term structure to refer a model or a template.

Definition 3 A structure is finite if its set of worlds is finite.

We now define a relation between structures to represent the pertinence

of neighbourhoods in a neighbourhood system of a world and the pertinence

of worlds in a given neighbourhood.

Definition 4 Given a model M = 〈W , $,V , χ〉, then, for any N ∈ $(χ), the

template T = 〈W , $,V , χ,N〉 is in perspective relation to M. We represent

this by M( T . Given a template T = 〈W , $,V , χ,N〉, then, for any w ∈ N ,

the model M = 〈W , $,V , w〉 is in perspective relation to T . We represent this

by T (M.
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Chapter II. Proximity-based Understanding of Conditionals 17

Definition 5 The concatenation of n tuples of the perspective relation is called

a path of size n and is represented by the symbol (n.

One remark: if the size of a path is even, then a model is related to

another model or a template is related to another template.

Definition 6 The transitive closure of the perspective relation is called the

projective relation, which is represented by the symbol ;.

Definition 7 Given a world χ and the nested neighbourhood function $ we

can build a sequence of sets of worlds:

1.
a$

0(χ) = {χ};

2.
a$
k+1(χ) =

⋃
w∈

a$
k(χ)(

⋃
$(w)), k ≥ 0.

Let
a$(χ) =

⋃
n∈N

a$
n(χ) and

a$
~n(χ) =

⋃
0≤m≤n

a$
m(χ).

We introduce labels in our language, in order to syntactically represent

quantifications over two specific domains: neighbourhoods and worlds. So, for

that reason, a label may be a neighbourhood label or a world label:

– Neighbourhood labels:

(~) Universal quantifier over neighbourhoods of some neighbourhood

system;

(}) Existential quantifier over neighbourhoods of some neighbourhood

system;

(N) Variables (capital letters) that may denote some neighbourhood of

some neighbourhood system.

– World labels:

(∗) Universal quantifier over worlds of some neighbourhood;

(•) Existential quantifier over worlds of some neighbourhood;

(u) Variables (lower case letters) that denote some world of some

neighbourhood.

We denote the set of neighbourhood labels by Ln and the set of world

labels by Lw.

Definition 8 The language of PUC-Logic consists of:

– countably neighbourhood variables: N,M,L, . . .;

– countably world variables: w, z, . . .;

– countably proposition symbols: p0, p1, . . .;
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Chapter II. Proximity-based Understanding of Conditionals 18

– countably proposition constants: >n,⊥n,>w,⊥w, ˆN, ´N, ˆM, ´M, . . .;

– connectives: ∧,∨,→,¬;

– neighbourhood labels: ~,};

– world labels: ∗, •;

– auxiliary symbols: (, ).

As in the case of labels, we want to separate the sets of well-formed

formulas into two disjoint sets, according to sort of label that labels the

formula. We denote the set of neighbourhood formulas by F n and the set

of world formulas by F w.

Definition 9 The sets F n and F w of well-formed formulas1 are constructed

the following rules:

1. >n,⊥n ∈ F n;

2. >w,⊥w ∈ F w;

3. ˆN, ´N ∈ F w, for every neighbourhood variable N ;

4. α ∈ F n, for every atomic formula α, except > and ⊥;

5. if α ∈ F n, then ¬α ∈ F n;

6. if α ∈ F w, then ¬α ∈ F w;

7. if α, β ∈ F n, then α ∧ β, α ∨ β, α→ β ∈ F n;

8. if α, β ∈ F w, then α ∧ β, α ∨ β, α→ β ∈ F w;

9. if α ∈ F n and φ ∈ Lw, then αφ ∈ F w;

10. if α ∈ F w and φ ∈ Ln, then αφ ∈ F n.

We introduced the two formulas for true and false, in order to make the

sets of formulas disjoint. The formula ˆN is introduced to represent that a

neighbourhood contains the neighbourhood N and the formula ´N represent

a neighbourhood is contained in N .

The last two rules of definition 9 introduces the labelling the formulas.

Moreover, since we can label a labelled formula, every formula has a stack of

labels that represent nested labels. We call it the attribute of the formula. The

top label of the stack is the index of the formula. We represent the attribute

1We use the term wff to denote both the singular and the plural form of the expression
well-formed formula.
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Chapter II. Proximity-based Understanding of Conditionals 19

of a formula as a letter that appear to the right of the formula. If the attribute

is empty, we may omit it and the formula has no index. The attribute of some

formula will always be empty if the last rule, used to build the formula, is not

one of the labelling rules, as in the case of ((α→ α)~,•) ∨ (γ},∗).

To read a labelled formula, it is necessary to read its index first and then

the rest of the formula. For example, (α → α)~,• should be read as: there is

some world, in all neighbourhoods of the considered neighbourhood system, in

which it is the case that α→ α.

We may concatenate stacks of labels and labels, using commas, to

produce a stack of labels that is obtained by respecting the order of the labels

in the stacks and the order of the concatenation, like αΣ,∆, where α is a formula

and Σ and ∆ are stacks of labels. But we admit no nesting of attributes, which

means that (αΣ)∆ is the same as αΣ,∆.

Definition 10 Given a stack of labels Σ, we define Σ as the stack of labels

that is obtained from Σ by reversing the order of the labels in the stack.

Definition 11 Given a stack of labels Σ, the size s(Σ) is its number of labels.

Definition 12 Given a set of worlds W, a set of world variables and a set

of neighbourhood variables, we define a variable assignment function σ, that

assigns a world of W to each world variable and a non-empty set of W to each

neighbourhood variable.

Definition 13 Given a variable assignment function σ, the relation |= of

satisfaction between formulas, models and templates is given by:

1. 〈W , $,V , χ〉 |= α, α atomic, iff: χ ∈ V(α). For every world w ∈ W,

w ∈ V(>n) and w 6∈ V(⊥n);

2. 〈W , $,V , χ〉 |= ¬ (αΣ) iff: ¬ (αΣ) ∈ F n and 〈W , $,V , χ〉 6|= αΣ;

3. 〈W , $,V , χ〉 |= αΣ ∧ βΩ iff: αΣ ∧ βΩ ∈ F n and

( 〈W , $,V , χ〉 |= αΣ and 〈W , $,V , χ〉 |= βΩ;

4. 〈W , $,V , χ〉 |= αΣ ∨ βΩ ) iff: αΣ ∨ βΩ ∈ F n and

( 〈W , $,V , χ〉 |= αΣ or 〈W , $,V , χ〉 |= βΩ );

5. 〈W , $,V , χ〉 |= αΣ → βΩ iff: αΣ → βΩ ∈ F n and

( 〈W , $,V , χ〉 |= ¬(αΣ) or 〈W , $,V , χ〉 |= βΩ );

6. 〈W , $,V , χ〉 |= αΣ,~ iff: ∀N ∈ $(χ) : 〈W , $,V , χ,N〉 |= αΣ;
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7. 〈W , $,V , χ〉 |= αΣ,} iff: ∃N ∈ $(χ) : 〈W , $,V , χ,N〉 |= αΣ;

8. 〈W , $,V , χ〉 |= αΣ,N iff: 〈W , $,V , χ, σ(N)〉 |= αΣ;

9. 〈W , $,V , χ,N〉 |= ˆM iff: σ(M) ∈ $(χ) and σ(M) ⊂ N ;

10. 〈W , $,V , χ,N〉 |= ´M iff: σ(M) ∈ $(χ) and N ⊂ σ(M);

11. 〈W , $,V , χ,N〉 |= αΣ,∗ iff: ∀w ∈ N : 〈W , $,V , w〉 |= αΣ;

12. 〈W , $,V , χ,N〉 |= αΣ,• iff: ∃w ∈ N : 〈W , $,V , w〉 |= αΣ;

13. 〈W , $,V , χ,N〉 |= αΣ,u iff: σ(u) ∈ N and 〈W , $,V , σ(u)〉 |= αΣ;

14. 〈W , $,V , χ,N〉 |= ¬ (αΣ) iff: ¬ (αΣ) ∈ F w and 〈W , $,V , χ,N〉 6|= αΣ;

15. 〈W , $,V , χ,N〉 |= αΣ ∧ βΩ iff: αΣ ∧ βΩ ∈ F w and

( 〈W , $,V , χ,N〉 |= αΣ and 〈W , $,V , χ,N〉 |= βΩ );

16. 〈W , $,V , χ,N〉 |= αΣ ∨ βΩ iff: αΣ ∨ βΩ ∈ F w and

( 〈W , $,V , χ,N〉 |= αΣ or 〈W , $,V , χ,N〉 |= βΩ );

17. 〈W , $,V , χ,N〉 |= αΣ → βΩ iff: αΣ → βΩ ∈ F w and

( 〈W , $,V , χ,N〉 |= ¬(αΣ) or 〈W , $,V , χ,N〉 |= βΩ );

18. 〈W , $,V , χ,N〉 |= >w and 〈W , $,V , χ,N〉 6|= ⊥w, for every template.

Definition 14 The relation αΣ |= βΩ of logical consequence is defined iff

αΣ, βΩ ∈ F n and for all modelM |= αΣ, we haveM |= βΩ. The relation is also

defined iff αΣ, βΩ ∈ F w and for all template T |= αΣ, we have T |= βΩ. Given

Γ∪{αΣ} ⊂ F n, the relation Γ |= αΣ of logical consequence is defined iff for all

modelM that satisfies every formula of Γ,M |= αΣ. Given Γ∪{αΣ} ⊂ F w, the

relation Γ |= αΣ is defined iff for all templates T that satisfies every formula

of Γ, T |= αΣ.

Definition 15 αΣ ∈ F n (∈ F w) is a n-tautology (w-tautology) iff for every

model (template) M |= αΣ (T |= αΣ).

Lemma 16 αΣ is a n-tautology iff αΣ,∗,~ is a n-tautology.

Proof : If αΣ is a n-tautology, ∀z ∈ W , 〈W , $,V , z〉 |= αΣ. In particular, given

a world χ ∈ W , ∀N ∈ $(χ) : ∀w ∈ N : 〈W , $,V , w〉 |= αΣ and, by definition,

〈W , $,V , χ〉 |= αΣ,∗,~ for every world ofW and αΣ,∗,~ is also a n-tautology. Con-

versely, if αΣ,∗,~ is a n-tautology, then ∀N ∈ $(χ) : ∀w ∈ N : 〈W , $,V , w〉 |= αΣ

for every choice of W , $ , V and w. So, given W , V and w, we can choose $
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to be the constant function {W}. So, ∀z ∈ W , 〈W , $,V , z〉 |= αΣ and αΣ must

also be a n-tautology. �

The relation defined below is motivated by the fact that, if a model M
satisfies a formula like α~,∗, then for every template T , such thatM( T , T
satisfies α~ by definition. And also for every model H, such thatM(2 H, H
satisfies α by definition.

Definition 17 Given a model M, called the reference model, the relation

αΣ |=M:n β
Ω of referential consequence is defined iff:

– n > 0 and (M |= αΣ implies H |= βΩ, for any structure M(n H);

– n = 0 and (if M |= αΣ implies M |= βΩ).

Given Γ ∪ {αΣ} ⊂ F n, Γ |=M:n α
Σ iff:

– n > 0 and (H |= αΣ, for any structure M (n H that satisfies every

formula of Γ);

– n = 0 and (M |= αΣ if M satisfies every formula of Γ).

Every rule of PUC-ND has a stack of labels, called its context. The scope

is represented by a capital Greek letter at the right of each rule. The scope of

a rule is the top label of its context. Given a context ∆, we denote its scope

by !∆. If the context is empty, then there is no scope. As in the case of labels

and formulas, we want to separate the contexts into two disjoint sets: ∆ ∈ Cn

if !∆ ∈ Ln; ∆ ∈ Cw if ∆ is empty or !∆ ∈ Lw.

Definition 18 We say that a wff αΣ fits into a context ∆ iff αΣ,∆ ∈ F n.

The wff α• → β• and γu,~,∗ fit into the context {}}, because (α• →
β•)} ∈ F n and γu,~,∗,} ∈ F n. The wff α• ∨ β∗ and γ∗,N,u do not fit into the

context {}, ∗}, because (α• ∨ β∗)∗,} and γ∗,N,u,∗,} are not wff and, therefore,

cannot be in F n. There is no wff that fits into the context {∗}, because the

label ∗ ∈ Lw and the rule of labelling can only include the resulting formula

into F w. We can conclude that if a wff is in F n, then the context must be

in Cw and the same for F w and Cn. The fitting restriction ensures that the

conclusion of a rule is always a wff.

Moreover, the definition of fitting resembles the attribute grammar

approach for context free languages [5]. This is the main reason to name the

stack of labels of a formula as the attribute of the formula.
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Figure II.1: Natural Deduction System for PUC-Logic (PUC-ND)
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Here it follows the names and restrictions of the rules of PUC-ND:

1. ∧-elimination: (a) αΣ and βΩ must fit into the context; (b) ∆ has no

existential quantifier;

The existential quantifier is excluded to make it possible to distribute

the context over the ∧ operator, what is shown in lemma 26.

2. ∧-elimination: (a) αΣ and βΩ must fit into the context; (b) ∆ has no

existential quantifier;

The existential quantifier is excluded to make it possible to distribute

the context over the ∧ operator, what is shown in lemma 26.

3. ∧-introduction: (a) αΣ and βΩ must fit into the context; (b) ∆ has no

existential quantifier;

The existential quantifier is excluded because the existence of some world

(or neighbourhood) in which some wff A holds and the existence of some

world in which B holds do not implies that there is some world in which

A and B holds.

4. ∨-introduction: (a) αΣ and βΩ must fit into the context; (b) ∆ has no

universal quantifier;

The universal quantifier is excluded to make it possible to distribute the

context over the ∨ operator, what is shown in lemma 26.

5. ∨-elimination: (a) αΣ and βΩ must fit into the context ∆; (b) ∆ has

no universal quantifier; The universal quantifier is excluded because the

fact that for all worlds (or neighbourhoods) A∨B holds does not implies

that for all worlds A holds or for all worlds B holds.

6. ∨-introduction: (a) αΣ and βΩ must fit into the context; (b) ∆ has no

universal quantifier;

The universal quantifier is excluded to make it possible to distribute the

context over the ∨ operator, what is shown in lemma 26.

7. ⊥-classical: (a) αΣ and ⊥ must fit into the context;

8. ⊥-intuitionistic: (a) αΣ and ⊥ must fit into the context;

9. absurd expansion: (a) ∆ must have no occurrence of ~; (b) ⊥ must

fit into the context; (c) ∆ must be non empty.

The symbol ⊥ is used to denote a formula that may only be ⊥n or ⊥w.

In the occurrence of ~, we admit the possibility of an empty system

of neighbourhoods. In that context, the absurd does not mean that we
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actually reach an absurd in our world. ∆ must be non empty to avoid

unnecessary detours, like the conclusion of ⊥n from ⊥n in the empty

context;

10. hypothesis-injection: (a) αΣ must fit into the context.

This rule permits an scope change before any formula change. It also

avoids combinatorial definitions of rules with hypothesis and formulas

inside a given context;

11. →-introduction: (a) αΣ and βΩ must fit into the context;

12. →-elimination (modus ponens): (a) αΣ and βΩ must fit into the

context; (b) ∆ has no existential quantifier; (c) the premises may be in

reverse order;

The existential quantifier is excluded because the existence of some world

(or neighbourhood) in which some wff A holds and the existence of some

world in which A→ B holds do not implies that there is some world in

which B holds.

13. context-introduction: (a) αΣ,φ and αΣ must fit into their contexts;

14. context-elimination: (a) αΣ,φ and αΣ must fit into their contexts;

15. world universal introduction: (a) αΣ must fit into the context; (b) u

must not occur in any hypothesis on which αΣ depends; (c) u must not

occur in the context of any hypothesis on which αΣ depends;

16. world universal elimination: (a) αΣ must fit into the context; (b) u

must not occur in αΣ or ∆;

17. world existential introduction: (a) αΣ must fit into the context;

18. world existential elimination: (a) the formula αΣ must fit into the

context; (b) u must not occur in αΣ, ∆, Θ or any open hypothesis on

which βΩ depends; (c) u must not occur in the context of any open

hypothesis on which βΩ depends; (d) the premises may be in reverse

order;

19. neighbourhood existential introduction: (a) αΣ must fit into the

context; (b) the premises may be in reverse order;

20. neighbourhood existential elimination: (a) the formula αΣ must

fit into the context; (b) N must not occur in αΣ, ∆, Θ or any open

hypothesis on which βΩ depends; (c) N must not occur in the context of
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any open hypothesis on which βΩ depends; (d) the premises may be in

reverse order;

21. neighbourhood universal introduction: (a) the formula αΣ must fit

into the contexts; (b) N must not occur in any open hypothesis on which

αΣ depends; (c) N must not occur in the context of any open hypothesis

on which αΣ depends;

22. neighbourhood universal wild-card: (a) the formulas αΣ and βΩ

must fit into their contexts; (b) the premises may be in reverse order;

This rule is necessary, because a system of neighbourhood may be empty

and every variable must denote some neighbourhood because of the

variable assignment function σ. The wild-card rule may be seen as a

permition to use some available variable as an instantiation, by making

explicit the choice of the variable.

23. world existential propagation: (a) αΣ,• and ˆN fit into their contexts;

(b) the premises may be in reverse order;

24. world universal propagation: (a) αΣ,∗ and ´N fit into their contexts;

(b) the premises may be in reverse order;

25. transitive neighbourhood inclusion: (a) ˆM and ˆP fit into their

contexts; (b) the premises may be in reverse order;

26. transitive neighbourhood inclusion: (a) ´M and ´P fit into their

contexts; (b) the premises may be in reverse order;

27. neighbourhood total order: (a) ˆM , ˆN and αΣ fit into their contexts;

(b) the premises may be in reverse order;

28. neighbourhood total order: (a) ´M , ´N and αΣ fit into their contexts;

(b) the premises may be in reverse order;

29. neighbourhood total order: (a) ˆN , ´N and αΣ fit into their contexts.

(b) the premises may be in reverse order;

30. truth acceptance: (a) ∆ must have no occurrence of }; (b) > must fit

into the context. The symbol > is used to denote a formula that may

only be >n or >w. If we accepted the occurrence of }, the existence

of some neighbourhood in every system of neighbourhoods would be

necessary and the logic of PUC-ND should be normal according to Lewis

classification [1]. ∆ must be non empty to avoid unnecessary detours,

like the conclusion of >n from >n in the empty context.
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We present here, as an example of the PUC-ND inference calculus, a proof

of a tautology. Considering Lewis definitions, we understand that if there is

some neighbourhood that has some βΩ-world but no αΣ-world, then, for all

neighbourhoods, having some αΣ-world implies having some βΩ-world. The

reason is the total order for the inclusion relation among neighbourhoods.

4[(¬(αΣ))∗ ∧ βΩ,•)}]

(¬(αΣ))∗ ∧ βΩ,•)}
}

(¬(αΣ))∗ ∧ βΩ,•

3[(¬(αΣ))∗ ∧ βΩ,•]
N

Π
(αΣ,• → βΩ,•)~

3
(αΣ,• → βΩ,•)~

4
((¬(αΣ))∗ ∧ βΩ,•)} → (αΣ,• → βΩ,•)~

(¬(αΣ))∗ ∧ βΩ,•
N

(¬(αΣ))∗ ∧ βΩ,•
N

βΩ,•

2[ˆN ]
MˆN
M

βΩ,•
M

αΣ,• → βΩ,•

(¬(αΣ))∗ ∧ βΩ,•
N

(¬(αΣ))∗ ∧ βΩ,•
N

(¬(αΣ))∗

2[´N ]
M´N
M

(¬(αΣ))∗
M, ∗

¬(αΣ)
M,u

¬(αΣ)

1[αΣ,•]
M

αΣ,•
M, •

αΣ
M,u

αΣ

M,u⊥ M,u
βΩ

M, •
βΩ

M
βΩ,•

1 M
αΣ,• → βΩ,•

2 M
αΣ,• → βΩ,•

~
αΣ,• → βΩ,•

Π
(αΣ,• → βΩ,•)~

Lemma 19 If ∆ ∈ Cn, then s(∆) is odd. If ∆ ∈ Cw, then s(∆) is even.

Proof : By definition, if ∆ is empty, then ∆ ∈ Cw and s(∆) is even. According

to the rules of the PUC-ND, if ∆ is empty, it can only accept an additional

label φ ∈ Ln, then {∆, φ} ∈ Cn and s(∆) is odd. We conclude that changing

the context from Cw to Cn and vice-versa always involves adding one to the

size of the label and the even sizes are only and always for contexts in Cw. �

II.1 PUC Soundness and Completeness

For the proof of soundness of PUC-Logic, we prove that the PUC-

ND derivations preserves the relation of resolution, which is a relation that

generalizes the satisfability relation. To do so, we need to prove some lemmas.

In many cases we use the definition 17 of the referential consequence relation.

Definition 20 Given a model M, a context ∆ and a wff αΣ, the relation

M |=∆ αΣ of resolution is defined iff αΣ fits into the context ∆ andM |= αΣ,∆.

If Γ ⊂ F n or Γ ⊂ F w, then M |=∆ Γ if the resolution relation holds for every

formula of Γ.
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Lemma 21 Given a model M = 〈W , $,V , χ〉, if M |=∆ αΣ and αΣ |=M:s(∆)

βΩ, then M |=∆ βΩ.

Proof : If ∆ is empty (s(∆) = 0), the resolution gives us M |= αΣ. From

αΣ |=M:0 β
Ω we know that M |= βΩ if M |= αΣ and, by the definition of

resolution, M |=∆ βΩ;

If ∆ = {~} (s(∆) = 1), then, by definition, M |={~} αΣ means M |= αΣ,~

and for every template T , such that M( T , T |= αΣ.

〈W , $,V , χ〉 |= αΣ,~

◦iiiiiiiiiiiiiiii

◦
◦UUUUUUUUUUUUUUUU

〈W , $,V , χ,N〉 |= αΣ . . . 〈W , $,V , χ, S〉 |= αΣ

N, . . . , S represent all neighbourhoods of $(χ). From s({~}) = 1, we know

that αΣ |=M:1 β
Ω and, by definition, we can change αΣ by βΩ in all endpoints

of the directed graph and conclude 〈W , $,V , χ〉 |= βΩ,~ and M |=∆ βΩ;

If ∆ = {}} (s(∆) = 1), then M |= αΣ,}.

〈W , $,V , χ〉 |= αΣ,}

◦iiiiiiiiiiiiiiii

◦
◦UUUUUUUUUUUUUUUU

〈W , $,V , χ,N〉 |= αΣ . . . 〈W , $,V , χ, S〉 |= αΣ

N, . . . , S represent all neighbourhoods of $(χ) such that αΣ holds. We know

that there is at least one of such neighbourhoods. From αΣ |=M:1 β
Ω, we can

change αΣ by βΩ in all endpoints and conclude M |= βΩ,} because we know

that there is at least one of such downward paths. By definition, M |=∆ βΩ;

If ∆ = {N} (s(∆) = 1), then M |= αΣ,N .

〈W , $,V , χ〉 |= αΣ,N

◦
〈W , $,V , χ, σ(N)〉 |= αΣ

From αΣ |=M:1 βΩ, we change αΣ by βΩ in the endpoint and conclude

M |= βΩ,N . By definition, M |=∆ βΩ;
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If ∆ = {~, ∗} (s(∆) = 2), then M |= αΣ,∗,~.

〈W, $,V, χ〉 |= αΣ,∗,~

◦ ◦[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

〈W, $,V, χ,N〉 |= αΣ,∗

◦ ◦VVVVVVVVVVVVVVVVVVV
. . . 〈W, $,V, χ, S〉 |= αΣ,∗

◦〈W, $,V, λ1〉 |= αΣ . . . 〈W, $,V, λt〉 |= αΣ . . .

N, . . . , S represent all neighbourhoods of $(χ). λ1, . . . , λt represent all worlds

of N . From αΣ |=M:2 βΩ, we can change αΣ by βΩ in all endpoints and

conclude M |= βΩ,∗,~. By definition, M |=∆ βΩ;

If ∆ = {~, •} (s(∆) = 2), then M |= αΣ,•,~.

〈W, $,V, χ〉 |= αΣ,•,~

◦ ◦[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

〈W, $,V, χ,N〉 |= αΣ,•

◦ ◦VVVVVVVVVVVVVVVVVVV
. . . 〈W, $,V, χ, S〉 |= αΣ,•

◦〈W, $,V, λ1〉 |= αΣ . . . 〈W, $,V, λt〉 |= αΣ . . .

N, . . . , S represent all neighbourhoods of $(χ). λ1, . . . , λt represent all worlds

of N in which αΣ holds. We know that there is at least one of these worlds.

From αΣ |=M:2 β
Ω, we can change αΣ by βΩ in all endpoints and conclude

M |= βΩ,•,~ and M |=∆ βΩ;

If ∆ = {~, u} (s(∆) = 2), then M |= αΣ,u,~.

〈W , $,V , χ〉 |= αΣ,u,~

◦ ◦YYYYYYYYYYYYYYYYYYYYYYYYYY

〈W , $,V , χ,N1〉 |= αΣ,u

◦

. . . 〈W , $,V , χ,Ns〉 |= αΣ,u

◦eeeeeeeeeeeeeeeeeeeeeeeeee

〈W , $,V , σ(u)〉 |= αΣ

N, . . . , S represent all neighbourhoods of $(χ). From αΣ |=M:2 βΩ, we can

change αΣ by βΩ in the endpoint and concludeM |= βΩ,u,~. So, by definition,

M |=∆ βΩ;

Any combination of labels follows, by analogy, the same arguments for each

label presented above. �

DBD
PUC-Rio - Certificação Digital Nº 0812635/CA



Chapter II. Proximity-based Understanding of Conditionals 29

Lemma 22 Given a model M = 〈W , $,V , χ〉, if M |=∆ αΣ and αΣ |= βΩ,

then M |=∆ βΩ.

Proof : We follow the argument of lemma 21, by changing αΣ by βΩ in all

endpoints, what is possible by the definition of logical consequence. �

Lemma 23 Given ∆ without universal quantifiers, if αΣ,∆ ∨ βΩ,∆ is wff, then

αΣ,∆ ∨ βΩ,∆ ≡ (αΣ ∨ βΩ)∆.

Proof : We proceed by induction on the size of ∆:

If ∆ is empty, then equivalence is true;

(base) If ∆ contains only one label, it must be a neighbourhood label:

- αΣ,} ∨ βΩ,} may be read as ∃N ∈ $(χ) : 〈W , $,V , χ,N〉 |= αΣ or

∃M ∈ $(χ) : 〈W , $,V , χ,M〉 |= βΩ. But ∃N ∈ $(χ) : 〈W , $,V , χ,N〉 |=
αΣ implies, by definition, ∃N ∈ $(χ) : 〈W , $,V , χ,N〉 |= αΣ ∨ βΩ.

Then we have ∃N ∈ $(χ) : 〈W , $,V , χ,N〉 |= αΣ ∨ βΩ or ∃M ∈
$(χ) : 〈W , $,V , χ,M〉 |= αΣ ∨ βΩ. Since the neighbourhood variables

are bound, we have ∃N ∈ $(χ) : 〈W , $,V , χ,N〉 |= αΣ ∨ βΩ, which

is represented whit labels as (αΣ ∨ βΩ)}. Then αΣ,} ∨ βΩ,} implies

(αΣ ∨ βΩ)}. On the other hand, (αΣ ∨ βΩ)} may be read as ∃N ∈
$(χ) : 〈W , $,V , χ,N〉 |= αΣ ∨ βΩ, which means, by definition, ∃N ∈
$(χ) : 〈W , $,V , χ,N〉 |= αΣ or 〈W , $,V , χ,N〉 |= βΩ. In the first case,

∃N ∈ $(χ) : 〈W , $,V , χ,N〉 |= αΣ, which may be read as αΣ,}. In the

second case, ∃N ∈ $(χ) : 〈W , $,V , χ,N〉 |= βΩ, which may be read

as βΩ,}. Since we have one or the other case, we have αΣ,} ∨ βΩ,}. So,

(αΣ ∨ βΩ)} ≡ αΣ,} ∨ βΩ,};

- αΣ,N ∨βΩ,N may be read as σ(N) ∈ $(χ) and 〈W , $,V , χ, σ(N)〉 |= αΣ or

σ(N) ∈ $(χ) and 〈W , $,V , χ, σ(N)〉 |= βΩ. Then we have σ(N) ∈ $(χ)

and (〈W , $,V , χ, σ(N)〉 |= αΣ or 〈W , $,V , χ, σ(N)〉 |= βΩ), which is,

by definition, 〈W , $,V , χ, σ(N)〉 |= αΣ ∨ βΩ. Then αΣ,N ∨ βΩ,N implies

(αΣ∨βΩ)N . On the other hand, (αΣ∨βΩ)N may be read as σ(N) ∈ $(χ)

and 〈W , $,V , χ, σ(N)〉 |= αΣ ∨ βΩ, which means, by definition, σ(N) ∈
$(χ) and ( 〈W , $,V , χ, σ(N)〉 |= αΣ or 〈W , $,V , χ, σ(N)〉 |= βΩ ). So,

we have (σ(N) ∈ $(χ) and 〈W , $,V , χ, σ(N)〉 |= αΣ) or (σ(N) ∈ $(χ)

and 〈W , $,V , χ, σ(N)〉 |= βΩ), which may be read as αΣ,N ∨ βΩ,N . So,

(αΣ ∨ βΩ)N ≡ αΣ,N ∨ βΩ,N ;

(base) If ∆ contains two labels, it may be {}, •}, {N, •}, {}, u} or {N, u}.
But we just need to look at the distributivity for the • label and for world

variables, because we have already seen the distributivity of the ∨ connective

for the label } and for any neighbourhood variable.
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- αΣ,•,} ∨ βΩ,•,} may be read as ∃N ∈ $(χ) : 〈W , $,V , χ,N〉 |= αΣ,•

or ∃M ∈ $(χ) : 〈W , $,V , χ,M〉 |= βΩ,•. But 〈W , $,V , χ,N〉 |= αΣ,•

implies, by definition, ∃w ∈ N : 〈W , $,V , w〉 |= αΣ, which implies

∃w ∈ N : 〈W , $,V , w〉 |= αΣ ∨ βΩ. So, we have ∃N ∈ $(χ) : ∃w ∈
N : 〈W , $,V , w〉 |= αΣ ∨ βΩ or ∃M ∈ $(χ) : ∃z ∈ N : 〈W , $,V , z〉 |=
αΣ ∨ βΩ. Since every variable is bound, we have ∃N ∈ $(χ) : ∃w ∈
N : 〈W , $,V , w〉 |= αΣ ∨ βΩ, which is, by definition, equivalent to

∃N ∈ $(χ) : 〈W , $,V , χ,N〉 |= (αΣ ∨ βΩ)•, which is equivalent, by

definition, to (αΣ ∨βΩ)•,}. On the other hand, (αΣ ∨βΩ)•,} may be read

as ∃N ∈ $(χ) : ∃w ∈ N : 〈W , $,V , w〉 |= αΣ∨βΩ, which is, by definition,

∃N ∈ $(χ) : ∃w ∈ N : 〈W , $,V , w〉 |= αΣ or 〈W , $,V , w〉 |= βΩ,

which implies ∃N ∈ $(χ) : ∃w ∈ N : 〈W , $,V , w〉 |= αΣ or ∃z ∈ N :

〈W , $,V , z〉 |= βΩ, which implies ∃N ∈ $(χ) : ∃w ∈ N : 〈W , $,V , w〉 |=
αΣ or ∃M ∈ $(χ) : ∃z ∈ M : 〈W , $,V , z〉 |= βΩ, which may be

represented with labels as αΣ,•,}∨βΩ,•,}. So, αΣ,•,}∨βΩ,•,} ≡ (αΣ∨βΩ)•,};

- The proofs of αΣ,•,N∨βΩ,•,N ≡ (αΣ∨βΩ)•,N , αΣ,u,}∨βΩ,u,} ≡ (αΣ∨βΩ)u,}

and αΣ,u,N ∨ βΩ,u,N ≡ (αΣ ∨ βΩ)u,N are analogous.

(induction) If αΣ ∨ βΩ ∈ F w, ∆ = {∆′, φ} and s(∆) = n + 1, then !∆ ∈ Ln

and αΣ,∆ ∨ βΩ,∆ may be written as αΣ,φ,∆′ ∨ βΩ,φ,∆′ , where s(∆′) = n. Then,

by the induction hypothesis, αΣ,φ,∆′ ∨ βΩ,φ,∆′ = (αΣ,φ ∨ βΩ,φ)∆′ . From the base

assertions, (αΣ,φ ∨ βΩ,φ)∆′ = ((αΣ ∨ βΩ)φ)∆′ = (αΣ ∨ βΩ)φ,∆
′
= (αΣ ∨ βΩ)∆;

(induction) If αΣ ∨ βΩ ∈ F n and s(∆) = n + 2, then !∆ ∈ Lw and

αΣ,∆ ∨ βΩ,∆ may be written as αΣ,φ,Θ,∆′ ∨ βΩ,φ,Θ,∆′ , where s(∆′) = n. Then,

by induction hypothesis, αΣ,φ,Θ,∆′ ∨ βΩ,φ,Θ,∆′ = (αΣ,φ,Θ ∨ βΩ,φ,Θ)∆′ . By base,

(αΣ,φ,Θ ∨ βΩ,φ,Θ)∆′ = ((αΣ ∨ βΩ)φ,Θ)∆′ = (αΣ ∨ βΩ)φ,Θ,∆
′
= (αΣ ∨ βΩ)∆. �

Lemma 24 Given ∆ without existential quantifiers, if αΣ,∆∧βΩ,∆ is wff, then

αΣ,∆ ∧ βΩ,∆ ≡ (αΣ ∧ βΩ)∆.

Proof : We proceed by induction on the size of ∆:

If ∆ is empty, then equivalence is true;

(base) If ∆ contains only one label, it must be a neighbourhood label:

- αΣ,~ ∧ βΩ,~ may be read as ∀N ∈ $(χ) : 〈W , $,V , χ,N〉 |= αΣ and

∀M ∈ $(χ) : 〈W , $,V , χ,M〉 |= βΩ. But then, we may conclude

that, for every neighbourhood L ∈ $(χ), 〈W , $,V , χ, L〉 |= αΣ and

〈W , $,V , χ, L〉 |= βΩ, which can be represented with labels, since L is

arbitrary, as (αΣ ∧ βΩ)~. On the other hand, (αΣ ∧ βΩ)~ can be read as

∀N ∈ $(χ) : 〈W , $,V , χ,N〉 |= αΣ∧βΩ, which is equivalent, by definition,

to ∀N ∈ $(χ) : 〈W , $,V , χ,N〉 |= αΣ and 〈W , $,V , χ,N〉 |= βΩ.
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So we have ∀N ∈ $(χ) : 〈W , $,V , χ,N〉 |= αΣ and ∀N ∈ $(χ) :

〈W , $,V , χ,N〉 |= βΩ, that is equivalent to αΣ,~ ∧ βΩ,~;

- αΣ,N ∧ βΩ,N may be read as (σ(N) ∈ $(χ) and 〈W , $,V , χ, σ(N)〉 |=
αΣ) and (σ(N) ∈ $(χ) and 〈W , $,V , χ, σ(N)〉 |= βΩ). But then,

we may conclude, by definition, that 〈W , $,V , χ, σ(N)〉 |= αΣ and

〈W , $,V , χ, σ(N)〉 |= βΩ, which can be represented with labels as

(αΣ ∧ βΩ)N . On the other hand, (αΣ ∧ βΩ)N can be read as σ(N) ∈ $(χ)

and 〈W , $,V , χ, σ(N)〉 |= αΣ ∧ βΩ, which is equivalent, by definition, to

σ(N) ∈ $(χ) and 〈W , $,V , χ, σ(N)〉 |= αΣ and 〈W , $,V , χ, σ(N)〉 |= βΩ.

So we have (σ(N) ∈ $(χ) and 〈W , $,V , χ, σ(N)〉 |= αΣ and (σ(N) ∈ $(χ)

and 〈W , $,V , χ, σ(N)〉 |= βΩ), that is equivalent to αΣ,N ∧ βΩ,N ;

(base) If ∆ contains two labels, it may be {~, ∗}, {N, ∗}, {~, u} or {N, u}.
But we just need to look at the distributivity for the ∗ label and for world

variables, because we have already seen the distributivity of the ∧ connective

for the label ~ and for any neighbourhood variable.

- αΣ,∗,~ ∧ βΩ,∗,~ may be read as ∀N ∈ $(χ) : 〈W , $,V , χ,N〉 |= αΣ,∗ and

∀M ∈ $(χ) : 〈W , $,V , χ,M〉 |= βΩ,∗. Then we have, by definition,

∀w ∈ N : 〈W , $,V , w〉 |= αΣ and ∀z ∈ M : 〈W , $,V , z〉 |= βΩ.

So, for every world x of every neighbourhood L, 〈W , $,V , x〉 |= αΣ

and 〈W , $,V , x〉 |= βΩ. Then we may conclude, by definition, that

〈W , $,V , x〉 |= αΣ ∧ βΩ and represent it with labels as (αΣ ∧ βΩ)∗,~

because x and L are arbitrary. On the other hand, (αΣ ∧ βΩ)∗,~ may be

read as ∀N ∈ $(χ) : ∀w ∈ N : αΣ ∧ βΩ, which implies, by definition,

∀N ∈ $(χ) : ∀w ∈ N : αΣ and also ∀N ∈ $(χ) : ∀w ∈ N : βΩ. So,

we have 〈W , $,V , χ〉 |= αΣ,∗,~ and 〈W , $,V , χ〉 |= βΩ,∗,~. So, we may

conclude, by definition, that αΣ,∗,~ ∧ βΩ,∗,~;

- The proofs of αΣ,∗,N∧βΩ,∗,N ≡ (αΣ∧βΩ)∗,N , αΣ,u,~∧βΩ,u,~ ≡ (αΣ∧βΩ)u,~

andαΣ,u,N ∧ βΩ,u,N ≡ (αΣ ∧ βΩ)u,N are analogous.

(induction) If αΣ ∧ βΩ ∈ F w and s(∆) = n+ 1, then !∆ ∈ Ln and αΣ,∆ ∧ βΩ,∆

may be written as αΣ,φ,∆′ ∧ βΩ,φ,∆′ , where s(∆′) = n. Then, by the induction

hypothesis, αΣ,φ,∆′ ∧ βΩ,φ,∆′ = (αΣ,φ ∧ βΩ,φ)∆′ . From the base assertions,

(αΣ,φ ∧ βΩ,φ)∆′ = ((αΣ ∧ βΩ)φ)∆′ = (αΣ ∧ βΩ)φ,∆
′
= (αΣ ∧ βΩ)∆;

(induction) If αΣ ∧ βΩ ∈ F n and s(∆) = n + 2, then !∆ ∈ Lw and

αΣ,∆ ∧ βΩ,∆ may be written as αΣ,φ,Θ,∆′ ∧ βΩ,φ,Θ,∆′ , where s(∆′) = n. Then,

by induction hypothesis, αΣ,φ,Θ,∆′ ∧ βΩ,φ,Θ,∆′ = (αΣ,φ,Θ ∧ βΩ,φ,Θ)∆′ . By base,

(αΣ,φ,Θ ∧ βΩ,φ,Θ)∆′ = ((αΣ ∧ βΩ)φ,Θ)∆′ = (αΣ ∧ βΩ)φ,Θ,∆
′
= (αΣ ∧ βΩ)∆. �
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Lemma 25 Given ∆ without existential quantifiers, if (αΣ → βΩ)∆ is wff,

then it implies αΣ,∆ → βΩ,∆.

Proof : We proceed by induction on the size of ∆:

If ∆ is empty, then the implication is true;

(base) If ∆ contains only one label, it must be a neighbourhood label:

- (αΣ → βΩ)~ means, by definition, that ∀N ∈ $(χ) : 〈W , $,V , χ,N〉 |=
αΣ → βΩ. Then we know that ∀N ∈ $(χ) : 〈W , $,V , χ,N〉 6|=
αΣ or 〈W , $,V , χ,N〉 |= βΩ. So, if we have ∀N ∈ $(χ) : 〈W , $,V , χ,N〉 |=
αΣ, we must have ∀N ∈ $(χ) : 〈W , $,V , χ,N〉 |= βΩ. In other words,

αΣ,~ → βΩ,~;

- (αΣ → βΩ)N means, by definition, that σ(N) ∈ $(χ) and

〈W , $,V , χ, σ(N)〉 |= αΣ → βΩ. Then we know that σ(N) ∈ $(χ)

and (〈W , $,V , χ, σ(N)〉 6|= αΣ or 〈W , $,V , χ, σ(N)〉 |= βΩ). So, if we

have 〈W , $,V , χ, σ(N)〉 |= αΣ, we must have 〈W , $,V , χ, σ(N)〉 |= βΩ.

In other words, αΣ,N → βΩ,N .

(base) If ∆ contains two labels, it may be {~, ∗}, {N, ∗}, {~, u} or {N, u}.
But we just need to look at the distributivity for the ∗ label and for world

variables, because we have already seen the distributivity of the → connective

for the label ~ and for any neighbourhood variable.

- (αΣ → βΩ)∗,~ means, by definition, that ∀N ∈ $(χ) : ∀w ∈ N :

〈W , $,V , w〉 |= αΣ → βΩ. Then we know that ∀N ∈ $(χ) : ∀w ∈ N :

〈W , $,V , w〉 6|= αΣ or 〈W , $,V , w〉 |= βΩ. So, if we have ∀N ∈ $(χ) :

∀w ∈ N : 〈W , $,V , w〉 |= αΣ, we must have ∀N ∈ $(χ) : ∀w ∈ N :

〈W , $,V , w〉 |= βΩ. In other words, αΣ,∗,~ → βΩ,∗,~;

- The proofs of (αΣ → βΩ)∗,N , (αΣ → βΩ)u,~ and (αΣ → βΩ)u,N are

analogous.

(induction) If αΣ → βΩ ∈ F w and s(∆) = n + 1, then !∆ ∈ Ln and

αΣ,∆ → βΩ,∆ may be written as αΣ,φ,∆′ → βΩ,φ,∆′ , where s(∆′) = n. Then, by

the induction hypothesis, αΣ,φ,∆′ → βΩ,φ,∆′ = (αΣ,φ → βΩ,φ)∆′ . From the base

assertions, (αΣ,φ → βΩ,φ)∆′ = ((αΣ → βΩ)φ)∆′ = (αΣ → βΩ)φ,∆
′

= (αΣ →
βΩ)∆;

(induction) If αΣ → βΩ ∈ F n and s(∆) = n + 2, then !∆ ∈ Lw and αΣ,∆ →
βΩ,∆ may be written as αΣ,φ,Θ,∆′ → βΩ,φ,Θ,∆′ , where s(∆′) = n. Then, by the

induction hypothesis, αΣ,φ,Θ,∆′ → βΩ,φ,Θ,∆′ = (αΣ,φ,Θ → βΩ,φ,Θ)∆′ . By the base,

(αΣ,φ,Θ → βΩ,φ,Θ)∆′ = ((αΣ → βΩ)φ,Θ)∆′ = (αΣ → βΩ)φ,Θ,∆
′
= (αΣ → βΩ)∆. �
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Now we prove one of the main lemmas, in which, from the resolution of

the hypothesis, follow the resolution of the conclusion. We express this property

by saying that PUC-ND preserves resolution.

Lemma 26 PUC-ND without the rules 5, 7, 11, 18, 20, 27, 28 and 29 preserves

resolution.

Proof : Consider M = 〈W , $,V , χ〉.

1. If M |=∆ αΣ ∧ βΩ, then M |= (αΣ ∧ βΩ)∆, and, by lemma 24, M |=
αΣ,∆ ∧ βΩ,∆, which means, by definition,M |= αΣ,∆ andM |= βΩ,∆. So,

we have M |=∆ αΣ;

2. Follow the same argument for rule 1;

3. If M |=∆ αΣ and M |=∆ βΩ, then M |= αΣ,∆ and M |= βΩ,∆, then,

by definition, M |= αΣ,∆ ∧ βΩ,∆, then, by lemma 24, M |= (αΣ ∧ βΩ)∆,

then, by definition, M |=∆ αΣ ∧ βΩ;

4. If M |=∆ αΣ, then M |= αΣ,∆, and, by definition, M |= αΣ,∆ ∨ βΩ,∆,

then, by lemma 23,M |= (αΣ∨βΩ)∆, and, by definition,M |=∆ αΣ∨βΩ;

6. Follow the same argument for rule 4;

8. By definition, there is no template T , such that T |= ⊥w. So, by

definition, for every αΣ ∈ F w, ⊥w |= αΣ and, by lemma 22, M |=∆ αΣ.

The same argument holds for ⊥n considering formulas in F n;

9. If ∆ = {}}, then M |=∆ ⊥w means 〈W , $,V , χ〉 |= ⊥}w. This means

that ∃N ∈ $(χ) : 〈W , $,V , χ,N〉 |= ⊥w, but, by definition, @N ∈
$(χ) : 〈W , $,V , χ,N〉 |= ⊥w, so 〈W , $,V , χ〉 |= ¬(⊥}w). Then, by

the rule 3, 〈W , $,V , χ〉 |= ⊥n and, by definition, M |= ⊥n. The

case ∆ = {N} is similar. If ∆ = {}, •}, then M |=∆ ⊥n means

〈W , $,V , χ〉 |= ⊥•,}n . But this means that ∃N ∈ $(χ) : 〈W , $,V , χ,N〉 |=
⊥•n and ∃w ∈ N : 〈W , $,V , w〉 |= ⊥n. But, by definition, @w ∈ N :

〈W , $,V , w〉 |= ⊥n, so 〈W , $,V , χ,N〉 |= ¬(⊥•n). Using rule 3, we conclude

that 〈W , $,V , χ,N〉 |= ⊥w and, by a previous case, 〈W , $,V , χ〉 |= ⊥n.

The other cases where s(∆) = 2 are similar. If ∆ = {}, •,}}, then

M |=∆ ⊥w means 〈W , $,V , χ〉 |= ⊥},•,}w . But this means that ∃N ∈
$(χ) : 〈W , $,V , χ,N〉 |= ⊥},•w and ∃w ∈ N : 〈W , $,V , w〉 |= ⊥}w. But,

by a previous case, it means that ∃w ∈ N : 〈W , $,V , w〉 |= ⊥n and

〈W , $,V , χ,N〉 |= ⊥•n. But, by definition, @w ∈ N : 〈W , $,V , w〉 |=
⊥n and 〈W , $,V , χ,N〉 |= ¬(⊥•n). So, using rule 3, 〈W , $,V , χ,N〉 |=
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⊥w. Then ∃N ∈ $(χ) : 〈W , $,V , χ,N〉 |= ⊥w and 〈W , $,V , χ〉 |=
⊥}w. By a previous case, we conclude that 〈W , $,V , χ〉 |= ⊥n. The

other cases where s(∆) = 3 are similar. If ∆ = {}, •,}, •}, then

M |=∆ ⊥n means 〈W , $,V , χ〉 |= ⊥•,},•,}n . But this means that ∃N ∈
$(χ) : 〈W , $,V , χ,N〉 |= ⊥•,},•n and ∃w ∈ N : 〈W , $,V , w〉 |= ⊥•,}n
and, by the above arguments, 〈W , $,V , w〉 |= ⊥n. But, by definition,

@w ∈ N : 〈W , $,V , w〉 |= ⊥n, so 〈W , $,V , χ,N〉 |= ¬(⊥•,},•n ) because

of the implication of ⊥n from ⊥•,}n . Using rule 3, we conclude that

〈W , $,V , χ,N〉 |= ⊥w and 〈W , $,V , χ〉 |= ⊥n by a previous argument.

The other cases are similar and the general case is treated by induction

on the size of ∆ following the previous arguments;

10. If M |=∆ αΣ, then M |=∆ αΣ;

12. If M |=∆ αΣ → βΩ, then M |= (αΣ → βΩ)∆, then, by lemma 25,

M |= αΣ,∆ → βΩ,∆. Then, by definition, M |= ¬(αΣ,∆) or M |= βΩ,∆.

But we know from M |=∆ αΣ that M |= αΣ,∆. So, we can conclude

M |=∆ βΩ;

13. If M |=∆ αΣ,φ, then M |= αΣ,φ,∆. But, {φ,∆} ≡ {∆, φ}, then, by

definition, M |=∆,φ αΣ;

14. If M |=∆,φ αΣ, then M |= αΣ,{∆,φ}. But, {∆, φ} ≡ {φ,∆}, and, by

definition, M |=∆ αΣ,φ;

15. If M |=∆,u αΣ, then, by the rule 14, M |=∆ αΣ,u. By the fact

that αΣ,u ∈ F w, the fitting relation and lemma 19, we know that

s(∆) is odd. If we take some template T = 〈W , $,V , z, N〉, such that

M (s(∆) T and T |= αΣ,u, we can conclude that N ∈ $(z), σ(u) ∈ N
and 〈W , $,V , σ(u)〉 |= αΣ. The restrictions of the rule assures us that

the variable u is arbitrary and we may conclude that ∀w ∈ N :

〈W , $,V , w〉 |= αΣ. So, T |= αΣ,∗ and, by definition, αΣ,u |=M:s(∆) α
Σ,∗,

which means, by lemma 21, thatM |=∆ αΣ,∗ and, by rule 13,M |=∆,∗ αΣ;

16. If M |=∆,∗ αΣ, then, by the rule 14, M |=∆ αΣ,∗. By the fact that

αΣ,∗ ∈ F w, the fitting relation and lemma 19, we know that s(∆) is odd.

If we take some template T = 〈W , $,V , z〉, such that M (s(∆) T and

T |= αΣ,∗, then N ∈ $(z) and ∀w ∈ N : 〈W , $,V , w〉 |= αΣ. If we take

a variable u to denote a world of N obeying the restrictions of the rule,

then we may conclude that u ∈ N and 〈W , $,V , u〉 |= αΣ. So, T |= αΣ,u

and, by definition, αΣ,∗ |=M:s(∆) α
Σ,u, which means, by lemma 21, that

M |=∆ αΣ,u and, by rule 13, M |=∆,u αΣ;
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17. If M |=∆,u αΣ, then, by the rule 14, M |=∆ αΣ,u. By the fact that

αΣ,u ∈ F w, the fitting relation and lemma 19, we know that s(∆) is

odd. If we take some template T = 〈W , $,V , z〉, such that M(s(∆) T
and T |= αΣ,u, then N ∈ $(z), σ(u) ∈ N and 〈W , $,V , σ(u)〉 |= αΣ.

Since we denote some world with the variable u, we know that there is

some world in N such that the formula αΣ holds. Then we may conclude

that ∃w ∈ N : 〈W , $,V , w〉 |= αΣ. So, T |= αΣ,• and, by definition,

αΣ,u |=M:s(∆) α
Σ,•, which means, by lemma 21, thatM |=∆ αΣ,• and, by

rule 13, M |=∆,• αΣ;

19. If M |=∆,N αΣ and M |=∆,} βΩ, then, by the rule 14, M |=∆ αΣ,N

and M |=∆ βΩ,} and, by rule 3, M |=∆ αΣ,N ∧ βΩ,}. By the fact that

αΣ,N∧βΩ,} ∈ F n, the fitting relation and lemma 19, we know that s(∆) is

even. If we take some modelH = 〈W , $,V , z〉, such thatM(s(∆) H and

H |= αΣ,N ∧ βΩ,}, then from βΩ,} we know that $(z) 6= ∅, σ(N) ∈ $(z)

and 〈W , $,V , z, σ(N)〉 |= αΣ. Since we denote some neighbourhood with

the variable N , we know that there is some neighbourhood in $(z), such

that the formula αΣ holds. Then ∃M ∈ $(z) : 〈W , $,V , z,M〉 |= αΣ and

H |= αΣ,}. So, by definition, αΣ,N ∧ βΩ,} |=M:s(∆) α
Σ,}, which means, by

lemma 21, that M |=∆ αΣ,} and, by rule 13, M |=∆,} αΣ;

21. If M |=∆,N αΣ, then, by the rule 14, M |=∆ αΣ,N . By the fact that

αΣ,N ∈ F n, the fitting relation and lemma 19, we know that s(∆) is

even. If we take some model H = 〈W , $,V , z〉, such that M (s(∆) H
and H |= αΣ,N , then σ(N) ∈ $(z) and 〈W , $,V , z, σ(N)〉 |= αΣ. From

the restrictions of the rule, we know that N is arbitrary, so, ∀M ∈ $(z) :

〈W , $,V , z,M〉 |= αΣ, which means that H |= αΣ,~. So, by definition,

αΣ,N |=M:s(∆) α
Σ,~, which means, by lemma 21, that M |=∆ αΣ,~ and,

by rule 13, M |=∆,~ αΣ;

22. If M |=∆,~ αΣ and M |=∆,N βΩ, then, by the rule 14, M |=∆ αΣ,~

and M |=∆ βΩ,N . So, by rule 3, M |=∆ αΣ,~ ∧ βΩ,N . By the fact

that αΣ,~ ∧ βΩ,N ∈ F n, the fitting relation and lemma 19, we know

that s(∆) is even. If we take some model H = 〈W , $,V , z〉, such that

M (s(∆) H and H |= αΣ,~ ∧ βΩ,N , then H |= αΣ,~ and H |= βΩ,N .

By definition, σ(N) ∈ $(z) and 〈W , $,V , z, σ(N)〉 |= βΩ and ∀M ∈
$(z) : 〈W , $,V , z,M〉 |= αΣ. So, σ(N) ∈ $(z) and, by the universal

quantification, 〈W , $,V , z, σ(N)〉 |= αΣ. This means that H |= αΣ,N and,

by definition, αΣ,~∧βΩ,N |=M:s(∆) α
Σ,N , which means, by lemma 21, that

M |=∆ αΣ,N and, by rule 13, M |=∆,N αΣ;
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23. If M |=∆,N αΣ,• and M |=∆,M ˆN , then, by the rule 14, M |=∆ αΣ,•,N

and M |=∆ (ˆN)M . By the rule 3, M |=∆ αΣ,•,N ∧ (ˆN)M . By the fact

that αΣ,•,N ∧ (ˆN)M ∈ F n, the fitting relation and lemma 19, we know

that s(∆) is even. If we take some model H = 〈W , $,V , z〉, such that

M (s(∆) H and H |= αΣ,•,N ∧ (ˆN)M , then σ(N) ∈ $(z) and ∃w ∈
σ(N) : 〈W , $,V , w〉 |= αΣ. From (ˆN)M , we know that σ(M) ∈ $(z) and

σ(N) ⊂ σ(M), then ∃w ∈ σ(M) : 〈W , $,V , w〉 |= αΣ. We conclude that

H |= αΣ,•,M and, by definition, αΣ,•,N ∧ (ˆN)M |=M:s(∆) α
Σ,•,M , which

means, by lemma 21, thatM |=∆ αΣ,•,M and, by rule 13,M |=∆,M αΣ,•;

24. If M |=∆,N αΣ,∗ and M |=∆,M ´N , then, by the rule 14, M |=∆ αΣ,∗,N

and M |=∆ (´N)M . By the rule 3, M |=∆ αΣ,∗,N ∧ (´N)M . By the fact

that αΣ,∗,N ∧ (´N)M ∈ F n, the fitting relation and lemma 19, we know

that s(∆) is even. If we take some model H = 〈W , $,V , z〉, such that

M (s(∆) H and H |= αΣ,∗,N ∧ (´N)M , then σ(N) ∈ $(z) and ∀w ∈
σ(N) : 〈W , $,V , w〉 |= αΣ. From (´N)M , we know that σ(M) ∈ $(z) and

σ(M) ⊂ σ(N), then ∀w ∈ σ(M) : 〈W , $,V , w〉 |= αΣ. We conclude that

H |= αΣ,∗,M and, by definition, αΣ,∗,N ∧ (´N)M |=M:s(∆) α
Σ,∗,M , which

means, by lemma 21, thatM |=∆ αΣ,∗,M and, by rule 13,M |=∆,M αΣ,∗;

25. If M |=∆,N ˆM and M |=∆,M ˆP , then, by the rule 14, M |=∆ (ˆM)N

and M |=∆ (ˆP )M . By the rule 3, M |=∆ (ˆM)N ∧ (ˆP )M . By the

fact that (ˆM)N ∧ (ˆP )M ∈ F n, the fitting relation and lemma 19,

we know that s(∆) is even. If we take some model H = 〈W , $,V , z〉,
such that M (s(∆) H and H |= (ˆM)N ∧ (ˆP )M , then σ(N) ∈ $(z)

and σ(M) ⊂ σ(N). From (ˆP )M , we know that σ(M) ∈ $(z) and

σ(P ) ⊂ σ(M), then σ(P ) ⊂ σ(N). We conclude that H |= (ˆP )N and,

by definition, (ˆM)N ∧ (ˆP )M |=M:s(∆) (ˆP )N , which means, by lemma

21, that M |=∆ (ˆP )N and, by rule 13, M |=∆,N ˆP ;

26. It follows the same argument of rule 25;

30. According to the satisfaction relation, every model must model >n and

every template must model >w. So, given a model M, if s(∆) is even,

then, for every model H, such thatM(s(∆) H, H |= >n and, by lemma

21, M |=∆ >n. The argument for odd s(∆) is analogous.

�
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Lemma 27 Given a context ∆ with no existential label, and a wff αΣ that fits

on ∆, then, for any model, M |=∆ αΣ ∨ ¬(αΣ).

Proof : We proceed by induction on the size of ∆.

If ∆ is empty, then αΣ ∈ F n. αΣ ∨ ¬(αΣ) is a tautology because of the

satisfaction relation definition: given any model M, if M |= αΣ, then M |=
αΣ ∨ ¬(αΣ). If M 6|= αΣ, then M |= ¬(αΣ) and M |= αΣ ∨ ¬(αΣ).

(base) If ∆ = {~}, then αΣ ∈ F w. αΣ ∨ ¬(αΣ) is a tautology because of

the satisfaction relation definition: given any template T , if T |= αΣ, then

T |= αΣ∨¬(αΣ). If T 6|= αΣ, then T |= ¬(αΣ) and T |= αΣ∨¬(αΣ). Given any

modelM = 〈W , $,V , χ〉, then for every template 〈W , $,V , χ,N〉 |= αΣ∨¬(αΣ)

and, by definition, M |= (αΣ ∨ ¬(αΣ))~. So, M |= (αΣ ∨ ¬(αΣ))∆ and, by

definition, M |=∆ αΣ ∨ ¬(αΣ).

(base) If ∆ = {N}: by the previous case, M |= (αΣ ∨ ¬(αΣ))~ and, in

particular, M |= (αΣ ∨ ¬(αΣ))N , for any neighbourhood variable N .

(base) If ∆ = {~, ∗}, then αΣ ∈ F n. αΣ ∨ ¬(αΣ) is a tautology because

of the satisfaction relation definition: given any model H, if H |= αΣ, then

H |= αΣ ∨ ¬(αΣ). If H 6|= αΣ, then H |= ¬(αΣ) and H |= αΣ ∨ ¬(αΣ). We

apply lemma 16 to conclude that (αΣ ∨ ¬(αΣ))∗,~ is also a tautology. So, for

any model M |= (αΣ ∨ ¬(αΣ))∗,~ and, by definition, M |=∆ αΣ ∨ ¬(αΣ).

(base) If ∆ = {~, u}: by the previous case (αΣ ∨ ¬(αΣ))∗,~ is a tautology. So,

in particular, M |= (αΣ ∨ ¬(αΣ))u,~ for any world variable and, by definition,

M |=∆ αΣ ∨ ¬(αΣ).

(base) If ∆ = {N, ∗} and ∆ = {N, u} are analogous to the previous case.

(induction) If ∆ = {φ,∆′}: by lemma 23, (αΣ∨¬(αΣ))φ,∆
′ ≡ (αΣ,φ∨(¬(αΣ)φ)∆′ .

By the induction hypothesis, M |=∆′ αΣ,φ ∨ (¬(αΣ))φ. By lemma 23 again,

M |=∆′ (αΣ ∨ (¬(αΣ))φ and, by definition, M |=∆′,φ αΣ ∨ ¬(αΣ). �

Lemma 28 PUC-ND preserves resolution.

Proof : We present the proof for each remaining rule of the PUC-ND inside

an induction. Base argument:

5. If M |=∆ αΣ ∨ βΩ, then M |= (αΣ ∨ βΩ)∆, then, by lemma 23,

M |= αΣ,∆ ∨ βΩ,∆, then, by definition, M |= αΣ,∆ or M |= βΩ,∆. This

means, by definition, that M |=∆ αΣ or M |=∆ βΩ. So, if Π1 and Π2

only contains the rules from lemma 26,M |=Θ γΛ in both cases, because

of the preservation of the resolution relation. And, for that conclusion,

the hypothesis are no longer necessary and may be discharged;
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7. We know from classical logic thatM |= αΣ,∆∨¬(αΣ,∆), which means that

M |= αΣ,∆ orM |= ¬(αΣ,∆). In the first case, we know thatM |=∆ αΣ.

In the second case, we know that M |=∆ ¬(αΣ). If the subderivation Π

only contains the rules from lemma 26, we can conclude that M |=∆ ⊥.

But, from rule 7, this means that M |=∆ αΣ. So, in either case, we can

conclude M |=∆ αΣ and we are able to discharge the hypothesis;

11. From lemma 27, we know that M |=∆ αΣ ∨ ¬(αΣ), so M |=∆ αΣ or

M |=∆ ¬(αΣ). In the first case, if Π only contains the rules of lemma 26,

then the derivation gives us M |=∆ βΩ. If βΩ ∈ F n, then, by the fitting

relation and lemma 19, we know that s(∆) is even. If we take some

model H = 〈W , $,V , z〉, such that M (s(∆) H and H |= βΩ, then, by

definition, H |= αΣ → βΩ. So, by definition, βΩ |=M:s(∆) α
Σ → βΩ, which

means, by lemma 21, that M |=∆ αΣ → βΩ. If βΩ ∈ F w, then, by the

fitting relation and lemma 19, we know that s(∆) is odd. If we take some

template T = 〈W , $,V , z, L〉, such that M(s(∆) T and T |= βΩ, then,

by definition, T |= αΣ → βΩ. So, by definition, βΩ |=M:s(∆) α
Σ → βΩ,

which means, by lemma 21, that M |=∆ αΣ → βΩ. In the case where

M |=∆ ¬(αΣ), if ¬(αΣ) ∈ F n, then, by the fitting relation and lemma 19,

we know that s(∆) is even. If we take some model H = 〈W , $,V , z〉, such

that M (s(∆) H and H |= ¬(αΣ), then, by definition, H |= αΣ → βΩ.

So, by definition, ¬(αΣ) |=M:s(∆) α
Σ → βΩ, which means, by lemma 21,

that M |=∆ αΣ → βΩ. If ¬(αΣ) ∈ F w, then, by the fitting relation

and lemma 19, we know that s(∆) is odd. If we take some template

T = 〈W , $,V , z, L〉, such that M (s(∆) T and T |= ¬(αΣ), then, by

definition, T |= αΣ → βΩ. So, by definition, ¬(αΣ) |=M:s(∆) α
Σ → βΩ,

which means, by lemma 21, that M |=∆ αΣ → βΩ. So the hypothesis is

unnecessary and may be discharged;

18. If M |=∆,• αΣ, then, by the rule 14, M |=∆ αΣ,•. By the fact that

αΣ,• ∈ F w, the fitting relation and lemma 19, we know that s(∆) is odd.

If we take some template T = 〈W , $,V , z, N〉, such that M (s(∆) T
and T |= αΣ,•, then, N ∈ $(z) and ∃w ∈ N : 〈W , $,V , w〉 |= αΣ.

Since the variable u occurs nowhere else in the derivation, u can be

taken as a denotation of the given existential and we conclude that

〈W , $,V , σ(u)〉 |= αΣ, what means that T |= αΣ,u. So, by definition,

αΣ,• |=M:s(∆) α
Σ,u, which means, by lemma 21, that M |=∆ αΣ,u. We

conclude, using the rule 13, thatM |=∆,u αΣ. If Π only contains rules of

the lemma 26, then we can conclude M |=Θ βΩ. Then we can discharge
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the hypothesis because we know that any denotation of the existential

may provide the same conclusion;

20. If M |=∆,} αΣ, then, by the rule 14, M |=∆ αΣ,}. By the fact that

αΣ,} ∈ F n, the fitting relation and lemma 19, we know that s(∆) is

even. If we take some modelH = 〈W , $,V , z〉, such thatM(s(∆) H and

H |= αΣ,}, then ∃M ∈ $(z) : 〈W , $,V , z,M〉 |= αΣ. Since the variable N

occurs nowhere else in the derivation, N can be taken as a denotation

of the given existential and we conclude that 〈W , $,V , z, σ(N)〉 |= αΣ,

what means that H |= αΣ,N . So, by definition, αΣ,} |=M:s(∆) α
Σ,N , which

means, by lemma 21, that M |=∆ αΣ,N . We conclude, using the rule 13,

that M |=∆,N αΣ. If Π only contains rules of the lemma 26, then we

can conclude M |=Θ βΩ. Then we can discharge the hypothesis because

we know that any denotation of the existential may provide the same

conclusion;

27. From rule 14, the fitting relation, and lemma 19, we know that s(∆) is

even. If we take some model H = 〈W , $,V , z〉, such thatM(s(∆) H, we

know that the neighbourhoods of $(z) are in total order for the inclusion

relation. Given any two neighbourhood variables M and N , we know

that σ(M) ∈ $(z), σ(N) ∈ $(z) and either σ(M) ⊂ σ(N) or σ(N) ⊂
σ(M). This can be expressed by H |= (ˆN)M ∨ (ˆM)N . By definition,

H |= (ˆN)M or H |= (ˆM)N , then, by definition, M |=∆ (ˆN)M or

M |=∆ (ˆM)N and, using rule 13, M |=∆,M ˆN or M |=∆,N ˆM . If

the subderivations Π1 and Π2 only contains the rules of lemma 8, then

M |=Θ αΣ and the hypothesis may be discharged.

28. Follow the same argument for rule 28.

29. From rule 14, the fitting relation, and lemma 19, we know that s(∆) is

even. If we take some model H = 〈W , $,V , z〉, such thatM(s(∆) H, we

know that the neighbourhoods of $(z) are in total order for the inclusion

relation. Given a neighbourhood variable M , we know that, for every

neighbourhood variable N , either σ(M) ⊂ σ(N) or σ(N) ⊂ σ(M). This

can be expressed by H |= (ˆN)M ∨ (´N)M . By definition, H |= (ˆN)M

or H |= (´N)M , then, by definition, M |=∆ (ˆN)M or M |=∆ (´N)M

and, using rule 13, M |=∆,M ˆN or M |=∆,M ´N . If the subderivations

Π1 and Π2 only contains the rules of lemma 8, then M |=Θ αΣ and the

hypothesis may be discharged.
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Inductive case: for every rule, we suppose that the subderivations (Π) were only

composed by rules of the lemma 26. If some derivation may contains all rules

of the PUC-ND, then there must be an application of the rules of the present

lemma that contains only the rules of the lemma 26, because the derivation

is finite and the subderivations have a positive number of application of rules.

Those cases are covered by the Base argument and, for that reason, they

preserve the resolution relation. The next step is to consider all application

of the rules of the present lemma that may have one application of the rules

5, 7, 11, 19, 20, 28, 29 or 30. Then, step by step, we cover all possible nested

application of the rules of the present lemma. �

Definition 29 Given the formulas αΣ and βΩ, the relation αΣ `∆
Θ βΩ of

derivability is defined iff there is a derivation that concludes βΩ in the context

Θ and that may only have αΣ in the context ∆ as open hypothesis. If Γ ⊂ F n or

Γ ⊂ F w, the relation Γ `∆
Θ αΣ of derivability is defined iff there is a derivation

that concludes αΣ in the context Θ and that only has as open hypothesis the

formulas of Γ in the context ∆.

Definition 30 αΣ is a theorem iff ` αΣ.

Theorem 31 Γ ` αΣ implies Γ |= αΣ (Soundness).

Proof : The fitting restriction of the rules of PUC-ND ensures that αΣ ∈ F n

because it appears in the empty context. The same conclusion follows for every

formula of Γ. The derivability assures that there is a derivation that concludes

αΣ and takes as open hypothesis a subset of Γ, which we call Γ′. If we take a

model M that satisfies every formula of Γ, then it also satisfies every formula

of Γ′. So, M |= γΘ, for every γΘ ∈ Γ′. But this means, by definition, that, for

every wff of Γ′, the resolution relation holds with the empty context. Then,

from lemma 28, we know that M |= αΣ. So, every model, that satisfies every

formula of Γ, satisfies αΣ and, by definition, Γ |= αΣ. �

In order to prove the converse implication, we use maximal consistent

sets to prove completeness for the fragment {∧,→, •,},~} of the language.

The label } is not definable from ~ and vice-versa because the chosen logic for

neighbourhoods is a free logic [22]. The reader can see the propositional classic

logic case of this way of proving completeness in [17]. But for the completeness

proof we must restrict the formulas to sentences due to occurrences of variables.

Definition 32 Given αΣ ∈ F n, if αΣ has no variables in the attributes of its

subformulas nor any subformula of the shape ˆN or ´N , then αΣ ∈ Sn. By

analogy, we can construct Sw from F w.
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Definition 33 Given Γ ⊂ Sn (Γ ⊂ Sw), we say that Γ is n-inconsistent (w-

inconsistent) if Γ ` ⊥n (Γ `NN ⊥w, where N is a neighbourhood variable that

does not occur in Γ) and n-consistent (w-consistent) if Γ 6` ⊥n (Γ 6`NN ⊥w).

Lemma 34 Given Γ ⊂ Sn (Γ ⊂ Sw), the following three conditions are

equivalents:

1. Γ is n-inconsistent;

2. Γ ` φΘ, for any formula φΘ that fits into the empty context;

3. There is at least a formula φΘ, such that Γ ` φΘ and Γ ` φΘ → ⊥n

Proof : 1⇒ 2) If Γ ` ⊥n, then there is a derivation D with conclusion ⊥n and

hypothesis in Γ. To D we can add one inference using the rule 8 of PUC-ND to

conclude any formula that fits into the empty context. 2⇒ 3) Trivial; 3⇒ 1)

If Γ ` φΘ and Γ ` φΘ → ⊥n, then there is a derivation for each formula with

the hypothesis in Γ. Combining the derivations, we conclude ⊥n using rule 12

of the PUC-ND. There is no problem with existential quantifiers in the context

because we conclude the formulas in the empty context. So, Γ ` ⊥n. The same

holds for Γ ⊂ Sw. �

Lemma 35 Given Γ ⊂ Sn (Γ ⊂ Sw), if there is a model (template) that

satisfies every formula of Γ, then Γ is n-consistent (w-consistent).

Proof : If Γ ` ⊥n, then, by theorem 31, Γ |= ⊥n. If there is model that

satisfies every formula of Γ, then it also satisfies ⊥n by the definition of logical

consequence. But there is no model that satisfies ⊥n because of the definition

of the truth evaluation function. The same holds for Γ ⊂ Sw. �

Lemma 36 Given Γ ⊂ Sn: 1. If Γ ∪ {φΘ → ⊥n} ` ⊥n, then Γ ` φΘ; 2. If

Γ ∪ {φΘ} ` ⊥n, then Γ ` φΘ → ⊥n. Likewise for Γ ⊂ Sw.

Proof : The first (second) assumption implies that there is a derivation D
(D′) with hypothesis in Γ ∪ {φΘ → ⊥n} (Γ ∪ {φΘ}) and conclusion ⊥n. Since

¬(φΘ) ≡ φΘ → ⊥n, we can apply the rule ⊥-classical (→-introduction) and

eliminate all occurrences of φΘ → ⊥n (φΘ) as hypothesis, then we obtain a

derivation with hypothesis in Γ and conclusion φΘ (φΘ → ⊥n). The same

argument holds for Γ ⊂ Sw. �

Lemma 37 Sn and Sw are denumerable.

Proof : Every αΣ ∈ Sn contains a finite number of proposition symbols and

logical operators. So, any lexical order provide a bijection from Sn to the

natural numbers. The same argument works for Sw. �
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Definition 38 Γ ⊂ Sn (Γ ⊂ Sw) is maximally n-consistent (maximally w-

consistent) iff Γ is n-consistent (w-consistent) and it cannot be a proper subset

of any other n-consistent (w-consistent) set.

Lemma 39 Every n-consistent (w-consistent) set is subset of a maximally n-

consistent (w-consistent) set.

Proof : According to the lemma 37, we may have a list ϕ0, ϕ1, . . . of all wff

of Sn. We build a non-decreasing sequence of sets Γi such that the union is

maximally n-consistent.

Γ0 = Γ;

Γk+1 = Γk ∪ {ϕk} if n-consistent, Γk otherwise;

Γ̂ =
⋃
{Γk | k ≥ 0}.

(a) Γk is n-consistent for all k: by induction; (b) Γ̂ is n-consistent: suppose

that Γ̂ ` ⊥n, then for every derivation D of ⊥n with hypothesis in Γ̂ we have

a finite set of hypothesis. By definition, every wff is included in Γ̂ via a set Γk.

Then, because the sequence of construction of Γ̂ is non-decreasing, there is a

number m, such that Γm contains all hypothesis of D. But Γm is n-consistent

and, therefore, cannot derive ⊥n. The same holds for w-consistent sets. �

Lemma 40 If Γ is maximally n-consistent (w-consistent) set, then Γ is closed

under derivability.

Proof : Suppose that Γ ` ϕΘ and ϕΘ 6∈ Γ. Then Γ ∪ {ϕΘ} must be n-

inconsistent by the definition of maximally n-consistent set. By lemma 36,

Γ ` ϕΘ → ⊥n, so Γ is n-inconsistent. The same argument holds for w-consistent

sets. �

Lemma 41 If Γ is maximally n-consistent (w-consistent), then:

(a) For all ϕΘ ∈ Sn (∈ Sw), either ϕΘ ∈ Γ or ϕΘ → ⊥n ∈ Γ (ϕΘ → ⊥w);

(b) For all ϕΘ, ψΥ ∈ Sn (∈ Sw), ϕΘ → ψΥ ∈ Γ iff ϕΘ ∈ Γ implies ψΥ ∈ Γ.

Proof : (a) Both ϕΘ and ϕΘ → ⊥n cannot belong to Γ. If Γ ∪ ϕΘ is n-

consistent, then, by the definition of maximally n-consistent set, ϕΘ ∈ Γ. If it is

n-inconsistent, then by lemmas 36 and 40, ϕΘ → ⊥n ∈ Γ. (b) If ϕΘ → ψΥ ∈ Γ

and ϕΘ ∈ Γ, then Γ ` ψΥ by →-elimination and, by lemma 40, ψΥ ∈ Γ. In

other way, supposing that ϕΘ ∈ Γ implies ψΥ ∈ Γ, if ϕΘ ∈ Γ, then obviously

Γ ` ψΥ and Γ ` ϕΘ → ψΥ by →-introduction. If ϕΘ 6∈ Γ, then, by the

(a) conclusion, ϕΘ → ⊥n ∈ Γ. The conclusion ϕΘ → ψΥ ∈ Γ comes from a

simple derivation with ϕΘ as a discharged hypothesis of a→-introduction that

follows an application of the intuitionistic absurd. The same argument holds

for w-consistent sets. �
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Corollary 42 If Γ is maximally n-consistent (w-consistent), then ϕΘ ∈ Γ iff

ϕΘ → ⊥n 6∈ Γ.

Definition 43 Given the maximally n-consistent set Γ ⊂ Sn and the maxi-

mally w-consistent set Λ ⊂ Sw, we say that Γ accepts Λ (Γ ∝ Λ) if αΣ ∈ Λ

implies αΣ,} ∈ Γ. If αΣ ∈ Γ implies αΣ,• ∈ Λ, then Λ ∝ Γ.

Definition 44 Given maximally w-consistent sets Γ and Λ, we say that Γ

subordinates Λ (Λ < Γ) iff αΣ,• ∈ Λ implies αΣ,• ∈ Γ and αΣ,∗ ∈ Γ implies

αΣ,∗ ∈ Λ.

Lemma 45 If Γ is n-consistent, then there is a modelM, such thatM |= αΣ,

for every αΣ ∈ Γ.

Proof : By lemma 39, Γ is contained in a maximally n-consistent set Γ̂. We

consider every maximally n-consistent set Ψ as a representation of one world,

denoted by χΨ. Every maximally w-consistent set will be seen as a set of worlds

that may be a neighbourhood. We take the set of maximally n-consistent sets

as W . We take ∝ as the nested neighbourhood function $ and < as the total

order among neighbourhoods. To build the truth evaluation function V , we

require, for every maximally n-consistent set Ψ and for every α atomic: (a)

χΨ ∈ V(α) if α ∈ Ψ; (b) χΨ 6∈ V(α) if α 6∈ Ψ. If we take M = 〈W , $,V , χΓ̂〉,
then, for every αΣ ∈ Γ̂, M |= αΣ. We proceed by induction on the structure

of αΣ:

(Base) If αΣ is atomic, M |= αΣ iff αΣ ∈ Γ̂, by the definition of V ;

– αΣ = βΩ ∧ γΘ. M |= αΣ iff M |= βΩ and M |= γΘ iff (induction

hypothesis) βΩ ∈ Γ̂ and γΘ ∈ Γ̂. We conclude that αΣ ∈ Γ̂ by lemma

40. Conversely αΣ ∈ Γ̂ iff βΩ ∈ Γ̂ and γΘ ∈ Γ̂ by lemma 40 and the rest

follows by the induction hypothesis;

– αΣ = βΩ → γΘ. M 6|= αΣ iff M |= βΩ and M 6|= γΘ iff (induction

hypothesis) βΩ ∈ Γ̂ and γΘ 6∈ Γ̂ iff βΩ → γΘ 6∈ Γ̂ by lemma 41;

– αΣ = βΩ,~. If there is no maximally w-consistent set Υ, such that Γ̂ ∝ Υ,

then $(χ) is empty and for every βΩ ∈ F w,M |= βΩ,~. This case occurs

iff there is no wff of the form σΦ,} in Γ̂. If there is some maximally w-

consistent set accepted by Γ̂, then M |= βΩ,~ iff, for every maximally

w-consistent set Υ, such that Γ̂ ∝ Υ, βΩ ∈ Υ iff (βΩ → ⊥w)} → ⊥n ∈ Γ̂

which is verified by the other cases;
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– αΣ = βΩ,}. We build a set Υ ⊂ F w, starting by βΩ ∈ Υ. We take

a sequence ϕi of all wff with the shape of (βΩ ∧ γΘ)} in Γ̂. If, for

ϕi = (βΩ∧γΘ)}, Υ∪{γΘ} is w-consistent, then γΘ ∈ Υ. To demonstrate

that Υ is maximally w-consistent, we suppose that there is a wff σΦ ∈ F w,

such that σΦ 6∈ Υ and Υ∪{σΦ} is w-consistent. Then (βΩ∧σΦ)} 6∈ Γ̂ by

the definition of Υ and, by lemma 41, (βΩ ∧ σΦ)} → ⊥n ∈ Γ̂. But from

βΩ,} ∈ Γ̂ and (βΩ∧σΦ)} → ⊥n ∈ Γ̂ we know that (βΩ∧(σΦ → ⊥w))} ∈ Γ̂,

using lemma 40 and the following derivation:

βΩ,}

βΩ,}

}
βΩ

βΩ,}

βΩ,}

}
βΩ

1[βΩ]
N

βΩ
Π

N
σΦ → ⊥w

N
βΩ ∧ (σΦ → ⊥w)

}
βΩ ∧ (σΦ → ⊥w)

(βΩ ∧ (σΦ → ⊥w))}
1

(βΩ ∧ (σΦ → ⊥w))}

βΩ,}

βΩ,}

βΩ

N
βΩ

2[σΦ]
N

σΦ

N
βΩ ∧ σΦ

N
βΩ ∧ σΦ

}
βΩ ∧ σΦ

(βΩ ∧ σΦ)}
(βΩ ∧ σΦ)} → ⊥n
(βΩ ∧ σΦ)} → ⊥n

⊥n
⊥Nw

N⊥w
Π 2 N

σΦ → ⊥w

So, by definition, σΦ → ⊥w ∈ Υ and Υ ∪ {σΦ} cannot be w-consistent.

We conclude that Υ is maximally w-consistent and Γ̂ ∝ Υ. Υ represents

a neighbourhood NΥ ∈ $(χΓ̂). To prove that M |= βΩ,}, we need to

prove that T = 〈W , $,V , χΓ̂, NΥ〉 |= βΩ. We proceed by induction on the

structure of βΩ:

– βΩ = ϕΛ ∧ γΘ. T |= βΩ iff T |= ϕΛ and T |= γΘ iff (induction

hypothesis) ϕΛ ∈ Υ and γΘ ∈ Υ. We conclude that βΩ ∈ Υ by

lemma 40. Conversely βΩ ∈ Γ̂ iff ϕΛ ∈ Υ and γΘ ∈ Υ by lemma 40

and the rest follows by the induction hypothesis;

– βΩ = ϕΛ → γΘ. T 6|= ϕΛ iff T |= ϕΛ and T 6|= γΘ iff (induction

hypothesis) ϕΛ ∈ Γ̂ and γΘ 6∈ Υ iff ϕΛ → γΘ 6∈ Υ by lemma 41;

– βΩ = ϕΛ,•. We build a set Ψ, starting by ϕΛ ∈ Ψ. We take a sequence

ϕi in Υ that have the form (ϕΛ ∧ γΘ)•. If, for ϕi = (ϕΛ ∧ γΘ)•,

Ψ ∪ {γΘ} is n-consistent, then γΘ ∈ Υ. To demonstrate that Ψ

is maximally n-consistent, we suppose that there is a wff σΦ, such
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that σΦ 6∈ Ψ and Ψ ∪ {σΦ} is n-consistent. Then (ϕΛ ∧ σΦ)• 6∈ Γ̂

by the definition of Ψ and, by lemma 41, (ϕΛ ∧ σΦ)• → ⊥w ∈ Υ.

But from ϕΛ,• ∈ Υ and (ϕΛ ∧ σΦ)• → ⊥w ∈ Υ we know that

(ϕΛ ∧ (σΦ → ⊥n))• ∈ Υ, using lemma 40 and the following

derivation:

βΩ,•

βΩ,•
•

βΩ

1[βΩ]
u

βΩ
Π u

σΦ → ⊥n u
βΩ ∧ (σΦ → ⊥n) •
βΩ ∧ (σΦ → ⊥n)

(βΩ ∧ (σΦ → ⊥n))•
1

(βΩ ∧ (σΦ → ⊥n))•

βΩ,•

βΩ,•

1[βΩ]
u

βΩ

2[σΦ]
u

σΦ

u
βΩ ∧ σΦ

u
βΩ ∧ σΦ

•
βΩ ∧ σΦ

(βΩ ∧ σΦ)•
(βΩ ∧ σΦ)• → ⊥w
(βΩ ∧ σΦ)• → ⊥w

⊥w
⊥un u⊥n

Π 2 u
σΦ → ⊥n

So, by definition, σΦ → ⊥n ∈ Ψ and Ψ ∪ {σΦ} can not be

n-consistent. We conclude that Ψ is maximally n-consistent and

Υ ∝ Ψ. Ψ represents a world χΨ ∈ NΥ. To prove that T |= ϕΛ,•, we

need to prove that 〈W , $,V , χΨ〉 |= ϕΛ using the previous cases.

�

Corollary 46 Γ 6` αΣ iff there is a model M, such that M |= φΘ, for every

φΘ ∈ Γ, and M 6|= αΣ.

Proof : Γ 6` αΣ iff Γ ∪ {αΣ → ⊥n} is n-consistent by lemma 36 and the

definition of n-consistent set. By lemmas 35 and 45, Γ ∪ {αΣ → ⊥n} is n-

consistent iff there is a modelM, such thatM |= φΘ, for every φΘ ∈ Γ∪{αΣ →
⊥n}. It means that M satisfies every formula of Γ and M 6|= αΣ. �

Theorem 47 Γ |= αΣ implies Γ ` αΣ (Completeness).

Proof : Γ 6` αΣ implies Γ 6|= αΣ, by the corollary 46 and the definition of

logical consequence. �
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II.2 Normalization, Decidability, Complexity

We investigate here the normalization of PUC-ND. For the normalization

proof, we want to present first the approach similar to the classical proposi-

tional normalization. This case happens for maximum formulas in derivations

with fixed contexts, since the contexts are not defined for propositional logic.

To do so, we investigate a fragment of the presented language, in order

to use the Prawitz [8] strategy for propositional logic normalization, in which

he restricted the applications of the classical absurd to atomic formulas. In the

chosen fragment L− we only omit the operator ∨, which may be recovered by

the definition α ∨ β ≡ ¬α → β. After that result, we present the reductions

for the remaining rules.

In every case we follow the van Dalen algorithm for normalizing a

derivation, starting form a subderivation that concludes a maximum formula

with maximum rank, what means a maximum formula that has no maximum

formula above it with more connectives in the subderivation.

Lemma 48 Every derivation that is composed only by the rules 1 to 8 and 10

to 12 is normalizable.

Proof : These rules may be seen as a natural deduction system for the classical

propositional logic, since the context is fixed and the formulas with labels are

treated like atomic formulas. We follow the strategy of Prawitz [8]. We give

here the reductions for the propositional logical operators, in the case of fixed

context and labels:

– ∧-reductions:

Π1
∆α

Π2
∆

β
∆

α ∧ β
∆α

∆
Π3

�
Π1

∆α
∆

Π3

Π1
∆α

Π2
∆

β
∆

α ∧ β
∆

β
∆

Π3

�

Π2
∆

β
∆

Π3

– →-reduction:

Π1
∆α

[α]
∆

Π2
∆

β
∆

α→ β
∆

β
∆

Π3

�

Π1
∆α
∆

Π2
∆

β
∆

Π3

The application of the classical absurd may be restricted to atomic

formulas only. We change the following derivation according to the principal

logical operator of γ. We only present the change procedure for ∧, see [8] for

further details.
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[¬γ]
∆

Π1
∆⊥
∆γ
∆

Π2

1[α ∧ β]
∆α 2[¬α]

∆⊥
1 ∆

[¬(α ∧ β)]
∆

Π1
∆⊥

2 ∆α

3[α ∧ β]
∆α 4[¬β]

∆⊥
3 ∆

[¬(α ∧ β)]
∆

Π1
∆⊥

4 ∆
β

∆
α ∧ β

∆
Π2

�

Lemma 49 Given a derivation Π, if we exchange every occurence of a world

variable u in Π by a world variable w that does occurs in Π, then the resulting

derivation, which we represent by Π(u | w), is also a derivation.

Proof : By induction. �

Theorem 50 Every derivation is normalizable.

Proof : We present the argument for the introduction of the remaining rules.

The introduction of the rule 9 cannot produce maximum formulae, but it may

produce detours, considering the rules 7 and 8, if the considered subderivation

(Π2 below) do not discharge any hypothesis of the upper subderivation (Π1

below). But such detours may be substituted by one application of the rule 8

as shown below:

Π1
∆⊥

rule 9: ⊥n
Π2

∆⊥
rule 8: ∆

βΩ

∆
Π3

�

Π2
∆

Π2
∆⊥

rule 8: ∆
βΩ

∆
Π3

[¬(βΩ)]
∆¬(βΩ)

Π1
∆⊥

rule 9: ⊥n
Π2

∆⊥
rule 7: ∆

βΩ

∆
Π3

�

Π1
∆⊥

rule 8: ∆
βΩ

∆
Π3

The rules 13 and 14 produce a detour only if the conclusion of one

is taken as an hypothesis of the other rule for the same context and, as

above, the considered subderivation do not discharge any hypothesis of the

upper subderivation. In this case, if we eliminate such detour, as below, we

may produce a new maximum formula of the case of lemma 48. We cannot

produce new detours by doing that elimination because, if there is any detour

surrounding the formula αΣ, it must exist before the elimination. If we start
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from the up and left most detour, we eliminate the detours until we produce

a derivation that contains only maximum formulas of the case of lemma 48.

The same argument works for the rules 15 and 16 and to the rules 21 and 22.

Π1
∆

αΣ,φ

rule 13: ∆, φ
αΣ

Π2 ∆, φ
αΣ

rule 14: ∆
αΣ,φ

∆
Π3

�

Π1
∆

αΣ,φ

∆
Π3

Π1 ∆, φ
αΣ

rule 14: ∆
αΣ,φ

∆
Π2

∆
αΣ,φ

rule 13: ∆, φ
αΣ

Π3

�

Π1 ∆, φ
αΣ

∆, φ
Π3

Π1 ∆, N
αΣ

rule 21: ∆,~
αΣ

∆, N
βΩ

rule 22: ∆, N
αΣ

�
Π1 ∆, N
αΣ

Π1 ∆,~
αΣ

∆, N
βΩ

rule 22: ∆, N
αΣ

rule 21: ∆,~
αΣ

�
Π1 ∆,~
αΣ

The introduction of the rules 17 and 19 preserves normalization. These

rules produce a detour only if the conclusion of one is taken as an hypothesis

of the other rule for the same context. In this case, if we eliminate such detour,

as below, we may produce a new maximum formula of the case of lemma 48.

We cannot produce new detours by doing that elimination because, if there is

any detour surrounding the formula αΣ, it must exist before the elimination.

If we start from the up and left most detour, we eliminate the detours until

we produce a derivation that contains only maximum formulas of the case of

lemma 48. We used the representation (u, v | w, u) for the substitution of all

occurrences of the variable u by the variable w, that do not occur in Π2, Θ or

βΩ, and the subsequent substitution of all occurrences of the variable v by the

variable u. The same argument works for the rules 18 and 20.

Π1 ∆, N, u
αΣ

rule 17: ∆, N, •
αΣ

[αΣ]
∆, N, v

Π2
Θ

βΩ

rule 19: Θ
βΩ

�

Π1 ∆, N, u
αΣ

∆, N, u
Π2(u, v | w, u)

Θ(u, v | w, u)
βΩ(u, v | w, u)

Π1 ∆, N, •
αΣ

[αΣ]
∆, N, u

αΣ
rule 17: ∆, N, •

αΣ

Π2
Θ

βΩ

rule 19: Θ
βΩ

�

Π1 ∆, N, •
αΣ

Π2
Θ

βΩ
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The introduction of the rules 23 to 26 may produce no maximum formula

but they produce unnecessary detours. We repeat the above arguments to

eliminate them. The reduction for rule 24 is similar to the reduction for rule

23 and the reductions for rule 26 are similar to the reductions for rule 25. For

rules 25 and 26 the reductions depend on the size of the cycles built to recover

the same formula in the same context. We present only the case for a cycle of

size 3. The rules 27 to 30 produce no maximum formula nor any unnecessary

detour.
Π1 ∆, N
αΣ,•

Π2 ∆,MˆN
rule 23: ∆,M

αΣ,•
Π3 ∆, NˆM

rule 23: ∆, N
αΣ,•

∆, N
Π4

�

Π1 ∆, N
αΣ,•

∆, N
Π4

Π1 ∆, NˆM
Π2 ∆,MˆP

rule 25: ∆, NˆP
Π3 ∆, PˆQ

rule 25: ∆, NˆQ
Π4 ∆, QˆM

rule 25: ∆, NˆM ∆, N
Π5

�
Π1 ∆, NˆM ∆, N
Π5

�

Definition 51 Given a wff αΣ, the label rank ℵ(αΣ) is the depth of label

nesting:

1. ℵ(αΣ) = ℵ(α) + s(Σ)/2;

2. If αΣ = βΩ ∨ γΘ, then ℵ(αΣ) = max(ℵ(βΩ),ℵ(γΘ));

3. If αΣ = βΩ ∧ γΘ, then ℵ(αΣ) = max(ℵ(βΩ),ℵ(γΘ));

4. If αΣ = βΩ → γΘ, then ℵ(αΣ) = max(ℵ(βΩ),ℵ(γΘ));

5. If αΣ = ¬βΩ, then ℵ(αΣ) = ℵ(βΩ);

Remark: by definition, the rank for a wff in F n must be a natural number.

Lemma 52 Given a model M = 〈W , $,V , χ〉 and a αΣ ∈ F n, if ℵ(αΣ) = k,

then we only need to verify the worlds of
a$
~k
(χ) to know if M |= αΣ holds.

Proof : If ℵ(αΣ) = 0, then αΣ is a propositional formula. In this case, we need

only to verify that the formula holds at
a$
~0(χ) = {χ}. If ℵ(αΣ) = k+1, then it

must have a subformula of the form (βΩ)φ, where φ is a neighbourhood label.

In the worst case, we need to verify all neighbourhoods of $(χ) to assure that

the property described by βΩ holds in all of them. βΩ must have a subformula
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of the form (γΘ)ψ, where ψ is a world label. In the worst case, we need to

verify all worlds of $(χ) to ensure that the property described by γΘ holds in

all of them. But ℵ(γΘ) = k and, by the induction hypothesis, we need only to

verify in the worlds of
a$
~k
(w), for every w ∈

a$
1(χ). So we need, at the worst

case, to verify the worlds of
a$

~k+1
(w). �

Lemma 53 If M = 〈W , $,V , χ〉 |= αΣ, then there is a finite model M′ =

〈W ′, $′,V ′, χ′〉, such that M′ |= αΣ.

Proof : In the proof of lemma 45, we verified the pertinence of the formulas

in maximally n-consistent sets and maximally w-consistent sets based on

the structure of the given formula to stablish the satisfying relation. Each

existential label required the existence of one neighbourhood or world for

the verification of the validity of a given subformula. The universal label for

neighbourhood required no neighbourhood at all. It only added properties

to the neighbourhoods that exist in a given system of neighbourhoods. The

procedure is a demonstration that, for any wff in F n, we only need to gather

a finite set of neighbourhoods and worlds. �

Theorem 54 PUC-Logic is decidable.

Proof : If 6` αΣ, then it must be possible to find a template that satisfies the

negation of the formula. By the lemma above, there is a finite template that

satisfies this negation. �

Definition 55 Every label occurrence φ inside a formula αΣ is an index of a

subformula βΩ,φ. Every label occurrence φ has a relative label depth defined by

[(φ) = ℵ(αΣ)− ℵ(βΩ,φ).

Lemma 56 Given αΣ ∈ F n, there is a finite model M = 〈W , $,V , χ〉,
such that M |= αΣ with the following properties: (a) W =

a$
~k
(χ), where

k = ℵ(αΣ); (b) For every world w ∈
a$
n(χ), $(w) has at most the same number

of neighbourhoods as labels φ, such that [(φ) = n; (c) Every neighbourhood

N ∈ $(w) has at most the same number of worlds as the labels φ, such that

[(φ) = n+ 1/2, plus the number of labels ϕ, such that [(ϕ) = n.

Proof : (a) From lemmas 53 and 52; (b) Every neighbourhood existential

label φ, such that [(φ) = 0 contribute, by the procedure of lemma 45, to one

neighbourhood to $(χ) for the model M = 〈W , $,V , χ〉. The neighbourhood

universal requires no additional neighbourhood to $(χ) according to the

explanation of lemma 53. In the worst case, all neighbourhood labels φ, such

that [(φ) = 0, are existential. The labels φ, such that [(φ) = n, n ≥ 0,
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n ∈ N contributes to the systems of neighbourhoods of the worlds of
a$
n(χ).

In the worst case, all of this labels contributes to system of neighbourhoods

of a single world; (c) The same argument works for number of worlds in a

neighbourhood except that the number of worlds in a neighbourhood is bigger

than the number worlds in every neighbourhoods it contains. In the worst case,

the smallest neighbourhood contains the same number of worlds as the number

of labels φ, such that [(φ) = n + 1/2. In this case, we must add at least one

world to each neighbourhood that contains the smallest neighbourhood in the

considered system of neighbourhoods. But the number of neighbourhoods is

limited by the number of labels [(φ) = n, n ∈ N. So, the biggest neighbourhood

reaches the asserted limit and the number of worlds of the model is linear in

the number of labels. �

Theorem 57 The problem of satisfiability is NP -complete for PUC-Logic.

Proof : A wff without labels is a propositional formula, then, by [23], the

complexity of the satisfiability problem for PUC-Logic must be a least NP -

complete. Given a wff with labels, by lemma 56, we know that there is a

directed graph, in the manner of lemma 21, that depends on the satisfiability

of the endpoints. Those endpoints are always propositional formulas. So, the

complexity of the problem of satisfiability is the sum of complexities of the

problems for each endpoint. It means that the biggest subformula dictates the

complexity because the model of lemma 56 has at most a linear number of

worlds and the satisfiability problem is NP -complete. So, the worst case is

the wff without labels. �

II.3 Counterfactual logics

In [1], Lewis presents many logics for counterfactual reasoning, organized

according to some given conditions imposed on the nested neighbourhood

function. The most basic logic is V , which has no condition imposed on $.

Lewis presented the axioms and inference rules of V using his comparative

possibility operator (4).

Definition 58 αΣ 4 βΩ ≡ (βΩ,• → αΣ,•)~

Here we prove that the the axioms of the V -logic are theorems and

that the inference rules are derived rules in PUC-Logic. This is proof that the

PUC-Logic is complete for the V -logic based on the completeness proof of

completeness given by Lewis[1].
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– TRANS axiom: ((α 4 β) ∧ (β 4 γ))→ (α 4 γ);

– CONNEX axiom: (α 4 β) ∨ (β 4 α);

– Comparative Possibility Rule (CPR): If ` α → (β1 ∨ . . . ∨ βn), then

` (β1 4 α) ∨ . . . ∨ (βn 4 α), for any n ≥ 1.

We present a proof of the CPR rule for n = 2. We omit the attribute

representation of the wff denoted by α, β and γ to simplify the reading of

the derivations. We use lemma 59 below for the theorem α → (β ∨ γ) and a

derivation Ξ of it.

2[γ•]
~

γ•

1[(β• → α•)~ ∧ (γ• → β•)~]

(β• → α•)~ ∧ (γ• → β•)~

(γ• → β•)~
~

γ• → β•
~

β•

1[(β• → α•)~ ∧ (γ• → β•)~]

(β• → α•)~ ∧ (γ• → β•)~

(β• → α•)~
~

β• → α•
~

α•
TRANS 2 ~

γ• → α•
~

(γ• → α•)~
1

((β• → α•)~ ∧ (γ• → β•)~)→ (γ• → α•)~
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1[¬((β• → α•)~ ∨ (α• → β•)~)]

¬((β• → α•)~ ∨ (α• → β•)~)

1[¬((β• → α•)~ ∨ (α• → β•)~)]

¬((β• → α•)~ ∨ (α• → β•)~)

2[β•]
~

β•
~

α• → β•

(α• → β•)~

(β• → α•)~ ∨ (α• → β•)~

⊥n
α•,~ ~
α•

2 ~
β• → α•

(β• → α•)~

(β• → α•)~ ∨ (α• → β•)~

⊥n
CONNEX 1

(β• → α•)~ ∨ (α• → β•)~

1[¬((α• → β•)~ ∨ (α• → γ•)~)]

¬((α• → β•)~ ∨ (α• → γ•)~)

1[¬((α• → β•)~ ∨ (α• → γ•)~)]

¬((α• → β•)~ ∨ (α• → γ•)~)

2[α•]
N

α•

Σ
(α• → β•)~ ∨ (α• → γ•)~

⊥n
β•,N

N
β•

2 N
α• → β•

~
α• → β•

(α• → β•)~

(α• → β•)~ ∨ (α• → γ•)~

⊥n
CPR 1

(α• → β•)~ ∨ (α• → γ•)~

DBD
PUC-Rio - Certificação Digital Nº 0812635/CA



C
h
ap

ter
II.

P
rox

im
ity

-b
ased

U
n
d
erstan

d
in
g
of

C
on

d
ition

als
54

α•
N

α•
Ξ N, u

α→ (β ∨ γ)

Π ~
β• ∨ γ•

3[β•]
~

β•
~

α• → β•

(α• → β•)~

(α• → β•)~ ∨ (α• → γ•)~

3[γ•]
~

γ•
~

α• → γ•

(α• → γ•)~

(α• → β•)~ ∨ (α• → γ•)~
Σ 3

(α• → β•)~ ∨ (α• → γ•)~

α•
N

α• N, •α

4[α]
N, uα

Ξ N, u
α→ (β ∨ γ)

β ∨ γ
N, •

β ∨ γ
~, •

β ∨ γ
4 ~, •

β ∨ γ
~, •

β ∨ γ

[β]
~, •

β
~

β•
~

β• ∨ γ•

[γ]
~, •γ
~

γ•
~

β• ∨ γ•
~

β• ∨ γ•
Π ~

β• ∨ γ•
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Lemma 59 Given a theorem αΣ, there is a proof of αΣ in the context {N, u},
in which the variables N and u do not occur in the proof.

Proof : αΣ is a theorem, then, by definition, there is a proof Π without open

hypothesis that concludes the theorem in the empty context. During the proof

Π, the smallest context is the empty context. So, if we can choose variables

that do not occur in Π and add the stack of labels {N, u} at the rightmost

position of each context of each rule. We end up with a proof of the theorem

in the context {N, u}. This is possible because there is no restriction that

could be applied over the new variables. �

We now present some ideas related to the different counterfactual logics

Lewis defined, based on conditions imposed to the function $:

– Normality (N): $ is normal iff ∀w ∈ W : $(w) 6= ∅;

– Total reflexivity (T): $ is totally reflexive iff ∀w ∈ W : w ∈
⋃

$(w);

– Weak centering (W): $ is weakly centered iff ∀w ∈ W : $(w) 6=
∅ and ∀N ∈

⋃
$(w) : w ∈ N ;

– Centering (C): $ is centered iff ∀w ∈ W : {w} ∈ $(w).

To each condition, corresponds a logic, respectively V N , V T , V W and

V C-logics. For each logic, the PUC-ND may change the set of rules to acquire

the corresponding expressivity provided by the conditions. We present some

ideas to make those changes:

V N Rule 9 looses restriction (a). Rule 19 and 22 loose second premiss.

Introduction of the rule:
∆,~

αΣ
∆, N

αΣ

Restriction: (a) αΣ must fit into the contexts;

V T We repeat the system for VN.

Introduction of the rule:
∆,~, ∗

αΣ

∆
αΣ

Restriction: (a) αΣ must fit into the contexts;

V W We repeat the system for VT.

Introduction of the rule:
∆,}, ∗

αΣ

∆
αΣ

Restriction: (a) αΣ must fit into the contexts;

V C We repeat the system for VW.

Introduction of the rule:
∆,~, •

αΣ

∆
αΣ

Restriction: (a) αΣ must fit into the contexts.
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II.4 Deontic logics

In [1, 2], Lewis presented his approach for Deontic logics based on systems

of spheres in comparison to other formalisms. In [1], he presented two possible

definition of the operator O, based on his counterfactual operators � and

�. In [2], he gave the definition of four value structures. The definition based

on a nesting $ over the set I is equivalent to the definition of the truth of the

operator �. For this reason, we take O(φ|ψ) = ψ� φ as suggested in [1].

This deontic operator can be expressed in terms of labels as follows:

Definition 60

O(αΣ/βΩ) ≡ (βΩ,• ∧ (βΩ → αΣ)∗)}

P (αΣ/βΩ) ≡ ¬O(¬(αΣ)/βΩ)

We prove here that the PUC-ND is complete for the CO-logic according to the

given axioms and rule of inference: (R1) All tautologies; (R2) Modus Ponens;

(R3) If A ≡ B is theorem, then O(A/C) ≡ O(B/C) is a theorem; (R4) If

B ≡ C is theorem, then O(A/B) ≡ O(A/C) is a theorem; (A1) P (A/C) ≡
¬O(¬A/C); (A2) O(A ∧ B/C) ≡ (O(A/C) ∧ O(B/C)); (A3) O(A/C) →
P (A/C); (A4) O(>n/C) → O(C/C); (A5) O(>n/C) → O(>n/B ∨ C); (A6)

(O(A/B) ∧ O(A/C)) → O(A/B ∨ C); (A7) (P (⊥n/C) ∧ O(A/B ∨ C)) →
O(A/B); (A8) (P (B/B ∨ C) ∧O(A/B ∨ C))→ O(A/B). We write A for αΣ,

B for βΩ and C for γΘ.

(R1) From completeness of PUC-ND; (R2) Modus Ponens is a valid rule in

PUC-ND; (A1) By definition.

(R3) Given some proof Π ` (A → B) ∧ (B → A), by lemma 59 and rule

1 of PUC-ND, we have a proof Ψ `N,uN,u A → B. We present the proof of

O(A/C)→ O(B/C). The proof of O(B/C)→ O(A/C) is similar.

(R4) Given some proof Π ` (B → C)∧(C → B), by lemma 59, we have a proof

Ψ `N,uN,u (B → C) ∧ (C → B). We present the proof of O(A/C) → O(A/B).

The proof of O(A/B)→ O(A/C) is similar.
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3[(C• ∧ (C → A)∗)}]

(C• ∧ (C → A)∗)}
}

C• ∧ (C → A)∗

3[(C• ∧ (C → A)∗)}]

2[C• ∧ (C → A)∗]
N

C• ∧ (C → A)∗
N

C•

1[C]
N, u

C

2[C• ∧ (C → A)∗]
N

C• ∧ (C → A)∗
N

(C → A)∗
N, ∗

C → A N, u
C → A N, u

A
Ψ N, u

A→ B N, u
B

1 N, u
C → B N, ∗
C → B

N
(C → B)∗

N
C• ∧ (C → B)∗

}
C• ∧ (C → B)∗

(C• ∧ (C → B)∗)}
2

(C• ∧ (C → B)∗)}
R3 3

(C• ∧ (C → A)∗)} → (C• ∧ (C → B)∗)}

2[(C• ∧ (C → A)∗)}]

(C• ∧ (C → A)∗)}
}

C• ∧ (C → A)∗

2[(C• ∧ (C → A)∗)}]

1[C• ∧ (C → A)∗]
N

C• ∧ (C → A)∗
N

C• N, •
C

1[C]
N, u

C

Ψ N, u
(B → C) ∧ (C → B)

N, u
C → B N, u

B N, •
B

N
B•

1
B•

N
B•

1[C• ∧ (C → A)∗]
N

Π1
N

(B → A)∗
N

B• ∧ (B → A)∗
}

B• ∧ (B → A)∗
1

(B• ∧ (B → A)∗)}
R4 2

(C• ∧ (C → A)∗)} → (B• ∧ (B → A)∗)}
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Π1

1[B]
N, u

B

Ψ N, u
(B → C) ∧ (C → B)

N, u
(B → C)

N, u
C

C• ∧ (C → A)∗
N

C• ∧ (C → A)∗
N

(C → A)∗
N, ∗

C → A N, u
C → A N, u

A
1 N, u
B → A N, ∗
B → A

N
(B → A)∗

A2

2[(C• ∧ (C → (A ∧B))∗)}]

(C• ∧ (C → (A ∧B))∗)}
}

C• ∧ (C → (A ∧B))∗

Π2

(C• ∧ (C → A)∗)}
Π3

(C• ∧ (C → B)∗)}

(C• ∧ (C → A)∗)} ∧ (C• ∧ (C → B)∗)}

(C• ∧ (C → A)∗)} ∧ (C• ∧ (C → B)∗)}

(C• ∧ (C → (A ∧B))∗)} → (C• ∧ (C → A)∗)} ∧ (C• ∧ (C → B)∗)}

Π2 and Π3 are similar.

Π2

(C• ∧ (C → (A ∧B))∗)}

C• ∧ (C → (A ∧B))∗
N

C• ∧ (C → (A ∧B))∗
N

C•

1[C]
N, ∗

C

C• ∧ (C → (A ∧B))∗
N

C• ∧ (C → (A ∧B))∗
N

(C → (A ∧B))∗
N, ∗

C → (A ∧B)
N, ∗

A ∧B N, ∗
A

1 N, ∗
C → A

N
(C → A)∗

N
C• ∧ (C → A)∗

}
C• ∧ (C → A)∗

(C• ∧ (C → A)∗)}
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A2

[(C• ∧ (C → A)∗)} ∧ (C• ∧ (C → B)∗)}]

(C• ∧ (C → A)∗)} ∧ (C• ∧ (C → B)∗)}

(C• ∧ (C → A)∗)}
}

C• ∧ (C → A)∗

[(C• ∧ (C → A)∗)} ∧ (C• ∧ (C → B)∗)}]

(C• ∧ (C → A)∗)} ∧ (C• ∧ (C → B)∗)}

(C• ∧ (C → B)∗)}

C• ∧ (C → B)∗

[´N ]
M

Π4

[´M ]
N

Π5

(C• ∧ (C → (A ∧B))∗)}

(C• ∧ (C → (A ∧B))∗)}

(C• ∧ (C → (A ∧B))∗)}
Π4 and Π5 are similar.

((C• ∧ (C → A)∗)} ∧ (C• ∧ (C → B)∗)})→ (C• ∧ (C → (A ∧B))∗)}

Π4

C• ∧ (C → A)∗
N

C• ∧ (C → A)∗
N

(C → A)∗
´N

M´N
M

(C → A)∗
M, ∗

C → A

[C]
M, ∗

C M, ∗
A

C• ∧ (C → B)∗
M

C• ∧ (C → B)∗
M

(C → B)∗
M, ∗

C → B

[C]
M, ∗

C M, ∗
B M, ∗

A ∧B M, ∗
C → (A ∧B)

M
(C → (A ∧B))∗

[(C• ∧ (C → A)∗)} ∧ (C• ∧ (C → B)∗)}]

(C• ∧ (C → A)∗)} ∧ (C• ∧ (C → B)∗)}

(C• ∧ (C → A)∗)}

(C• ∧ (C → A)∗)}

A3
1[(C• ∧ (C → A)∗)}]

(C• ∧ (C → A)∗)}
}

C• ∧ (C → A)∗

2[(C• ∧ (C → ¬A)∗)}]

(C• ∧ (C → ¬A)∗)}
}

C• ∧ (C → ¬A)∗

3[´N ]
M

Π6

⊥n

3[´M ]
N

Π7

⊥n
3 ⊥n

⊥n
2 ¬(C• ∧ (C → ¬A)∗)}

(C• ∧ (C → ¬A)∗)}
1

(C• ∧ (C → A)∗)} → (C• ∧ (C → ¬A)∗)}

Π6 and Π7 similar.
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Π6
C• ∧ (C → ¬A)∗

M
C• ∧ (C → ¬A)∗

M
C• M, •
C

1[C]
M,u

C

C• ∧ (C → A)∗
N

C• ∧ (C → A)∗
N

(C → A)∗
´N

M´N
M

(C → A)∗
M, ∗

C → A M,u
C → A M,u

A

1[C]
M,u

C

C• ∧ (C → ¬A)∗
M

C• ∧ (C → ¬A)∗
M

(C → ¬A)∗
M, ∗

C → ¬A M,u
C → ¬A M,u¬A M,u⊥n

⊥n
1 ⊥n

A4
3[(C• ∧ (C → >n)∗)}]

(C• ∧ (C → >n)∗)}
}

C• ∧ (C → >n)∗
}

C•

3[(C• ∧ (C → >n)∗)}]

(C• ∧ (C → >n)∗)}

2[C•]
N

C•

2[C•]
N

C•

1[C]
~, ∗

C
1 ~, ∗
C → C ~

(C → C)∗
N

(C → C)∗
N

C• ∧ (C → C)∗
}

C• ∧ (C → C)∗

(C• ∧ (C → C)∗)}
2

(C• ∧ (C → C)∗)}
3

(C• ∧ (C → >n)∗)} → (C• ∧ (C → C)∗)}
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A5

2[(C• ∧ (C → >n)∗)}]

(C• ∧ (C → >n)∗)}
}

C• ∧ (C → >n)∗
}

C•

2[(C• ∧ (C → >n)∗)}]

(C• ∧ (C → >n)∗)}

1[C•]
N

C• N, •
C N, •

B ∨ C
N

(B ∨ C)•

N, ∗>n N, ∗
(B ∨ C)→ >n

N
((B ∨ C)→ >n)∗

N
(B ∨ C))• ∧ ((B ∨ C)→ >n)∗

}
(B ∨ C))• ∧ ((B ∨ C)→ >n)∗

((B ∨ C))• ∧ ((B ∨ C)→ >n)∗)}
1

((B ∨ C))• ∧ ((B ∨ C)→ >n)∗)}
2

(C• ∧ (C → >n)∗)} → ((B ∨ C))• ∧ ((B ∨ C)→ >n)∗)}

A6

1[(B• ∧ (B → A)∗)} ∧ (C• ∧ (C → A)∗)}]

(B• ∧ (B → A)∗)}
}

B• ∧ (B → A)∗

1[(B• ∧ (B → A)∗)} ∧ (C• ∧ (C → A)∗)}]

(C• ∧ (C → A)∗)}
}

C• ∧ (C → A)∗
Π8

((B ∨ C))• ∧ ((B ∨ C)→ A)∗)}

((B ∨ C))• ∧ ((B ∨ C)→ A)∗)}

((B ∨ C))• ∧ ((B ∨ C)→ A)∗)}
1

((B• ∧ (B → A)∗)} ∧ (C• ∧ (C → A)∗)})→ ((B ∨ C))• ∧ ((B ∨ C)→ A)∗)}

Π8

[´M ]
N

Π9

((B ∨ C))• ∧ ((B ∨ C)→ A)∗)}

[´N ]
M

Π10

((B ∨ C))• ∧ ((B ∨ C)→ A)∗)}

((B ∨ C))• ∧ ((B ∨ C)→ A)∗)}
Π9 and Π10 similar.
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Π9

(B• ∧ (B → A)∗)} ∧ (C• ∧ (C → A)∗)}

(B• ∧ (B → A)∗)}

1[B• ∧ (B → A)∗]
N

B• ∧ (B → A)∗
N

B• N, •
B N, •

B ∨ C
N

(B ∨ C)•

´M
N

Π11
N

((B ∨ C)→ A)∗
N

(B ∨ C))• ∧ ((B ∨ C)→ A)∗
1 }

(B ∨ C))• ∧ ((B ∨ C)→ A)∗

((B ∨ C))• ∧ ((B ∨ C)→ A)∗)}

Π11 2[B ∨ C]
N, ∗

B ∨ C

3[B]
N, ∗

B

B• ∧ (B → A)∗
N

B• ∧ (B → A)∗
N

(B → A)∗
N, ∗

B → A N, ∗
A

3[C]
N, ∗

C

C• ∧ (C → A)∗
M

C• ∧ (C → A)∗
M

(C → A)∗
´M

N´M
N

(C → A)∗
N, ∗

C → A N, ∗
A N, ∗

A
3 N, ∗

A
2 N, ∗

(B ∨ C)→ A
N

((B ∨ C)→ A)∗

A7

1[¬((C• ∧ (C → ¬⊥n)∗)}) ∧ ((B ∨ C)• ∧ ((B ∨ C)→ A)∗)}]

¬((C• ∧ (C → ¬⊥n)∗)}) ∧ ((B ∨ C)• ∧ ((B ∨ C)→ A)∗)}

((B ∨ C)• ∧ ((B ∨ C)→ A)∗)}
}

(B ∨ C)• ∧ ((B ∨ C)→ A)∗
Π12

(B• ∧ (B → A)∗)}

(B• ∧ (B → A)∗)}
1

(¬((C• ∧ (C → ¬⊥n)∗)}) ∧ ((B ∨ C)• ∧ ((B ∨ C)→ A)∗)})→ (B• ∧ (B → A)∗)}

DBD
PUC-Rio - Certificação Digital Nº 0812635/CA



C
h
ap

ter
II.

P
rox

im
ity

-b
ased

U
n
d
erstan

d
in
g
of

C
on

d
ition

als
63

Π12

(B ∨ C)• ∧ ((B ∨ C)→ A)∗
N

(B ∨ C)• ∧ ((B ∨ C)→ A)∗
N

(B ∨ C)•
N, •

B ∨ C

1[B]
N, •

B
N

Π13

(B• ∧ (B → A)∗)}

1[C]
N, •

C
N

Π14

(B• ∧ (B → A)∗)}
1

(B• ∧ (B → A)∗)}

Π13 ¬((C• ∧ (C → ¬⊥n)∗)}) ∧ ((B ∨ C)• ∧ ((B ∨ C)→ A)∗)}

¬((C• ∧ (C → ¬⊥n)∗)}) ∧ ((B ∨ C)• ∧ ((B ∨ C)→ A)∗)}

((B ∨ C)• ∧ ((B ∨ C)→ A)∗)}

B N, •
B

N
B•

1[B]
N, ∗

B N, ∗
B ∨ C

(B ∨ C)• ∧ ((B ∨ C)→ A)∗
N

(B ∨ C)• ∧ ((B ∨ C)→ A)∗
N

((B ∨ C)→ A)∗
N, ∗

(B ∨ C)→ A
N, ∗

A
1 N, ∗
B → A

N
(B → A)∗

N
B• ∧ (B → A)∗

}
B• ∧ (B → A)∗

(B• ∧ (B → A)∗)}

Π14

¬((C• ∧ (C → ¬⊥n)∗)}) ∧ ((B ∨ C)• ∧ ((B ∨ C)→ A)∗)}

¬((C• ∧ (C → ¬⊥n)∗)}) ∧ ((B ∨ C)• ∧ ((B ∨ C)→ A)∗)}

¬((C• ∧ (C → ¬⊥n)∗)})

C N, •
C

Π15

(C• ∧ (C → ¬⊥n)∗)}
N, ∗⊥n

(B• ∧ (B → A)∗)}
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Π15

¬((C• ∧ (C → ¬⊥n)∗)}) ∧ ((B ∨ C)• ∧ ((B ∨ C)→ A)∗)}

¬((C• ∧ (C → ¬⊥n)∗)}) ∧ ((B ∨ C)• ∧ ((B ∨ C)→ A)∗)}

((B ∨ C)• ∧ ((B ∨ C)→ A)∗)}

C N, •
C

N
C•

[⊥n]
N, ∗⊥n N, ∗¬⊥n N, ∗

C → ¬⊥n
N

(C → ¬⊥n)∗
N

C• ∧ (C → ¬⊥n)∗
}

C• ∧ (C → ¬⊥n)∗

(C• ∧ (C → ¬⊥n)∗)}

A8

1[¬(((B ∨ C)• ∧ ((B ∨ C)→ ¬B)∗)}) ∧ ((B ∨ C)• ∧ ((B ∨ C)→ A)∗)}]

¬(((B ∨ C)• ∧ ((B ∨ C)→ ¬B)∗)}) ∧ ((B ∨ C)• ∧ ((B ∨ C)→ A)∗)}

((B ∨ C)• ∧ ((B ∨ C)→ A)∗)}
}

(B ∨ C)• ∧ ((B ∨ C)→ A)∗
Π16

(B• ∧ (B → A)∗)}

(B• ∧ (B → A)∗)}
1

(¬(((B ∨ C)• ∧ ((B ∨ C)→ ¬B)∗)}) ∧ ((B ∨ C)• ∧ ((B ∨ C)→ A)∗)})→ (B• ∧ (B → A)∗)}

Π16

¬(((B ∨ C)• ∧ ((B ∨ C)→ ¬B)∗)}) ∧ ((B ∨ C)• ∧ ((B ∨ C)→ A)∗)}

¬(((B ∨ C)• ∧ ((B ∨ C)→ ¬B)∗)}) ∧ ((B ∨ C)• ∧ ((B ∨ C)→ A)∗)}

((B ∨ C)• ∧ ((B ∨ C)→ A)∗)}
Π17

N
B• ∧ (B → A)∗

}
B• ∧ (B → A)∗

Π17

Π18
N

B• ∨ ¬(B•)

[B•]
N

Π19
N

B• ∧ (B → A)∗

[¬(B•)]
N

Π20
N

B• ∧ (B → A)∗
N

B• ∧ (B → A)∗
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Π18
2[¬(B• ∨ ¬(B•))]

N
B• ∨ ¬(B•)

2[¬(B• ∨ ¬(B•))]
N

B• ∨ ¬(B•)

1[B•]
N

B•
N

B• ∨ ¬(B•)
N⊥w

1 N¬(B•)
N

B• ∨ ¬(B•)
N⊥w

2 N
B• ∨ ¬(B•)

Π19

B•
N

B•

[B]
N, ∗

B N, ∗
B ∨ C

(B ∨ C)• ∧ ((B ∨ C)→ A)∗
N

(B ∨ C)• ∧ ((B ∨ C)→ A)∗
N

((B ∨ C)→ A)∗
N, ∗

(B ∨ C)→ A
N, ∗

A N, ∗
B → A

N
(B → A)∗

N
B• ∧ (B → A)∗
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Π20

¬(((B ∨ C)• ∧ ((B ∨ C)→ ¬B)∗)}) ∧ ((B ∨ C)• ∧ ((B ∨ C)→ A)∗)}

¬(((B ∨ C)• ∧ ((B ∨ C)→ ¬B)∗)}) ∧ ((B ∨ C)• ∧ ((B ∨ C)→ A)∗)}

((B ∨ C)• ∧ ((B ∨ C)→ A)∗)}

(B ∨ C)• ∧ ((B ∨ C)→ A)∗
N

(B ∨ C)• ∧ ((B ∨ C)→ A)∗
N

(B ∨ C)•

¬(B•)
N¬(B•)

[B]
N, u

B N, •
B

N
B•

N⊥un N, u⊥n N, u¬B N, ∗¬B N, ∗
(B ∨ C)→ ¬B

N
((B ∨ C)→ ¬B)∗

N
(B ∨ C)• ∧ ((B ∨ C)→ ¬B)∗

N
(B ∨ C)• ∧ ((B ∨ C)→ ¬B)∗

}
(B ∨ C)• ∧ ((B ∨ C)→ ¬B)∗

Π21

Π21

¬(((B ∨ C)• ∧ ((B ∨ C)→ ¬B)∗)}) ∧ ((B ∨ C)• ∧ ((B ∨ C)→ A)∗)}

¬(((B ∨ C)• ∧ ((B ∨ C)→ ¬B)∗)}) ∧ ((B ∨ C)• ∧ ((B ∨ C)→ A)∗)}

¬(((B ∨ C)• ∧ ((B ∨ C)→ ¬B)∗)})

}
(B ∨ C)• ∧ ((B ∨ C)→ ¬B)∗

((B ∨ C)• ∧ ((B ∨ C)→ ¬B)∗)}

⊥n
(B• ∧ (B → A)∗)N

N
B• ∧ (B → A)∗
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