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An Automated Decision Maker with User-centric Principles

In order to tackle the problems of the existing approaches to reasoning
about preferences discussed in the introduction and in the previous chapter, we
present in this chapter a novel technique for automated decision making based
on preferences and available options. This technique is able to handle qualitative
preferences expressed in a high-level language and incorporates psychological
processes to simulate human decision to resolve trade-offs. Our technique thus
chooses one option from a finite set available, based on user preferences that have
natural-language-like expressions, such as expressive speech acts (e.g. like, accept
or need).

Section 6.1 describes the scope of decisions we are addressing and the
assumptions of this work. Section 6.2 presents the high-level preference language
that our technique is able to process, which is based on our preference metamodel.
We also introduce a running example that exemplifies the use of this language and
that will be used throughout the chapter. Next, Section 6.3 describes our technique,
whose steps are detailed from Section 6.4 to 6.7. We compare the technique with
existing work and present its evaluation in Section 6.8, concluding in Section 6.9.

6.1
Scope and Assumptions

As introduced earlier, our goal is to provide users with an automated decision
making technique, which is able to make decisions on their behalf so as to automate
their tasks. As decisions may be characterised in many different ways, we define
in this section the scope of the decision problems we are dealing with. A decision
problem consists of choosing one option o based on preferences from a finite set
of available options, Opt , where all o′ ∈ Opt are of the same concept, for example
a set of laptops or a set of hotels. Each concept is associated with a finite set of
attributes, Att , and each ai ∈ Att is associated with a domain Di , which establishes
the values allowed for that attribute. Each domain Di : (i) consists of a set of values
xij ; (ii) can be discrete or continuous; and (iii) can be ordered or unordered. For
example, real numbers are an ordered continuous domain, integers are an ordered
discrete domain, and colours are a unordered discrete domain. We refer to domains
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composed of numbers as numeric. This way of describing options is a restricted
view of our ontology model presented in Chapter 3. We left out of the scope of our
technique the ability of handling: (i) adjectives; (ii) scales; and (iii) proxy attributes.

Our focus is on decisions that users are able to make themselves, but as these
decisions may involve a large number of options, are tedious, and possibly repetitive
for users, they prefer to delegate them instead of demanding time and effort in their
execution — and they want the system to choose the option they would choose
themselves. It is important to highlight that this is different from the goal of MAUT
(Keeney and Raiffa 1976), which is a classical approach that was proposed to help
people to make critical decisions with conflicting preferences, and requires user
interaction to identify a function that represent preferences quantitatively.

Given the scope we are addressing, we now detail our assumptions. First,
users have a set of preferences over the problem that the decision has to be made,
i.e. their known preferences. Second, we consider a unitary decision maker, that
is, provided preferences are given by a single user, and the goal is to increase
the satisfaction of this user with the choice. Third, we assume a consistent set of
preferences. User may provide conflicting preferences, e.g. “I prefer higher quality
and lower price,” but they are not inconsistent, such as “I prefer A to B, and I prefer
B to A.” Finally, available options, attributes and their domains are given and are,
therefore, inputs of our technique, together with user preferences.

6.2
Preference Language and Running Example

As discussed in our study of how humans express preferences (Chapter 2),
there are different forms in which they do so, and our goal is to provide them
with a language in which they can inform their preferences in a way as close as
possible to natural language. Based on our preference metamodel (Chapter 3), we
derived a high-level preference language, whose EBNF is presented in Table 6.1,
which includes seven types of preferences and means of specifying priorities among
attributes and preferences. While constraints, qualifying and rating are monadic
preferences, goals, orders and indifferences are dyadic.

The different types of preferences in our language have the same meaning of
the corresponding types in our preference metamodel. However, there are some
restrictions to the metamodel, which are constructions left unaddressed by our
technique. These restrictions are associated with preference targets that cannot
be used. We next present them, and also discuss how these limitations could be
addressed. We highlight that most of these restrictions, and also those related to
preference targets mentioned above, can be held at a higher level of abstraction:
features in a user interface can allow users to express preferences that are translated
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preference ::= [condition] (constraint | qualifying | rating | goal
| order | indifference | dontCare)

condition ::= if formula than
formula :: expression | formula and formula

| formula or formula | not formula

expression ::= attribute (= |! |> |≥ |< |≤) value
constraint ::= formula

qualifying ::= expressive speechact formula

rating ::= formula rate

goal ::= (minimise | maximise) attribute
order ::= attribute = value % attribute = value

indifference ::= indifferent formula {formula}
dontCare ::= dont care attribute

expressivespeechact ::= [don’t] (prefer | need | desire | avoid | like | want
| accept | require | love | hate)

rate ::= best | very good | good | neutral | bad
| very bad | worst

priority ::= [condition] (attribute priority

| attribute indifference | preference priority)
attribute priority ::= attribute ! attribute

attribute indifference ::= attribute ∼ attribute

preference priority ::= Z. preference

Table 6.1: Preference language.

to a set of preferences in our language.

– Preferences over enumeration values. Referring to an enumeration value,
such as I prefer red, is to establish preferences over values of an enumeration
in a generic way (e.g. the colour preference indicates that I prefer red cars,
red t-shirts or red coats), and this is not allowed. However, our restricted
language still allows users to express preferences over enumeration values,
but preferences should be expressed in the context of each specific attribute,
as they cannot be expressed generically.

– Preferences over concepts. Preferences over concepts, such as “I prefer LCD
to CRT monitors,” are also not allowed. Preferences over concepts indicate a
is-a relationship (“LCD is-a monitor”). Thus, in order to support concepts, the
language would have to be extended with a new comparison operator (is-a)
to be used in expressions.

– Preferences over instances. An instance represents a particular entity, which
can be defined by assigning a value to each attribute of the entity class.
Therefore, an instance can be represented in our restricted language with a
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constraint preference, which makes a value assignment for an attribute that is
used as an identifier.

– Each preference is associated with a single attribute. We restrict preferences
to refer to only one attribute (this restriction is not extended to conditions). As
a consequence, propositional formulae of constraints cannot refer to different
attributes, e.g. “I prefer a laptop with a 15” screen and integrated camera.”

– Order statements refer only to equality expressions. Even though order
preferences can refer only to equality expressions, some of the forbidden
targets can be expressed in a different allowed manner, e.g. “I prefer a laptop
with a 14” or 15” screen to one with a 17” screen” can be expressed with two
preferences: “I prefer a laptop with a 14” screen to one with a 17” screen”
and “I prefer a laptop with a 15” screen to one with a 17” screen.”

In order to illustrate our high-level preference language, we introduce an
example in this section. Throughout this chapter, this example will also be used to
illustrate different parts of our decision making technique. Suppose Bob is visiting
a university, and needs to choose an apartment at which to stay. Each apartment
is described in terms of seven attributes, described below, each associated with a
domain.

1. uni: {x | x ∈ R, 0 < x ≤ 15}— the distance, in kilometres, from the apartment
to the university.

2. station: {x | x ∈ R, 0 < x ≤ 1.2} — the distance, in kilometres, from the
apartment to the closest underground station.

3. market: {x | x ∈ R, 0 < x ≤ 0.7} — the distance, in kilometres, from the
apartment to the closest supermarket.

4. zone: {x | x ∈ Z, 1 ≤ x ≤ 6}— the zone where the apartment is located. The
underground coverage in the city in which the university is located is split
into six zones. Zone 1 is the city centre, and the higher the zone number is,
the farther it is from the centre.

5. brand: { A, B, C, D } — each apartment has a brand, associated with the
company it belongs to.

6. stars: {x | x ∈ Z, 1 ≤ x ≤ 5} — a number that represents the apartment
quality; the higher, the better.

7. price: {x | x ∈ R, 95 ≤ x ≤ 125} — the price of renting the apartment (per
week).

Bob’s preferences are shown as follows, using our preference language,
numbered by their priority (1...15), and with the final line being an attribute priority.
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Table 6.2: Available apartments.
Apartment brand market price stars station uni zone
Ap A A 0.45 Km £100 2 0.3 Km 5.0 Km 2
Ap B D 0.40 Km £115 3 0.6 Km 2.2 Km 1
Ap C B 0.20 Km £95 2 0.3 Km 10.0 Km 3
Ap D B 0.60 Km £105 2 0.5 Km 6.0 Km 2
Ap E B 0.30 Km £100 3 0.5 Km 3.5 Km 2
Ap F C 0.40 Km £125 4 0.9 Km 2.0 Km 1

1. don’t accept zone > 2
2. prefer uni ≤ 2.5Km

3. if uni ≤ 2.5Km then need station ≤ 1Km

4. if uni ≤ 2.5Km then prefer station ≤ 0.7Km

5. if uni ≤ 2.5Km then require price ≤ £125
6. if uni > 2.5Km then need station ≤ 0.7Km

7. if uni > 2.5Km then require price ≤ £105
8. minimise station

9. minimise market

10. minimise price

11. prefer brand = A or brand = B or brand = C

12. brand = A % brand = B

13. brand = B % brand = C

14. stars = 2 good
15. maximise stars

– if uni > 2.5Km then station ! uni

These preferences and priorities are used to make a choice on Bob’s behalf.
The decision problem is to choose one apartment from the available options, shown
in Table 6.2.

6.3
Technique Overview

The goal of our decision maker is to simulate human reasoning in making
decisions, allowing us to exploit natural user expressiveness of preferences (without
the need for elicitation methods) and resolve trade-offs (that cannot be resolved
with the provided preferences) in a way humans would do. As a result, we
propose a decision making technique that is based on heuristics investigated in
psychology that explain how people make decisions. More specifically, the overall
process is inspired by reason-based choice (Shafir et al. 1998), which discusses that
people make decisions by identifying reasons to accept and reject options, and
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incorporates two principles (Simonson and Tversky 1992): extremeness aversion
(avoiding extreme options, which are those that compromise too much an attribute
because of another that provides a gain), and trade-off contrast (influencing the
preference between two options with the cost-benefit relationship of all options).

We introduce our technique by showing the different steps, process and
data that comprise it, presented in Figure 6.1. We make three main observations
on this figure. First, it can be seen that monadic preferences, which indicate
preferences with expressive speech acts or rates, are used in many processes of
our technique, showing that the technique is driven by these natural-language
expressions. Second, the technique has variable parts: as our technique use a
particular interpretation of natural language expressions, this interpretation can
differ in different applications. Moreover, as we discuss later, during the decision
making process our technique calculates quantitative costs of options based on
qualitative preferences, and different functions associated with this calculation can
be adopted. Based on experimentation, we selected particular instances (adopted in
this thesis) for these parts. Third, our technique is composed of four main steps,
explained next.

Pre-processing. Our preference language allows the expression of heterogeneous
types of preferences, and an integrated view that shows how they interact
and how they evaluate individual option attributes is helpful to make a
choice. The pre-processing step involves building computational models
that compile information given by different preferences provided by users
and represent options in a way that their positive and negative aspects are
made explicit (according to those preferences). The first is the Preference
Satisfaction Model (PSM), which combines the information given by
monadic preferences, and the second, the Options-Attribute Preference Model
(OAPM), indicates which attribute value is better considering two options.

Explication. Sometimes a preference provided by a user implies a further
preference in addition to its literal meaning. For example, preference 14
may indicate that not only the preference is for 2-star apartments, but the
closer the number of stars of the apartment is to 2 the better. So, in the
explication step we consider implicit preferences that we can extract from
the preferences explicitly given by users, and based on this information we
update the previously produced OAPM.

Elimination. When people make a choice from a set, they first eliminate options
that have no advantage when compared to another, i.e. a dominated option, or
attributes with unacceptable values, i.e. non-compensatory attributes. In the
elimination step, we discard these two kinds of options. While the OAPM
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allows detecting dominated options in an easy way, as it shows the positive
and negative aspects of each option compared to another, the PSM exposes
options that do not satisfy hard constraints. Hard constraints in our technique
are expressed using specific modifiers: require, need, hate and don’t accept
(this is subject to particular interpretations).

Selection. After eliminating the options above, we obtain a consideration set,
which contains options that require trade-off resolution to make a choice. In
order to make this selection, we first analyse option costs and benefits, by
using the information compiled in our computational models to calculate an
option costs with respect to another for each attribute. The overall costs of an
option (w.r.t. another) is then a weighted sum of these individual attribute
costs, by considering the provided priorities. Next, the trade-off between
options and how these options compensate advantages with disadvantages
are analysed (which are related to the trade-off contrast and extremeness
aversion principles), and these factors are them combined with the previously
calculated option costs.

It is important to highlight that, as opposed to many existing approaches,
our technique does not focus on isolating two options and comparing them, as we
use the whole set of options to evaluate preference between any two options. Our
technique results in a partially ordered set, organised in four different levels, as
described below.

1. chosen option, which is considered the optimal option;
2. acceptable options, which are in the consideration set, but were not chosen;
3. eliminated options, which were discarded because of non-compensatory

attribute(s); and
4. dominated options.

We further make an observation on how we interpret provided user
preferences. As it can be seen in our systematic review (Chapter 5), the most
common interpretation of preferences adopted by approaches for reasoning about
preferences is ceteris paribus (all other things being equal or held constant)
(Hansson 1996). Under this interpretation, a preference that compares values of
one or more attributes is taken into account only for comparing two options whose
attribute values that are not targets of the preferences are equal. For example, the
preference “I prefer silver cars to white cars” is considered only for comparing two
cars that have the same brand, power, etc., i.e. everything else but colour has to
be equal. This interpretation is very limited, because the common scenario is that
options differ in more than one, if not several, attributes.
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We do not adopt a ceteris paribus interpretation, but we are careful while
using preferences provided by users. When users provide preferences, they consider
attributes in isolation, and when they are used for comparing two options, the typical
scenario is that preferences conflict with each other. In these cases, a trade-off must
be resolved, which is typically done by users only while facing concrete decision
making situation (Lichtenstein and Slovic 2006). And for resolving these trade-offs
that emerge from conflicting preferences, our technique uses a psychology-inspired
approach, as discussed above.

We describe next the steps of our technique. We first describe the
computational models that are built in the pre-processing step of our technique
(Section 6.4), which are later refined with implicit preferences (Section 6.5). These
computational models are used to eliminate options (Section 6.6) and to choose an
option (Section 6.7).

6.4
Pre-processing

In our approach, the first step to make a decision is to pre-process the available
options and analyse them according to the preferences provided by users. As
previously introduced, there are monadic and dyadic preferences, and as the former
have only a single referent and the latter allow making a pairwise comparison, we
process them separately, building two models based on them — the Preference
Satisfaction Model (PSM) (Section 6.4.1) and the Options-Attribute Preference
Model (OAPM) (Section 6.4.2). These computational models do not allow to
conclude which available option is the “best” or decide which of two options is
better, but they expose positive and negative aspects of available options, integrating
the information provided by heterogeneous types of preferences.

6.4.1
Preference Satisfaction Model

The first model, named Preference Satisfaction Model (PSM), consists of
a table that captures how options satisfy preferences in terms of each attribute
according to monadic preferences. This table associates option attributes with an
expressive speech act or a rate (or their negation), meaning that the preference
for an attribute value of a particular option is represented by a specific expressive
speech acts or rate (e.g. the price of option Ap A satisfies require). e ∈
ExpressiveSpeechAct is an expressive speech act that comes from qualifying
preferences, while r ∈ Rates is a rate (e.g. love and hate) that comes from
rating preferences. Expressive speech acts and rates are collectively referred to as
modifiers (M = ExpressiveSpeechActs ∪ Rates). Constraint preferences, which
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are associated with no modifier, are considered to be associated with an implicit
modifier, namely want. All these preferences are referred to as monadic preferences
(MP = Constraints ∪ QualifyingPreferences ∪ RatingPreferences). The PSM is
defined as follows.

Definition 6.1 The Preference Satisfaction Model (PSM) is a partial map from
a pair 〈option , attribute〉 to a modifier or its negation, indicating the most
representative modifier that indicates preference for an attribute value of an option.

PSM : Opt × Att +→ {ε,¬} ×M

Before describing the PSM construction in detail, we introduce auxiliary
functions. Each constraint, qualifying or rating preference p is characterised by (i)
a modifier, mod (p), e.g. need; (ii) a formula, form(p), e.g. station ≤ 1; and (iii)
optionally a condition, cond (p), e.g. uni ≤ 2.5 (examples are given considering
preference 3). As we restrict preferences to refer to a single attribute, att(p) is the
attribute that is the referent of the preference, e.g. station. An option may or may
not satisfy a constraint, and sat(formula, o) replaces variables from the provided
formula with attribute values from option o and evaluates the formula for a boolean
value, e.g. sat(station ≤ 1,Ap B ) = true . It is used to check either whether a
preference is applicable to an option, i.e. the preference condition is satisfied by the
option, or whether the option satisfies the preference itself. Given this notation, we
define when a preference is applicable to an option.

Definition 6.2 A preference p is applicable to an option o, App(p, o), if and only if

!cond (p) ∨ (∃ cond (p) ∧ sat(cond (p), o))

For example, preferences 3, 4 and 5 are applicable only to options Ap B

and Ap F . Therefore, for each option, there is a subset of monadic preferences
that is applicable to it, and each of them is related to a particular attribute. We can
thus associate a set of modifiers (or their negation) with each option attribute —
AttMod (MP , o, a) — as shown below.

AttMod (MP , o, a) ::=

{〈ε,m〉 | m = mod (p) ∧ p ∈ MP ∧ a = att(p) ∧ App(p, o) ∧ sat(form(p), o)}
∪ {〈¬,m〉 | m = mod (p) ∧ p ∈ MP ∧ a = att(p) ∧ App(p, o) ∧ ¬sat(form(p), o)}
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AttMod (MP , o, a) may be empty. In the case of Ap F and attribute station,
for example, we thus have the following attribute modifiers.

AttMod (MP ,Ap F , station) = {〈ε,need〉, 〈¬,prefer〉}

Now that we have available all modifiers that indicate preference for a
particular attribute of each of the options, we wish to select the most representative
one. Expressive speech acts and rates, widely used by people, have an interpretation
that is subjective and specific for each individual. Although they may have different
meanings, such as expressing requirement or acceptance, all modifiers also express
a degree of preference. Modifiers are categorised as positive, indicating a preference
for an attribute value; neutral, indicating indifference and acceptance for an attribute
value; and negative, indicating a preference against an attribute value. In addition,
modifiers of each category can be stronger relative to each other. For example,
consider the following two preferences: “I need an apartment whose price is lower
than £125” and “I prefer an apartment whose price is lower than £100.” Need is
stronger in the sense that it tells what has to be satisfied. However, when we have
two options, the first satisfying only what is needed (e.g. an apartment that costs
£110) and the second satisfying what it is needed and preferred (e.g. an apartment
that costs £90), the degree of preference of the second is stronger than the degree of
preference of the first.

We adopt a particular ranking that captures this notion to indicate the degree
of preference of modifiers, namely modifier scale, presented in Figure 6.2, and
each subset of modifiers that represents (according to this particular scale) the
same degree of preference is associated with an index, which will be used later.
The interpretation of modifiers is subjective, and therefore the modifier scale is
one of the variation points of our technique, as indicated in Figure 6.1 — it can
be instantiated in different ways for individual applications, or even customised
to individual users. As discussed before, some of the modifiers indicate hard
constraints, and those that are positive modifiers (require and need) are considered
less strong than the other positive modifiers for the reasons above. Moreover, the
modifiers that indicate hard constraints are in the same modifier scale than the others
for modularity reasons: hard constraints are relevant only for eliminating options,
so distinguishing modifiers that indicate them from the others is irrelevant in the
other steps of the decision making process.

If more than one monadic preference applies to an option attribute, we use
the adopted modifier scale to choose among them as the most representative.
There are two possibilities. The first case is when there is at least one monadic
preference whose formula is satisfied. According to the modifier scale, from the
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Figure 6.2: Modifier scale.

neutral modifiers (don’t need, don’t desire) to the most positive (want) there is a
stronger preference for an attribute value; and from the neutral modifiers (accept,
don’t require, don’t avoid) to the most negative (don’t accept) there is a stronger
preference against an attribute value. In case there are both positive and negative
modifiers, there is inconsistency, which is not taken into account by our technique.
Therefore, the strongest modifier from those satisfied (i.e. 〈ε,m〉) is chosen.

The second case is when there is no monadic preference whose formula is
satisfied. Again, there are two possibilities. If there is at least one (not satisfied)
monadic preference whose modifier is positive, the weakest one is chosen. For
example, if one option attribute is associated with 〈¬,prefer〉 and 〈¬, require〉, the
second is selected, meaning that not even the weakest preference is satisfied. In
case there is no monadic preference whose modifier is positive, then the weakest
one is chosen (where the weakest is accept, don’t require and don’t avoid, and
the strongest is don’t accept). Given this informal description of how modifiers
are selected, we present Algorithm 1, which describes how the PSM is built using
the modifier indices. The PSM of the presented apartment decision problem built
according to the proposed algorithm is shown in Table 6.3.

With this model one can see pros and cons against each available option.
Even though one of the options might have only positive values, such as like and
require, it does not mean it is the best option, because it may have only minimum
acceptable values, and the trade-off with other options might indicate that another
option is better. Moreover, other preferences, not processed yet, provide additional
information, and this is what we will consider next.
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Algorithm 1: PSM Builder
Input: MP : monadic preferences; Opt : options; Att : attributes; scale: modifier scale
Output: PSM : preference satisfaction model

1 foreach Option o ∈ O do
2 foreach Attribute a ∈ A do
3 x ← null ;
4 m∗ ← null ;
5 foreach 〈ε,m〉 ∈ AttMod (MP , o, a) do
6 if m∗ == null∨ |IndexOf(m , scale)|>|IndexOf(m∗, scale)| then
7 x = ε;
8 m∗ ← m;
9 if m∗ == null then

10 foreach 〈¬,m〉 ∈ AttMod (MP , o, a) ∧ Positive(m) do
11 if m∗ == null ∨ IndexOf(m , scale) < IndexOf(m∗, scale) then
12 x = ¬;
13 m∗ ← m;
14 if m∗ == null then
15 foreach 〈¬,m〉 ∈ AttMod (MP , o, a) do
16 if m∗ == null ∨ IndexOf(m , scale) > IndexOf(m∗, scale) then
17 x = ¬;
18 m∗ ← m;
19 PSM [o, a]← 〈x ,m∗〉;
20 return PSM ;

Table 6.3: PSM of the Apartment Decision Problem.
Ap A Ap B Ap C Ap D Ap E Ap F

uni 〈¬, prefer〉 〈ε, prefer〉 〈¬, prefer〉 〈¬, prefer〉 〈¬, prefer〉 〈ε, prefer〉
station 〈ε,need〉 〈ε, prefer〉 〈ε,need〉 〈ε,need〉 〈ε,need〉 〈ε,need〉
market
zone 〈¬, don ′t accept〉 〈¬, don ′t accept〉 〈ε, don ′t accept〉 〈¬, don ′t accept〉 〈¬, don ′t accept〉 〈¬, don ′t accept〉
brand 〈ε, prefer〉 〈¬, prefer〉 〈ε, prefer〉 〈ε, prefer〉 〈ε, prefer〉 〈ε, prefer〉
stars 〈ε, good〉 〈¬, good〉 〈ε, good〉 〈ε, good〉 〈¬, good〉 〈¬, good〉
price 〈ε, require〉 〈ε, require〉 〈ε, require〉 〈ε, require〉 〈ε, require〉 〈ε, require〉

6.4.2
Options-Attribute Preference Model

The second model that will aid us in the decision making process, namely
Options-Attribute Preference Model (OAPM), is a table that captures comparison
relationships between two options, from a perspective of individual attributes. This
model shows for which attributes an option is better or similar to another — or
no conclusion can be made with the provided preferences. For each OAPM value,
which compares an option o to an option o′ with respect to an attribute a, there are
four possible preference values:

(i) +: the attribute value of o is better than o′, i.e. o %a o′;
(ii) −: the attribute value of o is worse than o′, i.e. o′ %a o;

(iii) ∼: the attribute value of o is as preferred as o′, i.e. o ∼a o′;
(iv) ?: no conclusion can be reached.
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The preference values that associate attribute values of two options are derived
from provided user preferences. So, besides storing this information, the OAPM
also keeps track of the reason for a preferred value. The OAPM is thus as follows.

Definition 6.3 The Options-Attribute Preference Model (OAPM) is a total map
from 〈option1, option2, attribute〉 to a preference value, indicating which attribute
value of these options is the preferred one, and a reason that indicates the (explicit
or implicit) preference that lead to this conclusion.

OAPM : Opt ×Opt × Att +→ {+,−,∼, ?} × Reason

The possible values of Reason can be a preference (e.g. maximisation goal),
the PSM, or an implicit preference, specifically: psm, max, min, avpo, indiff,
〈upper , p〉, 〈lower , p〉, 〈around , p〉, and 〈interval , p〉 (they will be later described).
For example, as preference 9 indicates that Ap B is better than Ap A with respect
to the attribute market , the OAPM values are: OAPM [Ap A,Ap B ,market] =
〈−,min〉 and OAPM [Ap B ,Ap A,market] = 〈+,min〉 (the reason for the OAPM
value is a minimisation goal). The initial OAPM state consists of all values set to
? and therefore, unless there are preferences that compare two attribute values, no
conclusion is reached.

Note that the OAPM value OAPM [o1, o2] is dual to OAPM [o2, o1]. The
specification of our technique sets and uses both OAPM values to make it easier
to understand, but its implementation can be optimised by representing just one of
the values.

In the pre-processing step, OAPM values are set based on two kinds of
information: (i) goal, order and indifference preferences and (ii) the previously built
PSM. This information is processed separately in a specific order — PSM, goals,
order preferences and indifference preferences — which makes the relationship
between two attribute values established by a subsequently processed preference
possibly override the current information present in an OAPM value. This is because
a user may have general preferences for an attribute, but also have preferences
for specific cases, such as stating that an attribute should be minimised and then
providing order preferences for specific attribute values. In addition, preferences
may refine other preferences, for instance, according to one preference a set of
attribute values are considered equally preferred (e.g. preference 11), and specific
preferences establish an order among the preferred values (e.g. preferences 12
and 13).

The next sections describe how the OAPM is constructed, in a declarative way.
Presented formulae are representation of rules, which indicate the values to be set in
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Table 6.4: Index used to compare PSM values.
PSM value PSM Index
〈ε,modifier〉 IndexOf (modifier , scale)
〈¬,negative modifier〉 0
〈¬,neutral modifier〉 −1
〈¬, positive modifier〉 −2

the model. Rules are applied sequentially (following the order they are presented)
for all pairs of options and attributes, and a subsequent rule may override the values
set by a previous applied rule.

PSM

Monadic preferences in isolation do not allow us to compare attribute values,
but, with the PSM, these preferences are situated in a context, and we can
conclude that a value that is considered best is better than a value that is good, for
instance. This idea is investigated by Hansson (Hansson 1990), who discusses the
interpretation of “good” and “bad” in terms of “better.” Our modifier scale, initially
used to select most representative modifiers, is now used to compare modifiers
associated with different options.

Note that the indices presented in Figure 6.2 have a gap between negative
and neutral modifiers. Besides adjusting indices to give opposite index values
to positive and negative modifiers, this gap is used to associate indices with
unsatisfied modifiers, i.e. 〈¬,m〉. When there is no satisfied modifier for an attribute
value, we have three situations: (i) 〈¬, positive modifier〉, there is one or more
positive modifiers to evaluate that attribute value, but it does not satisfy them;
(ii) 〈¬, neutral modifier〉, there is no unsatisfied positive modifier, but there is
one neutral that is unsatisfied; (iii) 〈¬, negative modifier〉, there is no unsatisfied
positive or neutral modifier, but the attribute value also does not satisfy a negative
one. Situation (iii) is better than (ii), which is better than (i). When there is a
satisfied modifier associated with each of two attribute values being compared —
i.e. for both, the PSM value is 〈ε,modifier〉 — the strongest modifier indicates
the preferred value (or equally preferred if both options have the same degree of
preference according to the scale), i.e. the one with the highest index. We thus use
the indices of the modifier scale with additional ones (those shown in Table 6.4) to
compare attributes values. Again, this raking is a variable point of our technique,
and subject to different interpretations.

With these additional indices, we now choose the PSM value associated
with the highest index. This way of stating which attribute value is better causes
satisfied positive and neutral modifiers to be better than any other unsatisfied
one, and satisfied negative modifiers worse than any other unsatisfied one. This
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interpretation is adopted because users typically explicitly state what they want
or do not want, being the absence of preference an indifference (weaker than the
provided indifference), as people usually remember how the experiences felt when
they were at their peak (best or worst) (Schwartz 2005).

Given this approach of establishing a preference relationship between
attribute values based on (un)satisfied modifiers, i.e. PSM values, we show the rules
used to set the OAPM values, which are applicable only to PSM values that are not
null. PSMIndex (PSM [o, a], scale) returns the index of the PSM value according
to Table 6.4. Remember that the OAPM value is composed of a preference value
(+, −, ∼, ?) and a reason.

PSMIndex (PSM [o1, a], scale) = PSMIndex (PSM [o2, a], scale)→
OAPM [o1, o2, a] = 〈∼, psm〉

(6-1)

PSMIndex (PSM [o1, a], scale) > PSMIndex (PSM [o2, a], scale)→
OAPM [o1, o2, a] = 〈+, psm〉 ∧OAPM [o2, o1, a] = 〈−, psm〉

(6-2)

With respect to station , Ap B is thus considered better than Ap F , as the
PSMIndex associated with 〈ε, prefer〉 (PSM value of Ap B , station) is 6, while
the PSMIndex of 〈ε, need〉 is 5 (PSM value of Ap F , station).

Goals

The next set of preferences that is processed is goals, which is restricted
to attributes whose domain is ordered, and indicates that an attribute value
is considered better when its value is higher (maximisation goals) or lower
(minimisation goals) than another. The rules used to set (or change) OAPM values,
which are shown below, use two additional functions: (i) type(goal ), which is max

when the goal is a maximisation, and min when it is a minimisation; and (ii)
val (o, a), which returns value of the attribute a of option o.

∃ g .(g ∈ Goal ∧ att(g) = a ∧ App(g , o1) ∧ App(g , o2)

∧ val (o1, a) = val (o2, a)→ OAPM [o1, o2, a] = 〈∼, type(g)〉)
(6-3)

∃ g .(g ∈ Goal ∧ att(g) = a ∧ App(g , o1) ∧ App(g , o2)

∧ ((type(g) = max ∧ val (o1, a) > val (o2, a))

∨ (type(g) = min ∧ val (o1, a) < val (o2, a)))→
OAPM [o1, o2, a] = 〈+, type(g)〉 ∧OAPM [o2, o1, a] = 〈−, type(g)〉)

(6-4)

For example, because of preference 9, the OAPM values associated with
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Ap C and market are set to 〈+,min〉 with respect to all other options.

Order Preferences

We now proceed to order preferences, which are those that establish an
order among two attribute values by explicitly stating the preferred value. Order
preferences are transitive, e.g. with preferences 12 and 13 we can derive that brand
A is preferred to C . Therefore, from order preferences, we can derive a partial order
of attribute values, namely attribute value partial order (AVPO). However, as order
preferences may be valid only according to a given condition, two different options
may satisfy the conditions of different order preferences. Therefore an AVPO is
constructed only with preferences applicable to an option and is specific to a pair of
option and attribute. The order preferences of our example have no condition, thus
the same partial order (AVPO) is built for all the options with respect to the brand
attribute.

An AVPO is a forest (or possibly a tree) 〈N ,A〉, where N is a set of nodes
and A is a set of arrows that link nodes. Each node consists of expressions of order
preferences, in the form of attribute = value (e.g., brand = A), and an arrow
from a node to another represents that the source node is preferred to the sink node.
Algorithm 2 shows how an AVPO is constructed for a particular option and attribute.
If the output is not a forest, there is a case of inconsistency, which is out of scope.
In our example, the order preferences lead to the following AVPO for the brand

attribute for all options: brand = A→ brand = B → brand = C .

Algorithm 2: AVPO Builder
Input: o: option; a: attribute; Order : order preferences
Output: AVPO : 〈N ,A〉

1 Set〈AVPONode〉 N ← ∅;
2 Set〈Arrow〉 A← ∅;
3 foreach Order preference op ∈ Order do
4 if App(op, o) ∧ att(op) = a then
5 N ← N ∪ { LHS(op), RHS(op) };
6 A← A ∪ {〈 LHS(op), RHS(op) 〉};
7 return 〈N ,A〉;

An attribute value of an option is preferred to another according
to an AVPO if there is a path from the first to the second (typical tree
algorithms are used (Cormen et al. 2001)), for which we use the notation
ExistsPath(AVPO[o, a], val1, val2), where val1 matches a node whose expression
is attribute = val1. As different AVPOs may establish different preference
relationships, we consider an attribute value of option o1 better than that of
option o2 if there is a path in the AVPOs of both options, as shown in the next rule.
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ExistsPath(AVPO[o1, a], val (o1, a), val (o2, a))

∧ ExistsPath(AVPO[o2, a], val (o1, a), val (o2, a))→
OAPM [o1, o2, a] = 〈+, avpo〉 ∧OAPM [o2, o1, a] = 〈−, avpo〉

(6-5)

All options are associated with the same AVPO with respect to brand

(presented above), as the same order preferences are applicable to them. According
to this AVPO, Ap A is better than Ap C , Ap D , Ap E and Ap F , with respect to
this attribute.

Indifference Preferences

As opposed to order preferences, indifference is not transitive. A typical
example illustrates the reason for this: a person is indifferent to two cups of tea
with a difference of 0.1g of sugar on it. If transitivity is adopted, two cups of tea,
one with no sugar and another with 1Kg of sugar, by transitivity, are considered
equally preferred.

An indifference preference consists of a set of formulae, establishing
indifference for two options’ attribute values that satisfy formulae of the same
indifference preference, but only if the condition (if any) of the preference is
satisfied by both options, as detailed as follows.

∃ i .(i ∈ Indifference ∧ att(i) = a ∧ App(i , o1) ∧ App(i , o2)

∧ ∃ f , f ′.(f ∈ form(i) ∧ sat(f , o1) ∧ f ′ ∈ form(i) ∧ sat(f ′, o2))→
OAPM [o1, o2, a] = 〈∼, indiff 〉)

(6-6)

By applying all the OAPM rules to our apartment decision problem, we
produce as result the OAPM presented in Table 6.5.

6.5
Explication

Preferences provided by users always have a literal meaning. For example,
the literal meaning of preference 2 of our running example is that apartments
that are less than 2.5Km away from the university are preferred to those that are
farther away than that. This sentence can also provide further information: if a
maximum desired value is provided, and no minimum value, one can conclude
that lower values are in general preferred to higher values. In addition, as this is
a soft-constraint, i.e. it can remain unsatisfied if other attributes compensate this
loss, the closer an option is to satisfying the preference, the better. In the case
of preference 2, it means that between two apartments, both farther away than
2.5Km from the university, the preferred one is the closer. Preferences that can be
derived from other explicit preferences are referred to as implicit preferences. We
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Table 6.5: OAPM of the Apartment Decision Problem.
Ap B Ap C Ap D Ap E Ap F

uni 〈−, psm〉 〈∼, psm〉 〈∼, psm〉 〈∼, psm〉 〈−, psm〉
station 〈+,min〉 〈∼,min〉 〈+,min〉 〈+,min〉 〈+,min〉
market 〈−,min〉 〈−,min〉 〈+,min〉 〈−,min〉 〈−,min〉
zone 〈∼, psm〉 〈+, psm〉 〈∼, psm〉 〈∼, psm〉 〈∼, psm〉
brand 〈+, psm〉 〈+, avpo〉 〈+, avpo〉 〈+, avpo〉 〈+, avpo〉
stars 〈−,max 〉 〈∼,max 〉 〈∼,max 〉 〈−,max 〉 〈−,max 〉
price 〈+,min〉 〈−,min〉 〈+,min〉 〈∼,min〉 〈+,min〉

(a) Comparison with Ap A

Ap A Ap C Ap D Ap E Ap F
uni 〈+, psm〉 〈+, psm〉 〈+, psm〉 〈+, psm〉 〈∼, psm〉
station 〈−,min〉 〈−,min〉 〈−,min〉 〈−,min〉 〈+,min〉
market 〈+,min〉 〈−,min〉 〈+,min〉 〈−,min〉 〈∼,min〉
zone 〈∼, psm〉 〈+, psm〉 〈∼, psm〉 〈∼, psm〉 〈∼, psm〉
brand 〈−, psm〉 〈−, psm〉 〈−, psm〉 〈−, psm〉 〈−, psm〉
stars 〈+,max 〉 〈+,max 〉 〈+,max 〉 〈∼,max 〉 〈−,max 〉
price 〈−,min〉 〈−,min〉 〈−,min〉 〈−,min〉 〈+,min〉

(b) Comparison with Ap B

Ap A Ap B Ap D Ap E Ap F
uni 〈∼, psm〉 〈−, psm〉 〈∼, psm〉 〈∼, psm〉 〈−, psm〉
station 〈∼,min〉 〈+,min〉 〈+,min〉 〈+,min〉 〈+,min〉
market 〈+,min〉 〈+,min〉 〈+,min〉 〈+,min〉 〈+,min〉
zone 〈−, psm〉 〈−, psm〉 〈−, psm〉 〈−, psm〉 〈−, psm〉
brand 〈−, avpo〉 〈+, psm〉 〈∼, psm〉 〈∼, psm〉 〈+, avpo〉
stars 〈∼,max 〉 〈−,max 〉 〈∼,max 〉 〈−,max 〉 〈−,max 〉
price 〈+,min〉 〈+,min〉 〈+,min〉 〈+,min〉 〈+,min〉

(c) Comparison with Ap C

Ap A Ap B Ap C Ap E Ap F
uni 〈∼, psm〉 〈−, psm〉 〈∼, psm〉 〈∼, psm〉 〈−, psm〉
station 〈−,min〉 〈+,min〉 〈−,min〉 〈∼,min〉 〈+,min〉
market 〈−,min〉 〈−,min〉 〈−,min〉 〈−,min〉 〈−,min〉
zone 〈∼, psm〉 〈∼, psm〉 〈+, psm〉 〈∼, psm〉 〈∼, psm〉
brand 〈−, avpo〉 〈+, psm〉 〈∼, psm〉 〈∼, psm〉 〈+, avpo〉
stars 〈∼,max 〉 〈−,max 〉 〈∼,max 〉 〈−,max 〉 〈−,max 〉
price 〈−,min〉 〈+,min〉 〈−,min〉 〈−,min〉 〈+,min〉

(d) Comparison with Ap D

Ap A Ap B Ap C Ap D Ap F
uni 〈∼, psm〉 〈−, psm〉 〈∼, psm〉 〈∼, psm〉 〈−, psm〉
station 〈−,min〉 〈+,min〉 〈−,min〉 〈∼,min〉 〈+,min〉
market 〈+,min〉 〈+,min〉 〈−,min〉 〈+,min〉 〈+,min〉
zone 〈∼, psm〉 〈∼, psm〉 〈+, psm〉 〈∼, psm〉 〈∼, psm〉
brand 〈−, avpo〉 〈+, psm〉 〈∼, psm〉 〈∼, psm〉 〈+, avpo〉
stars 〈+,max 〉 〈∼,max 〉 〈+,max 〉 〈+,max 〉 〈−,max 〉
price 〈∼,min〉 〈+,min〉 〈−,min〉 〈+,min〉 〈+,min〉

(e) Comparison with Ap E

Ap A Ap B Ap C Ap D Ap E
uni 〈+, psm〉 〈∼, psm〉 〈+, psm〉 〈+, psm〉 〈+, psm〉
station 〈−,min〉 〈−,min〉 〈−,min〉 〈−,min〉 〈−,min〉
market 〈+,min〉 〈∼,min〉 〈−,min〉 〈+,min〉 〈−,min〉
zone 〈∼, psm〉 〈∼, psm〉 〈+, psm〉 〈∼, psm〉 〈∼, psm〉
brand 〈−, avpo〉 〈+, psm〉 〈−, avpo〉 〈−, avpo〉 〈−, avpo〉
stars 〈+,max 〉 〈+,max 〉 〈+,max 〉 〈+,max 〉 〈+,max 〉
price 〈−,min〉 〈−,min〉 〈−,min〉 〈−,min〉 〈−,min〉

(f) Comparison with Ap F

are aware that there may be exceptions, and an implicit preference may be wrongly
considered in certain cases — as it occurs with humans. This problem can be tackled
with the addition of knowledge specific to an application area, e.g. by stating if
ordered attributes should in general be maximised or minimised, or by learning
what individual users usually mean by their provided preferences. Currently, we
adopt a set of implicit preferences that in general derives correct preferences from
explicit preferences.

Before introducing our set of implicit preferences, we will describe the
context in which they will be considered. Implicit preferences do not override
information obtained from explicitly provided preferences, that is, they change
OAPM values only when two options are considered similar (w.r.t. an attribute)
or no conclusion could be made. Therefore, the OAPM value for these two
options must be either ∼ or ? and, if the value is ∼, it was not set due to an
indifference preference, as we formally show in Equation 6-7. Moreover, our
current implicit preferences are derived from monadic preferences, and as different
monadic preferences may be used to derive different implicit preferences, they are
derived when there is only one monadic preference that refers to an attribute and is
applicable to a pair of options. Equation 6-8 is thus used to verify this restriction.

Undecided (o1, o2, a) :=

OAPM [o1, o2, a] = 〈?, r〉 ∨ (OAPM [o1, o2, a] = 〈∼, r〉 ∧ r ! indiff )
(6-7)
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UniqueMonadic(p, o1, o2, a) :=

p ∈ MP ∧ App(p, o1, a) ∧ App(p, o2, a) ∧ p(att) = a

∧ !p′.(p ! p′ ∧ p′ ∈ MP ∧ App(p′, o1, a) ∧ App(p′, o2, a) ∧ p′(att) = a)
(6-8)

Our implicit preferences are also valid only for attributes whose domain is
ordered. Finally, when keeping track why the OAPM is being updated, the reason
is stored in the form of 〈type, p〉, where type is the type of the applied implicit
preference, and p is the preference that caused the update. This information is
used in the selection step (Section 6.7). Now, we can proceed to our set of implicit
preferences.

6.5.1
Upper bound

In the upper bound case, an upper limit is provided for an attribute (as in
preference 2), which is given in a monadic preference whose formula is an instance
of attribute < value or attribute ≤ value . A preference that satisfies this restriction
returns true for UpperBound (p). Due to this upper bound, we infer that there
is a minimisation goal for this attribute. Note that monadic preferences may be
associated with negative modifiers, and in the case the inference is the opposite:
there a maximisation goal.

Undecided (o1, o2, a) ∧ UniqueMonadic(p, o1, o2, a) ∧ UpperBound (p)

∧ ((¬Negative(mod (p)) ∧ val (o1, a) < val (o2, a))

∨ (Negative(mod (p)) ∧ val (o1, a) > val (o2, a)))→
OAPM [o1, o2, a] = 〈+, 〈upper , p〉〉 ∧OAPM [o2, o1, a] = 〈−, 〈upper , p〉〉

(6-9)

6.5.2
Lower bound

As opposed to the previous case, a lower bound can be provided for an
attribute, with monadic preferences whose formula are instances of attribute >

value or attribute ≥ value, thus indicating that the goal is to maximise the value
of this attribute (or to minimise it if the preference modifier is negative). Similar
to above, LowerBound (p) is true for preferences that satisfy the formula template.
This is the case of preference 1, but as it is associated with a negative modifier, the
inferred preference is a minimisation goal.

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA



Chapter 6. An Automated Decision Maker with User-centric Principles 151

Undecided (o1, o2, a) ∧ UniqueMonadic(p, o1, o2, a) ∧ LowerBound (p)

∧ ((¬Negative(mod (p)) ∧ val (o1, a) > val (o2, a))

∨ (Negative(mod (p)) ∧ val (o1, a) < val (o2, a)))→
OAPM [o1, o2, a] = 〈+, 〈lower , p〉〉 ∧OAPM [o2, o1, a] = 〈−, 〈lower , p〉〉

(6-10)

6.5.3
Around

If a desired value is given for an ordered attribute (a reference value), and
this preference is not a hard constraint (i.e. it may be left unsatisfied), we infer
that the closer the attribute value of an option is to the desired value, the better.
Therefore, between two options, the preferred one is that whose value for this
attribute has a shorter distance from the reference value. The rule that updates the
OAPM according to the around implicit preference uses the following notations: (i)
Around (p), which is true when the monadic preference formula is an instance of
attribute = value; (ii) RefVal (p), which returns the reference value of a preference
that satisfies Around (p); and (iii) AroundDist(o, a, p) :=| val (o, a) − RefVal (p) |,
which gives the distance between the attribute value of an option and the attribute
reference value. Negative modifiers, as before, inverts the behaviour of the around
preference.

Undecided (o1, o2, a) ∧ UniqueMonadic(p, o1, o2, a) ∧ Around (p)

∧ ((¬Negative(mod (p)) ∧ AroundDist(o1, a, p) < AroundDist(o2, a, p))

∨ (Negative(mod (p)) ∧ AroundDist(o1, a, p) > AroundDist(o2, a, p)))→
OAPM [o1, o2, a] = 〈+, 〈around , p〉〉 ∧OAPM [o2, o1, a] = 〈−, 〈around , p〉〉

(6-11)

6.5.4
Interval

Instead of providing a single desired attribute value, users may provide
an interval. In these cases, the provided monadic preference is associated with
a formula that is an instance of attribute > lowerBound and attribute <

upperBound , or ≥ and ≤, instead of > and <. We introduce: (i) Interval (p), which
is true when preference satisfies the formula template; (ii) lb(p), which gives the
interval lower bound; and (iii) ub(p), which gives the interval upper bound.

Similarly to the around rule, the OAPM is updated based on the interval
implicit preference using an auxiliary function to calculate the distance from
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attribute values to the provided interval, which is depicted next. This function may
be modified according to the provided interval, by changing < to ≤. Note that the
interval distance of attribute values that are in the interval is 0, and this makes the
OAPM value between these two attribute values remain the same.

IntervalDist(o, a , p) =



0 if lb(p) < val (o, a) < ub(p)
min(| val (o, a) − lb(p) |, | val (o, a) − ub(p) |) otherwise

(6-12)

Given this function, we can now present the rule that updates the OAPM,
which sets the attribute value of an option that has the lower distance from the
interval than another as preferred; or the opposite, if the preference modifier is
negative.

Undecided (o1, o2, a) ∧ UniqueMonadic(p, o1, o2, a) ∧ Interval (p)

∧ ((¬Negative(mod (p)) ∧ IntervalDist(o1, a, p) < IntervalDist(o2, a, p))

∨ (Negative(mod (p)) ∧ IntervalDist(o1, a, p) > IntervalDist(o2, a, p)))→
OAPM [o1, o2, a] = 〈+, 〈interval , p〉〉 ∧OAPM [o2, o1, a] = 〈−, 〈interval , p〉〉

(6-13)

There are three cases to which implicit preferences are applicable in our
running example, which are related to the preferences 1, 2 and 14. Now, the
relationship between options with respect to the attribute zone is established by
the goal of minimising the value of this attribute (upper bound preference, with a
negative modifier), and the attribute uni , which has also the goal of minimising the
value of this attribute (upper bound preference, with a positive modifier). The unique
modifier preference with respect to stars indicates that the closer that the apartment
stars are to 2, the better (around preference), but option attribute values are either
already decided by the explicitly provided goal, or equal, thus the comparison
remains ∼. Table 6.6 shows the updated OAPM, only with attributes that changed
(for simplicity, we omit the preference that is part of the OAPM reason).

After executing the steps for building our two computational models that
support the decision making process, and updating them by considering implicit
preferences, we still have preferences provided by users that we have not taken into
account, which are don’t care preferences and priorities over preferences and over
attributes. These will be used later, when resolving trade-off situations for choosing
an option but, before, we use the constructed PSM and the OAPM to eliminate
options, as presented next.
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Table 6.6: Updated OAPM of the Apartment Decision Problem.
Ap B Ap C Ap D Ap E Ap F

uni 〈−, psm〉 〈+,upper〉 〈+,upper〉 〈−,upper〉 〈−, psm〉
zone 〈−, lower〉 〈+, psm〉 〈∼, lower〉 〈∼, lower〉 〈−, lower〉
stars 〈−,max 〉 〈∼, around〉 〈∼, around〉 〈−,max 〉 〈−,max 〉

(a) Comparison with Ap A

Ap A Ap C Ap D Ap E Ap F
uni 〈+, psm〉 〈+, psm〉 〈+, psm〉 〈+, psm〉 〈−,upper〉
zone 〈+, lower〉 〈+, psm〉 〈+, lower〉 〈+, lower〉 〈∼, lower〉
stars 〈+,max 〉 〈+,max 〉 〈+,max 〉 〈∼, around〉 〈−,max 〉

(b) Comparison with Ap B

Ap A Ap B Ap D Ap E Ap F
uni 〈−,upper〉 〈−, psm〉 〈−,upper〉 〈−,upper〉 〈−, psm〉
zone 〈−, psm〉 〈−, psm〉 〈−, psm〉 〈−, psm〉 〈−, psm〉
stars 〈∼, around〉 〈−,max 〉 〈∼,max 〉 〈−,max 〉 〈−,max 〉

(c) Comparison with Ap C

Ap A Ap B Ap C Ap E Ap F
uni 〈−,upper〉 〈−, psm〉 〈+,upper〉 〈−,upper〉 〈−, psm〉
zone 〈∼, lower〉 〈−, lower〉 〈+, psm〉 〈∼, lower〉 〈−, lower〉
stars 〈∼, around〉 〈−,max 〉 〈∼, around〉 〈−,max 〉 〈−,max 〉

(d) Comparison with Ap D

Ap A Ap B Ap C Ap D Ap F
uni 〈+,upper〉 〈−, psm〉 〈+,upper〉 〈+,upper〉 〈−, psm〉
zone 〈∼, lower〉 〈−, lower〉 〈+, psm〉 〈∼, lower〉 〈−, lower〉
stars 〈+,max 〉 〈∼, around〉 〈+,max 〉 〈+,max 〉 〈−,max 〉

(e) Comparison with Ap E

Ap A Ap B Ap C Ap D Ap E
uni 〈+, psm〉 〈+,upper〉 〈+, psm〉 〈+, psm〉 〈+, psm〉
zone 〈+, lower〉 〈∼, lower〉 〈+, psm〉 〈+, lower〉 〈+, lower〉
stars 〈+,max 〉 〈+,max 〉 〈+,max 〉 〈+,max 〉 〈+,max 〉

(f) Comparison with Ap F

6.6
Elimination

One of the typical approaches adopted by users for making a choice is the
elimination of options in a stepwise fashion until it remains a set of acceptable
options, which ideally contains only one element. This is the main idea of the
Elimination by aspects (Tversky 1972) and Satisficing (Simon 1955) approaches
from psychology, and it often consists of an iterative approach of making decisions,
which is not a characteristic of our technique. However, we can take an initial step in
this direction, by eliminating options that have two properties: (i) dominated options
(Section 6.6.1); and (ii) options that do not satisfy hard constraints (Section 6.6.2).

6.6.1
Eliminating Dominated Options

We begin by eliminating options that, for at least one attribute, are worse
than another option, and that are not better than it for the remaining attributes. In
this situation, we say that the options to be discarded are dominated by another.
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Based on the information provided by the OAPM, which was constructed based on
provided user preferences, we can define domination, which is a binary relation that
indicates when an option dominates another, formally presented in Definition 6.4.

Definition 6.4 Let o1 and o2 be two options in Opt , and a an attribute in Att .
dominates(o1, o2) holds when:

∃ a.(OAPM [o1, o2, a] = +) ∧ ∀ a.(OAPM [o1, o2, a] ! −)

For the domination relation to be true, o1 must have an attribute value that is
preferred to the attribute value of o2. In addition, for all other attribute values, o1

has to be at least as good as o2. Therefore, we have a reason to reject o2, and there is
no other positive aspect of this option that can balance its negative aspects, w.r.t. o1.
Domination also holds in the absence of information about the attribute comparison
of two options (OAPM [o1, o2, a] =?), if there is at least one attribute whose OAPM
value is +.

Based on the definition of domination, we now define the set of dominated
options, Dominated . As shown in Equation 6-14, all options dominated by at least
one other option are in the Dominated set and are discarded.

dominates(o1, o2)→ o2 ∈ Dominated (6-14)

In Tables 6.5(a) and 6.5(e), it can be seen that the OAPM has the value + or ∼,
for all attributes of options Ap A and Ap E , when compared to Ap D . Therefore,
it can be said that dominates(Ap A,Ap D) and dominates(Ap E ,Ap D), thus
Ap D ∈ Dominated .

6.6.2
Applying Cut-off Values

The second set of eliminated options is composed of options that do not satisfy
hard constraints of users. We consider hard constraints preferences that are either
qualifying or rating statements with one of these four modifiers: (i) don’t accept;
(ii) hate; (iii) require; and (iv) need.

Other modifiers, such as very good, want and very bad, are also strong
preferences from users, but they are not considered at this moment, because options
have positive and negative aspects w.r.t. each other (otherwise it is a case of
domination) and, even though an option has an attribute value that is very bad,
it may be amortised by other positive aspects of this option. This argument is
not valid for the four modifiers considered as hard constraints, because they are
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interpreted as associated with non-compensatory attribute values, i.e. those that
cannot be compensated with any benefit provided by other attributes.

In order to identify the options that are discarded due to cut-off values, we
use the information captured by the PSM. First, we show how to select options
associated with hard negative modifiers, and then those associated with unsatisfied
hard positive modifiers. In the first case, the options selected to be part of the
CutOff set, i.e. the set of options discarded due to a cut-off value, are those that
have at least one attribute associated with 〈ε, don ′t accept〉 or 〈ε, hate〉 in the PSM.

∃ a.(PSM [o, a] = 〈ε, “don ′t accept ′′〉
∨ PSM [o, a] = 〈ε, “hate ′′〉)→ o ∈ CutOff

(6-15)

By construction, every option that satisfies a preference with either the “don’t
accept” or the “hate” modifier has the PSM value evaluated for these modifiers for
the respective attribute. Therefore, these constraints are always respected.

Differently from the negative modifiers above, require and need are
considered hard constraints unless another positive experience is provided. For
example, assume these two preferences: “I require an apartment at zone 1”, and
“I accept one in zone 2.” In this case, the second preference changes the first one to
a soft preference, as it indicates an exception to the requirements. So, even though
an apartment in zone 2 does not satisfy a requirement, it is not eliminated due to a
cut-off. Therefore, require and need are usually hard constraints, but users may add
acceptable exceptions, as in this example. So, we exclude options that satisfy neither
a requirement or need, nor any other monadic preference whose modifier is neutral
or positive, w.r.t. a particular attribute. However, if an option does not satisfy the
requirement or need, but satisfies a monadic preference whose modifier is negative,
then it is discarded when there is at least one option that satisfies the requirement
or need. This interpretation is adopted because if users provide other preferences
related to an attribute besides a requirement or need, it is an indication that they are
a soft constraint, but still have a strong preference for their satisfaction. According
to this informal explanation, we show below the rule used to select options to be
rejected due to positive hard constraints.

∃ a .(PSM [o, a] = 〈¬, require〉 ∨ PSM [o, a] = 〈¬, need〉
∨ ∃ o′.((PSM [o′, a] = 〈ε, require〉 ∨ PSM [o′, a] = 〈ε, need〉)
∧ PSM (o, a) = 〈ε,Negative(m)〉))→ o ∈ CutOff

(6-16)

By construction, if no monadic preference is satisfied by an option, and one
of them is associated with a requirement (or need), the PSM value of this option
will indicate an unsatisfied requirement (or need).
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The PSM presented in Table 6.3 shows that Ap C ∈ CutOff , as
PSM [Ap C , zone] = 〈ε, don ′t accept〉. Note that an option eliminated because
of domination may also be discarded due to a cut-off value, i.e. it is possible that
Dominated ∩ CutOff ! ∅.

6.7
Selection

After performing the elimination step of our process, our set of available
options is now reduced to a subset of options (which we refer to as Acceptable,
but it is also referred to as consideration set in the literature), which requires us
to resolve trade-offs to make a choice. It is important to highlight that, except for
preference and attribute priorities (which will be taken into account in this step),
we have already used the information provided by users to reject options, thus
in order to make a decision we have to go beyond user preferences. This is the
common situation that happens in the process of decision making, as users typically
have preferences for individual attributes and resolve trade-offs in light of available
options to establish a preference order among them. Our technique, inspired by
human decision making, analyses cost and benefits of options and additional factors
that humans typically adopt while making decisions.

Humans may also adopt other heuristics to make decisions
(Payne et al. 1988), each requiring different amounts of cognitive effort. Heuristics
are chosen based on the amount of effort required and the relevance of the decision
to be made. Our approach does not aim to reproduce this particular behaviour,
because it may be suboptimal when users are not willing to invest effort in the
process. Our goal is to understand how people reason to resolve trade-offs, when
demanding adequate time and effort to make a decision and this is the reasoning
process we adopt to make automated choices. Avoiding extreme options (best for
some attributes and worst for others) and analysing the trade-off contrast (influenced
by other options), are the two main principles that humans adopt that our technique
incorporates (Simonson and Tversky 1992).

The following sections describe the selection step of our technique in four
parts. First, we describe how the benefits and costs of each option in the Acceptable
set, where Acceptable = Options\(Dominated ∪ CutOff ), are evaluated with
respect to each individual attribute. Then, we show how we assess the overall
benefits and costs of options with respect to each other based on the previous
evaluation of each individual attribute. Later, we consider the two main principles
that are typically adopted by people when making decisions. Finally, we show how
all these evaluations are put together and used to make a final decision.
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6.7.1
Cost-benefit Analysis

The first part of the process of selecting an option consists of evaluating each
pair of options and assessing their relative benefits and costs, using the information
provided by the OAPM. The costs of option o1 w.r.t. o2 are the benefits of option o2

w.r.t. o1, and vice-versa. We compute the cost of o1 compared to o2 w.r.t. an attribute
a to a real value ranging from 0 to 1, captured by a function we build, represented
as shown below.

AttCost : Opt ×Opt × Att → {c | c ∈ R ∧ 0 ≤ c ≤ 1}

This value indicates how much one option is better than another, w.r.t.
to each attribute, which will be used to evaluate the overall option costs. In
essence, our cost function transforms qualitative information into quantitative
values. One can argue that this quantitative values will comprise a utility function
(Keeney and Raiffa 1976), as it is a weighted sum of values given for individual
attributes, which represent how much an individual prefers each attribute value,
but it is not, mainly because of two main differences. First, the cost function
consists of differences between values as the cost is obtained by means of a
pairwise comparison between options (as people usually do), and uses the specific
preferences for each option pair, as there are many types of preferences applicable
for pairs of options (note that using qualitative preferences to quantitatively evaluate
preference for options is also a challenge). Second, the way we obtain these cost
values is novel: we exploit natural-language-like expressions instead of submitting
users to iterative processes, which demands high cognitive effort and time from
users. Furthermore, this function is not decisive for making a choice: as introduced
before, we will also add two factors that influences the preferences for options,
which are associated with the two principles of human decision making. Therefore,
option costs are not the unique factors that are needed for making the decision.

The attribute cost is 0, if the OAPM [o1, o2, a] ! 〈−, r〉; otherwise,
i.e. if OAPM [o1, o2, a] = 〈−, r〉, then we use the reason r to compute the
AttCost[o1, o2, a]. The next sections describe this computation for the seven
possible reasons r : PSM, order preferences, goal, lower bound, upper bound, around
and interval. The remaining one, indifference, always causes OAPM values to be set
to ∼, and therefore AttCost is 0.

PSM

Our modifier scale (Figure 6.2) allows us to identify whether a modifier is
stronger than another, and consequently the preference for a value compared to
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another when different modifiers are used to qualify these values. However, as in
this step we aim to asses how much one attribute value is preferred to another, we
have to go beyond the order given by this scale. In order to make this assessment, we
associate a numeric value with each index of PSM value, and therefore an option
cost for the particular attribute with respect to another is calculated based on the
difference between the values associated with the PSM values.

The association of a numeric value with each PSM value is given by a function
that we refer to as fm , which corresponds to a variation point of our technique. We
have considered three different functions for generating a value for modifiers:

(i) linear: fmli (index ) = index ;
(ii) quadratic: fmsq (index ) = index 2, if index ≥ 0

and fmsq (index ) = −(index 2), if index < 0;
(iii) log: fmlg (index ) = ln(| index | +1), if index ≥ 0

and fmlg (index ) = − ln(| index | +1), if index < 0.

This way of calculating the option cost for a particular attribute based on the
PSM is shown in Equation 6-17. The value related to the modifiers is normalised
to a value between 0 and 1, considering the possible modifiers (or their negation)
that can be associated with any of the two options being compared. Therefore,
for all monadic preferences that either App(p, o1) or App(p, o2), we select the
〈ε,m〉 or 〈¬,m〉 that has the maximum and minimum indices, i.e. we obtain which
are the maximum and minimum values associated with a PSM value that these
options can have, represented in Equation 6-17 as max (maxIdx (o1),maxIdx (o2))
and min(minIdx (o1),minIdx (o2)), respectively.

AttCost(o1, o2, a) =
| fm(PSMIndex ([PSM [o1, a], scale)) − fm(PSMIndex ([PSM [o2, a], scale)) |

fm(max (maxIdx (o1),maxIdx (o2))) − fm(min(minIdx (o1),minIdx (o2)))
(6-17)

We have adopted the log function (fmlg ) in our approach, chosen based on
experimentation. This function makes the difference between strong modifiers, such
as want and best , smaller than the differences between modifiers in the middle of
the scale, such as neutral and don ′t avoid , and therefore the preference is stronger
when we compare positive modifiers with negative modifiers. For example, the
cost of values rated with neutral compared to values qualified with don ′t prefer

is higher than the cost of values qualified with want compared to values qualified
with desire, even though for both the index differences are of two units.

When calculating the cost of the attribute uni with respect to options
Ap A and Ap B , we obtain as the maximum and minimum possible values for
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Figure 6.3: Calculating node values.

these options are those associated with 〈ε, prefer〉 and 〈¬, prefer〉, respectively,
which are also the PSM values associated with Ap B and Ap A. Therefore, we
have | fmlg (6) − fmlg (−2) | /(fmlg (6) − fmlg (−2)), which is 1.0 — the value of
AttCost(Ap A,Ap B , uni).

Order Preferences

AVPOs allow comparing attribute values and identifying the preferred one;
however, as in our modifier scale, it is not possible to know how much one value
is preferred to another. So, in order to obtain this information, we also associate
numeric values with AVPO nodes, and for that we use information from the monadic
preferences. Each AVPO is associated with an option and an attribute, and the
monadic preferences considered are those that have their condition satisfied by
that option and attribute. We initiate this process by tagging AVPO nodes with a
modifier from the monadic preferences whose formula is satisfied by the domain
value associated with the node: for selecting from among multiple modifiers, we
follow the same rules used for building the PSM, but here we have only satisfied
modifiers. Based on this tagging, the AVPO nodes are associated with a numerical
value, as summarised in Figure 6.3 and explained in detail next.

Extreme Nodes For guaranteeing the existence of tagged values in the AVPO,
we tag all most preferred values and all least preferred nodes (fourth column of
Figure 6.3). The former is tagged with want (in our current modifier scale, it is the
strongest modifier) and the latter with neutral . If there are values in the partial order
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tagged with a stronger modifier than want or neutral , for instance A % B % C , and
B is tagged with avoid , the extreme untagged nodes receive these tags for keeping
consistency, i.e. A is tagged with want (as the default) and C with avoid . We tag
least preferred nodes with neutral by default, because people typically provide an
order for preferred or acceptable values, and do not mention not preferred ones —
we confirmed this in our previous study (Chapter 2).

Tagged Nodes If the node is tagged with a modifier (first and second columns
of Figure 6.3), it receives the value according to the values given for the modifier
scale. However, there may be different values tagged with the same modifier and
ordered in a sequential way, such as in the running example in which all nodes of
the AVPO are tagged with the prefer modifier.

In order to address this issue, Algorithms 3 and 4 are used to calculate the
value of tagged AVPO nodes. The first searches for the most distant node that has
the same modifier of the target modifier, either searching through the parents or
children of nodes, according to a parameter up provided to the algorithm.

Algorithm 3: LastEqual (tag , node, up, scale)
Input: tag : modifier to be searched for;node : AVPONode; up : boolean (flag to

indicate if the search should be in the parents or the children of node; scale:
modifier scale

Output: 〈firstTagged , dist〉 : 〈AVPONode, int〉, first tagged node and the distance
from it to node

1 List〈 AVPONode 〉 nodeList ← up ? Parents(node) : Children(node);
2 〈 AVPONode, int 〉 lastEqual ← null ;
3 double tagValue ← fm (IndexOf(tag , scale));
4 foreach AVPONode next ∈ nodeList do
5 double nextTagValue ← null ;
6 if Tag(next) ! null then
7 double nextTagValue ← fm (IndexOf(Tag(next),scale));
8 if nextTagValue = null ∨ tagValue = nextTagValue then
9 〈 AVPONode, int 〉 temp ← LastEqual(tag ,next , up, scale);

10 if temp ! null then
11 temp2 ← π2(temp) + 1;
12 else if tagValue = nextTagValue then
13 temp ← 〈next , 0〉;
14 if lastEqual = null ∨ π2(lastEqual ) < π2(temp) then
15 lastEqual ← temp;
16 return firstTagged ;

Then, in Algorithm 4, two situations can happen. If the node tagged with
a particular modifier is unique, its node value is given by the fm function. In the
second situation — more than one node is tagged with the same modifier — the most
preferred value (brand A, in our running example) is associated with the numeric
value related to the modifier, plus half of the difference between the modifier value
and the modifiers whose index is increased in one unit, according the modifier scale
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(in the example, desire). Similarly, the least preferred value (C ) is associated with
the value related to the modifier, minus half of the difference between the modifier
value and the modifiers whose index is decreased in one unit (in the example, need).
With these values, we divide the difference between the values associated with the
most and least preferred values by the their distance (which is two, in the case
of A and C ) for obtaining the difference between any two values, which we refer
to as step, and with it we are able to calculate the value of the remaining values.
Therefore, the value associated with B is the value of A minus the distance between
A and B times the step, as shown in lines 23 and 24 of Algorithm 4.

Algorithm 4: TaggedNodeValue(node, scale)
Input: node : AVPONode; scale: modifier scale
Output: value : double

1 int dist ← 0;
2 〈 AVPONode, int 〉 above ← LastEqual(Tag(node), node, true , scale);
3 if above ! null then
4 dist ← π2(above);
5 〈 AVPONode, int 〉 below ← LastEqual(Tag(node), node, false, scale);
6 if below ! null then
7 dist ← π2(below );
8 double tagValue ← fm (IndexOf(Tag(node),scale));
9 if dist = 0 then

10 return tagValue;
11 else
12 double max ← tagValue;
13 double temp ← fm (IndexOf(Tag(node), scale) +1);
14 if temp ! null then
15 max = max+ | temp − tagValue | /2;
16 double min ← tagValue;
17 double temp ← fm (IndexOf(Tag(node), scale) −1);
18 if temp ! null then
19 min = min− | temp − tagValue | /2;
20 if above = null then
21 return max ;
22 else
23 double step ←| max −min | /dist ;
24 return max − π2(above) × step;

Untagged Nodes If the node is not tagged with a modifier (third column of
Figure 6.3), we first obtain the maximum and minimum surrounding node values
of the target node, which is done through the execution of Algorithm 5. We find
the closest tagged nodes that are preferred to the target node, and the closest tagged
nodes less preferred than the target node. Then, we choose from these tagged nodes
by selecting those that has the smaller difference from the target node: we consider
their unsigned numerical value (as they are tagged, it is calculated in the way we
explained above) and divide by the distance between them and the target value
(step). Next, we calculate the numerical value for the node immediately above (or
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below) the target node: we take the numerical value of the tagged node and subtract
(or add) from it the step times the distance from the tagged node to the target node
minus one, as we are calculating the value of the node immediately above or below.
The lower (higher) numerical value calculated for this node is chosen, and therefore
we guarantee that all more preferred nodes (than the target node) are associated
with a higher numerical value and all less preferred nodes (than the target node) are
associated with a lower numerical value.

Algorithm 5: FirstTaggedNode(node, up, scale)
Input: node : AVPONode; up : boolean (flag to indicate if the search should be in the

parents or the children of node; scale: modifier scale
Output: 〈firstTagged , dist〉 : 〈AVPONode, int〉, first tagged node and the distance

from it to node

1 List〈 AVPONode 〉 nodeList ← up ? Parents(node) : Children(node);
2 〈 AVPONode, int 〉 firstTagged ← null ;
3 double rate ← 0;
4 foreach AVPONode next ∈ nodeList do
5 〈 AVPONode, int 〉 temp ← null ;
6 if Tag(next) = null then
7 temp ← FirstTaggedNode(next , up, scale);
8 else
9 temp ← 〈next , 0〉;

10 temp2 ← π2(temp) + 1;
11 double tagValue ← fm (IndexOf(Tag(π1(temp)),scale));
12 double step ←| tagValue | /π2(temp);
13 if up then
14 double rateTemp ← tagValue − (π2(temp) − 1) × step;
15 if rate = null ∨ rateTemp < rate then
16 firstTagged ← temp;
17 rate ← rateTemp;
18 else
19 double rateTemp ← tagValue + (π2(temp) − 1) × step;
20 if rate = null ∨ rateTemp > rate then
21 firstTagged ← temp;
22 rate ← rateTemp;
23 return firstTagged ;

After choosing the preferred and less preferred nodes, we calculate the
difference between their numerical values and divide it by their distance (step),
and then we calculate the numerical value related to the target node as above, as
shown in Algorithm 6.

With this set of algorithms, the value of an AVPO node is given as shown
below.

NodeVal (node) =



UntaggedNodeValue(node) if Tag(node) = null

TaggedNodeValue(node) otherwise

After associating tags and numerical values with the AVPO nodes, we can
calculate the costs of an option with respect to an attribute using this information.
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Algorithm 6: UntaggedNodeValue(node, up, scale)
Input: node : AVPONode; scale: modifier scale
Output: value : double

1 〈 AVPONode, int 〉 above ← FirstTaggedNode(node, true , scale);
2 double aboveValue ← TaggedNodeValue(π1(above), scale);
3 〈 AVPONode, int 〉 below ← FirstTaggedNode(node , false , scale);
4 double belowValue ← TaggedNodeValue(π1(below ), scale);
5 double step ←| aboveValue − belowValue | /(π2(above) + π2(below ));
6 return aboveValue − (π2(above) × step);

The cost associated with the attribute values of two options according to a given
AVPO is shown in Equation 6-18, where Node(AVPO[o, a], o1) gives the node of
the AVPO of option o and attribute a that is associated with the attribute value a of
o1. The cost is normalised in a similar manner as with the PSM. We use as maximum
and minimum values those associated with indices of modifiers and their negation
that tag any of the AVPO nodes. Finally, as there are two AVPOs, one associated
with each option, the final cost is the average of their respective costs as shown in
Equation 6-19.

AVPOAttCost(o, o1, o2, a) =
| NodeVal (Node(AVPO[o, a], o1)) − NodeVal (Node(AVPO[o, a], o2)) |

fm(maxIdx (AVPO[o, a])) − fm(minIdx (AVPO[o, a]))
(6-18)

AttCost(o1, o2, a) =
AVPOAttCost(o1, o1, o2, a) + AVPOAttCost(o2, o1, o2, a)

2
(6-19)

Goal, Lower Bound and Upper Bound

In the case that an option is considered worse than another (with respect
to an attribute) due to a goal, upper or lower bound, we again exploit monadic
preferences. Each attribute is associated with a domain, and we tag different domain
values of attributes associated with goals (or lower and upper bound preferences)
with values of modifiers of monadic preferences satisfied by the domain values. The
tagging, according to the formula of monadic preferences, is as follows.

(i) attribute = value: the domain value value is tagged with the value associated
with the preference modifier.

(ii) attribute > value1 and attribute < value2: the domain values value1 and
value2 are tagged with the preference modifier, plus and minus the difference
from this modifier to the closest modifiers (as with AVPO nodes tagged with
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Figure 6.4: Tagging an attribute domain associated with a goal.

the same modifier). Note that it is possible to have ≥ and ≤ instead of > and
<, respectively.

(iii) Domain boundaries, if not tagged, are tagged with the numeric values
associated with don’t want (minimum value), which is the minimum modifier
that is not a hard constraint, and want (maximum value), in case of
maximisation goal (or lower bound). If the goal is a minimisation (or upper
bound), the boundaries tags are inverted. We do not use preferences with
don’t accept and hate, because these modifiers are hard constraints, but as
in AVPOs, they are used to tag domain values only to keep consistency if
there are monadic preferences that use them.

With this tagging, we keep the maximisation and minimisation goals but also
associate a degree of preference (DoP ) with specific domain values. For instance,
based on preferences 3 and 4, we tag station = 1.0 with the value associated with
need, and station = 0.7 with the value associated with prefer, obtaining the curve
shown in Figure 6.4.

Now, we use these degrees of preference to measure attribute costs. As each
domain value is now surrounded by two tagged values (or it is a tagged value),
we are able to derive a degree of preference for all domain values, and the cost is
the difference between them, normalised according to the maximum and minimum
degrees of preference, which are given by the domain boundaries (min(Da) and
max (Da)).

Given an attribute value ya , whose closest tagged attribute values are xa ,
tagged with tx , and za , tagged with tz , we can calculate the parameters a and b of a
linear function DoP (x ) = ax + b, where a = (tx − tz )/(xa − za), and b = tx − axa ,
and then calculate the degree of preference of ya . If ya is tagged, it already has an
associate degree of preference.

AttCost(o1, o2, a) =
| DoP (val (o1, a)) − DoP (val (o2, a)) |
DoP (max (Da)) − DoP (min(Da))

(6-20)
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Even though goals can be either of maximisation or of minimisation, we use
the same equation to calculate the attribute cost, as the difference is the same in both
cases, and the cost is associated only with the option whose OAPM value is −.

Around

For assessing the cost using an around preference, we make a similar
calculation as above, but many modifiers are not helpful in this case, as there is
solely one monadic preference that is applicable to the options being compared
— this is a requirement to apply the around implicit preference. We evaluate the
attribute cost based on the difference of between attribute values and the reference
value, which ranges from 0 (the attribute value is equal to the reference value, thus
the distance from this value is 0) to the longest distance from the reference value,
considering the attribute domain. As here we cannot use the difference between
modifiers (as there is only one modifier, associated with the reference value), we
use a function fd (dist) (currently, instantiated as a linear function), to evaluate cost
in terms of the distance from the reference value, as shown in Equation 6-21, where
p is the preference associated with the reason of the OAPM value 〈around , p〉.

AttCost(o1, o2, a) =
fd (| AroundDist(o1, a, p) − AroundDist(o2, a, p) |)

fd (max (| min(Da) − RefVal (p) |, | max (Da) − RefVal (p) |))
(6-21)

Interval

Similarly to the around preference case, we assess the cost using an interval
preference as a basis using the distance from a reference value, which is now an
interval. The range of possible distances is from 0 (the attribute value is in the
interval) to the longest distance from the interval extremes (considering the attribute
domain), which are used by fd to calculate cost. The difference between the attribute
values from the compared options is given by IntervalDist(o, a, p), introduced in
Equation 6-12, where p is the preference associated with the reason of the OAPM
value 〈interval , p〉.

AttCost(o1, o2, a) =
fd (| IntervalDist(o1, a , p) − IntervalDist(o2, a, p) |)
fd (max (| min(Da) − lb(p) |, | max (Da) − ub(p) |)) (6-22)

Given these different ways of calculating the attribute cost AttCost(o1, o2, a)
based on the reasons for establishing a preference between attribute values of two
options, we show the attribute costs for our running example in Table 6.7.

Overall Option Costs

Up to now, we have considered the costs of an option with respect to another
by considering attributes in isolation, and now we look at the overall option costs
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Table 6.7: Cost-benefit Analysis for the Apartment Decision Problem.
wi Ap B Ap E Ap F

uni 0.179 1.000 0.100 1.000
station 0.196
market 0.132 0.071 0.214 0.071
zone 0.210 0.200 0.200
brand 0.094
stars 0.030 0.027 0.027 0.054
price 0.158
Cost 0.231 0.047 0.232

(a) AttCost(Ap A, o′, a)

wi Ap A Ap E Ap F
uni 0.196 0.013
station 0.179 0.250 0.083
market 0.132 0.143
zone 0.210
brand 0.094 1.000 1.000 1.000
stars 0.030 0.027
price 0.158 0.500 0.500
Cost 0.218 0.207 0.098

(b) AttCost(Ap B , o′, a)

wi Ap A Ap B Ap F
uni 0.179 1.000 1.000
station 0.196 0.166
market 0.132
zone 0.210 0.200 0.200
brand 0.094 0.018
stars 0.030 0.027
price 0.158
Cost 0.034 0.221 0.222

(c) AttCost(Ap E , o′, a)

wi Ap A Ap B Ap E
uni 0.196
station 0.179 0.500 0.250 0.333
market 0.132 0.143
zone 0.210
brand 0.094 0.036 0.018
stars 0.030
price 0.158 0.833 0.333 0.833
Cost 0.225 0.098 0.212

(d) AttCost(Ap F , o′, a)

(also with respect to another option). This is performed by taking into account
the priorities provided — which can be preference priority, attribute priority and
attribute indifference — and building an attribute partial order (attPO) for each
option, as different priorities can be applicable to different options.

As preferences, priorities pri also have a condition cond (pri ), and we present
a similar applicability definition.

Definition 6.5 A priority pri is applicable to an option o, App(pri , o), if and only
if

!cond (pri ) ∨ (∃ cond (pri ) ∧ sat(cond (pri ), o))

We initially take into consideration preference priorities (applicable to a
particular option), which associates a number with preferences, meaning that the
lower the number associated with the preference is, the more important it is.
Each preference is related to a single attribute (according to our assumptions), and
therefore the attribute order follows the order implied by the numbers associated
with the preference, as presented in Algorithm 7 — as there may be many
preferences associated with an attribute, we consider the lowest number.

Attribute priority and indifference modify the order given by preference
priorities. First, if the attribute priority is inconsistent with the order of preference
priorities, the attribute that was, before, considered less important becomes the
attribute immediately more important than the other attribute referred in the given
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Algorithm 7: ProcessPreferencePriorities(priorities , allAtt)
Input: priorities: preference priorities applicable to an option; allAtt : set of attributes
Output: attPO : attribute partial order

1 Set〈Attribute〉 N ← ∅;
2 Set〈Arrow〉 A← ∅;
3 Set〈Attribute〉 parents ← ∅;
4 int i ← 1;
5 while priorities ! ∅ do
6 Set〈Attribute〉 currentAtt ← ∅;
7 while ∃ pri .(pri ∈ priorities∧ Priority(pri) = i ) do
8 PreferencePriority pri ← Get(priorities , i);
9 Attribute a ← Attribute(pri);

10 if a " N then
11 N ← N ∪ {a};
12 currentAtt ← currentAtt ∪ {a};
13 priorities = priorities\{pri };
14 if currentAtt ! ∅ then
15 foreach a ∈ currentAtt do
16 foreach p ∈ parents do
17 A← A ∪ {〈p, a〉};
18 parent ← currentAtt ;
19 i ← i + 1;
20 foreach a ∈ (allAtt\N ) do
21 N ← N ∪ {a};
22 foreach p ∈ parents do
23 A← A ∪ {〈p, a〉};
24 return 〈N ,A〉;

attribute priority. Algorithm 8 shows how this swapping process is performed.
Second, if the attribute indifference is inconsistent with the order of preference
priorities, the least important attribute becomes as important as the previously more
important attribute. Algorithm 9 shows how this change is performed.

Finally, attributes associated with a don’t care preference are excluded from
attribute partial order. It is important to highlight that, as we assume consistency,
priorities do not form a cycle.

In our running example, for option Ap A , preference priorities result initially
in the following order.

zone % uni % station % price % market % brand % stars

By considering the given attribute priority, station and uni are swapped.

zone % station % uni % price % market % brand % stars

Given the attribute order, we consider the least important attributes as having
the level 1 in the order, and the longest path in the order from the least important
attributes to the most important ones is referred to as length(attPO). Then, we use
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Algorithm 8: MoveAbove(att1, att2,A)
Input: att1, att2: attributes to be swapped; A: attPO arrows

1 Set〈Attribute〉 oldParents ← Parents(att1) ;
2 Set〈Attribute〉 oldChildren ← Children(att1) ;
3 foreach p ∈ oldParents do
4 foreach c ∈ oldChildren do
5 A← A ∪ {〈p, c〉};
6 A← A\{〈p, att1〉};
7 foreach c ∈ oldChildren do
8 A← A\{〈att1, c〉};
9 foreach p ∈ Parents(att2) do

10 A← A ∪ {〈p, att1〉};
11 A← A\{〈p, att2〉};
12 A← A ∪ {〈att1, att2〉};
13 foreach p ∈ oldParents do
14 if ¬ExistsPath(att1, p) ∧ ¬ExistsPath(p, att1) then
15 A← A ∪ {〈p, att1〉};
16 foreach c ∈ oldChildren do
17 if ¬ExistsPath(att1, c) ∧ ¬ExistsPath(c, att1) then
18 A← A ∪ {〈att1, c〉};

Algorithm 9: MoveEqual (att1, att2,A)
Input: att1, att2: attributes to be swapped; A: attPO arrows

1 Set〈Attribute〉 oldParents ← Parents(att1) ;
2 Set〈Attribute〉 oldChildren ← Children(att1) ;
3 foreach p ∈ oldParents do
4 foreach c ∈ oldChildren do
5 A← A ∪ {〈p, c〉};
6 A← A\{〈p, att1〉};
7 foreach c ∈ oldChildren do
8 A← A\{〈att1, c〉};
9 foreach p ∈ Parents(att2) do

10 A← A ∪ {〈p, att1〉};
11 foreach c ∈ Children(att2) do
12 A← A ∪ {〈att1, c〉};
13 foreach p ∈ oldParents do
14 if ¬ExistsPath(att1, p) ∧ ¬ExistsPath(p, att1) then
15 A← A ∪ {〈p, att1〉};
16 A← A ∪ {〈p, att2〉};
17 foreach c ∈ oldChildren do
18 if ¬ExistsPath(att1, c) ∧ ¬ExistsPath(c, att1) then
19 A← A ∪ {〈att1, c〉};
20 A← A ∪ {〈att2, c〉};
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Figure 6.5: Attribute weights calculated with the logarithmic function.

a logarithmic function (fa(x ) = α log x + β) for calculating the attribute weights
when considering the overall option benefits. We establish the following points for
the function.

fa(1) = 1 (6-23)

fa(length(attPO)) = length(attPO) (6-24)

Point 6-23 indicates that attributes in the first level of the order have the
minimum weight, which is 1, and point 6-24 shows that attributes in the last level
have the maximum weight, which is length(attPO). The logarithmic function, with
the characteristics imposed by the points we established, gives a much higher
priority to more important attributes, and these more important attributes have
a smaller difference among them (in comparison with a linear function). This
behaviour is shown in Figure 6.5, which shows the weight logarithmic function for
one to ten levels of attributes. This is a default form we are adopting for calculating
attribute weights, which was also selected based on experimentation, and it is a
variation point. Next, we present how we calculate the parameters α and β of the
logarithmic function for a particular level of attributes.

α =
length(attPO) − 1
log length(attPO)

(6-25)

β = 1 (6-26)

Based on the logarithmic function with the calculated parameters, the weight
of each attribute ai ∈ Att is as shown below.

wi =
fa(level (ai ))∑

aj ∈Att fa(level (aj ))

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA



Chapter 6. An Automated Decision Maker with User-centric Principles 170

Finally, now that we have the costs of an option o1 with respect to o2, for each
individual attribute, and we also have the attributes weights, we calculate the overall
benefits from o1 with respect to o2 using a weighted sum, as presented next. This
function, which denotes the costs of all options w.r.t. each other option, calculated
for our running example is shown in the last row of Table 6.7, which also details the
attribute weights for each option.

Cost(o1, o2) =
∑

ai∈Att

wi × AttCost(o1, o2, ai )

6.7.2
Trade-off Contrast

The result of not having dominated options in the set of acceptable options
is that for any two options, one option is better for one or more attributes and
the same applies to the other. As a consequence, a trade-off must be resolved
for choosing one of the two options. According to Simonson and Tversky
(Simonson and Tversky 1992), when people make choices they do not look only for
the two options being compared, but analyse the cost-benefit relationship between
two options compared with the cost-benefit relationship between all other options.
This reasoning of comparing the trade-offs of the whole set of options is referred
to as trade-off contrast, and is not in accordance with traditional decision making
theory as it states that the preference between two options is independent of the
other available options.

Therefore, we incorporate a new factor in the process of choosing an option,
which is captured by a function that shows the trade-off between two options.

to : Opt ×Opt → R

We build the trade-off (to) as a partial function whose domain is every
pair of options that satisfies Cost(o1, o2) < Cost(o2, o1) and is associated
with the options’ cost-benefit relationship: Cost(o1, o2)/Cost(o2, o1). Because
Cost(o1, o2) < Cost(o2, o1), to is always value in the interval [0, 1] and Cost(o2, o1)
cannot be 0. The average of all values of to is referred to as avgto .

The trade-off between two options does not have a meaning in an isolated
manner; when we have only two options, all we know is that one option has higher
or lower cost than another. When there are other options, and the decision maker
observes that the cost-benefit relationship is better for other options, this is seen as
a negative aspect of the option and the benefits become smaller. That is, the option
requires giving too much for receiving just a little in exchange.
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Table 6.8: Trade-off Analysis for the Apartment Decision Problem.
Ap B Ap E Ap F

to
ToContrast 0.191

(a) Trade-off of Ap A

Ap A Ap E Ap F
to 0.943 0.937
ToContrast 0.017 0.017

(b) Trade-off of Ap B

Ap A Ap B Ap F
to 0.731
ToContrast

(c) Trade-off of Ap E

Ap A Ap B Ap E
to 0.969 0.999 0.956
ToContrast 0.052 0.052 0.052

(d) Trade-off of Ap F

Given the structure we built to store trade-offs, to, we now calculate the option
costs with respect to trade-off, having as a basis the average of the trade-off between
a particular option with the others — which is represented by the average of these
trade-offs avgto(o) — and the trade-off among all options (which is represented by
the average of all trade-offs avgto). If Cost(o1, o2) < Cost(o2, o1) and the trade-off
relationship of o1 is higher (i.e. worse) than avgto , then we have one more cost of
o1 w.r.t. o2. If the trade-off is lower (i.e. better) than the average, than it is counted
as a benefit, and therefore as a cost for o2. The function ToContrast(o1, o2), which
captures this notion of trade-off contrast, is shown below.

ToContrast(o1, o2) =




avgto(o1) − avgto if to(o1, o2) is defined
and avgto(o1) > avgto

avgto − avgto(o1) if to(o2, o1) is defined
and avgto(o2) < avgto

0 otherwise

(6-27)

The function Cost calculated for our running example allows us to analyse
the trade-off among options (to), which is shown in Table 6.8. The to averages are:
avgto = 0.923, avgto(Ap B ) = 0.940, avgto(Ap E ) = 0.731 and avgto(Ap F ) =
0.975. Based on that we can calculate the trade-off contrast (ToConstrast), which
is also presented in this table.

6.7.3
Extremeness Aversion

Another aspect that people take into consideration when making a decision
is how extreme options are. Extreme options are those that have a large
improvement for one attribute (or set of), e.g. quality, and a high penalisation for
another attribute (or set of), e.g. price. In general, people avoid extreme options
(Simonson and Tversky 1992), and this is referred to as extremeness aversion.

In order to evaluate how extreme options are, we compare option attribute
values to the best possible values, measuring the distance between them. As best
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values are subjective to each individual, we use the preferences applicable to each
option to identify the best value for each attribute. As these values are better or equal
to the particular option being analysed o, each attribute value of o can be associated
with an attribute cost, which ranges from 0, i.e. the attribute value is equal to the
best value, to 1, i.e. the attribute value is the worst possible value. Each of these
costs is referred to as distance from best, or bestDist(o, a).

The procedure is similar to making a cost-benefit analysis of the option being
analysed with a hypothetic option whose attribute values are the best. Preferences
to identify best values are processed in the inverse order of that used to build the
OAPM, consequently we will keep the same precedence order, as earlier processed
preferences may have their OAPM value overridden. Best values are identified in
the following way, when attribute a of option o is being analysed. If there is a
don’t care preference associated with a (and is applicable to o), a is not taken into
account.

(i) If val (o, a) has an associated node in the AVPO(o, a), the best value is that
related to a source node of the AVPO. If more than one source node exists,
we use the one with the highest associated numeric value.

(ii) If there is a goal associated with a (and the goal is applicable to o, we use
the domain lower bound (min(Da)) in case of a minimisation goal, and the
domain upper bound (max (Da)), otherwise.

(iii) If there are monadic preferences applicable to o, i.e. there is a modifier
associated with its PSM value, we do not specify a particular best value but
a PSM value that would be associated with the best value, which is 〈ε,m〉
or 〈¬,m〉, whose index is the highest and m is the modifier of a monadic
preference applicable to o.

(iv) If none of the above can be applied, or monadic preferences are inconclusive
to measure the distance between the attribute value and the best value, i.e.
they are considered similar, we use implicit preferences. Then, the best value
is: (a) min(Da), in case of an upper bound, (b) max (Da), in case of a lower
bound; (c) RefVal (p), in case of an around preference; and (d) either lb(p) or
ub(p), which are an interval boundaries, in case of an interval preference.

Given this way of identifying best values, we calculate bestDist(o, a) in the
same way that attribute costs are calculated, but comparing options with best values
instead of other options.

An extreme option has low costs for some attributes (bestDist(o, a) close to
0) and high costs for others (bestDist(o, a) close to 1), therefore we evaluate how
extreme the option is by calculating the standard deviation of the function bestDist
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for a particular option, for all attributes, which is a value between 0 and 1.

ext(o) = STDEV ({bestDist(o, ai ) | i = 1... |Att |})

The acceptable options of our apartment example are ordered according
to their extremeness in the following way (from the least extreme to the most
extreme): ext(Ap B ) = 0.344, ext(Ap E ) = 0.346, ext(Ap A) = 0.361, and
ext(Ap F ) = 0.403.

Finally, as the more extreme the option is, the more people avoid it, it
is considered that the more extreme option, between two options, has a cost
with respect to the other option. So, in order to capture this aspect, we define
ExtAversion : Options × Options → R, which represents the cost of the first
option compared to the second, with respect to the extremeness aversion principle.
This function, presented below, shows how the extremeness aversion is calculated:
the more extreme option has a cost that is the difference between the extremeness
values of the two options, and, as the less extreme option has no cost with respect
to the other, the value is 0.

ExtAversion(o1, o2) =



ext(o1) − ext(o2) if ext(o1) > ext(o2)
0 otherwise

(6-28)

6.7.4
The Decision Function: Comparing Relative Option Values

After executing the previous steps, we have analysed three aspects when
comparing options: their costs, the trade-off relative to the set of available options,
and how extreme they are. The last two aspects are also seen as costs (or benefits):
if the trade-off is higher than the average, it is also considered as a cost, and a more
extreme option has a cost when compared to a less extreme. So the final value of
an option with respect to another combine these three aspects in a weighted sum of
these costs, which can be seen in Equation 6-29, comprising our decision function
— d (o1, o2). We are now considering default weights (the last variation point of our
technique), which are 0.25 for trade-off contrast and 0.15 for extremeness aversion.
Based on the d (o1, o2) function, we identify the chosen option, which is the option
that has less or equal disadvantages (d (o1, o2) ≤ d (o2, o1)) than every other option of
the Acceptable set, i.e. those that are better or equal to the other options. If different
options have the same decision value with respect to another (d (o1, o2) = d (o2, o1)),
and they are better than every other option, we randomly choose one of them.

d (o1, o2) = (1 − wto − wea) × Cost(o1, o2)

+ wto × ToContrast(o1, o2) + wea × ExtAversion(o1, o2)
(6-29)
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Table 6.9: Options for Illustrating the Impact of the User-centric Principles.
A B C

uni 0.5 Km 1.75 Km 3.0 Km
price £150 £100 £50

(a) Extremeness Aversion.

A B C
uni 0.9 Km 1.8 Km 3.0 Km
price £125 £95 £90

(b) Trade-off Contrast.

In order to demonstrate the effect of the trade-off contrast and extremeness
aversion, we use an example that is smaller than our running example, but also
involving a choice among apartments. The apartments are now described only in
terms of the distance from the university (uni ) and price (price), both real numbers,
whose domains are [0.5, 3.0] and [£50, £150]. The preferences provided by the user
are two goals: minimise the value of both attributes, and these attributes are equally
important. For showing the impact of extremeness aversion, let A, B and C be three
options, whose attribute values are detailed in Table 6.9(a).

By calculating option costs and benefits, we find out that the option costs are
amortised for all the options, when they are compared in a pairwise fashion, i.e.

– AttCost(A,B , uni ) = 0.5 and AttCost(B ,A, price) = 0.5,
– AttCost(B ,C , uni) = 0.5 and AttCost(C ,B , price) = 0.5, and
– AttCost(A,C , uni ) = 1.0 and AttCost(C ,A, price) = 1.0.

Therefore, if we calculate the value of one option with respect to another
without taking into account the extremeness aversion principle, we conclude that
options are equally good, as d (o1, o2) = d (o2, o1) for all the options. However, if
we calculate the distance from the best attribute values for each available option,
we can verify that bestDist(A, uni) = 0 and bestDist(A, price) = 1, and therefore
ext(A) = 0.5. B , as it has the intermediate values, has its extremeness evaluated to
0 (the best distance for both attribute values is 0.5), and C has the opposite values
of A, having its extremeness also evaluated to 0.5. As a consequence, now A and C

have a cost with respect to B , which is chosen as the optimal option.
Given that we showed the impact of the extremeness aversion isolated from

the trade-off contrast, we now introduce another set of options to explain the
impact of the latter, described in Table 6.9(b), using the same preferences. First,
we calculate the Cost function in order to identify the costs of each option, which is
composed of the weighted sum of the costs identified for each individual attribute.
The first rows of Table 6.10 show these calculated values — weights used are 0.5 for
both uni and price, as they are equally important. Considering solely these costs, A
is the optimal option, as it has less costs than B and C , and B is better than C .

By comparing the trade-off, i.e. the ratio between benefits and cost, when
the cost is smaller than the benefit, we can see that the cost paid to choose A
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Table 6.10: Options for Illustrating the Impact of Trade-off Contrast.
A B B C A C

uni 0.0 0.36 0.0 0.48 0.0 0.84
price 0.3 0.0 0.05 0.0 0.35 0.0
Cost(o1, o2) 0.15 0.18 0.025 0.24 0.175 0.42
to(o1, o2) 0.833 0.104 0.416
ToContrast(o1, o2) 0.174 0.0 0.000 0.347 0.174 0.0

v (opt1, opt2) 0.156 0.135 0.019 0.267 0.175 0.630
Balance 0.021 0.248 0.455

instead of B is very high to get the provided benefits (0.833), in comparison to the
trade-off between B and C (0.104), and A and C (0.416). Therefore, as people tend
to adopt the trade-off contrast principle (Simonson and Tversky 1992), choosing A

seems to be not a “good deal,” because the costs are too high to get A’s benefits, in
comparison with other options.

So, by considering the average (0.451) of the to function as a threshold for
considering the trade-off relation as a benefit or cost, we now have the value of
ToContrast shown in its respective row, which is incorporated into the option costs
using our default weight (0.25). Finally, the optimal and chosen option is now option
B . The adoption of this principle is consistent with our previous study (Chapter 2)
as many of the participants pointed out in their preferences that their choice is based
on a “good cost-benefit relationship.”

As it can be seen in our provided examples, both the extremeness aversion
and trade-off contrast are incorporated as costs or benefits using weights, in order
to evaluate the decision value of an option with respect to another. However, the
individual costs associated with extremeness aversion and trade-off contrast that
are added to this value may not be high enough to make the order established by
the Costs function change. Even together, the extremeness aversion and trade-off
contrast may still not be high enough to make this change. Therefore, it is the
interplay among the option costs, extremeness aversion and trade-off contrast that
specify which option of every two options is preferred, and consequently make it
possible to determine the chosen option.

Considering our apartment example, if the Costs function were the only factor
taken into account, the apartment Ap F would have been chosen — note that
Cost(Ap B ,Ap F ) = 0.09768 and Cost(Ap F ,Ap B ) = 0.09760. Nevertheless,
by considering the other two principles we are adopting, we have a different result.
The costs of Ap B and Ap F are almost equal, but Ap B is the least extreme
option, while Ap F is the most extreme: Ap F has the best values for some
attributes (uni , zone and stars), but a high penalisation for others (station and
price). Moreover, by analysing the cost-benefit relationship between options, we
identify that the relationship between Ap F and Ap B , which is 0.999, is worse
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Table 6.11: Decision Function of the Apartment Decision Problem.
B E F

Cost 0.231 0.047 0.232
ToConstrast 0.000 0.191 0.000
ExtAversion 0.017 0.015 0.000
d 0.141 0.078 0.139

(a) Ap A

A E F
Cost 0.218 0.207 0.098
ToConstrast 0.017 0.017 0.000
ExtAversion 0.000 0.000 0.000
d 0.135 0.129 0.059

(b) Ap B

A B F
Cost 0.034 0.221 0.222
ToConstrast 0.000 0.000 0.000
ExtAversion 0.000 0.002 0.000
d 0.021 0.133 0.133

(c) Ap E

A B E
Cost 0.225 0.098 0.212
ToConstrast 0.052 0.052 0.052
ExtAversion 0.042 0.060 0.057
d 0.154 0.080 0.149

(d) Ap F

than the average 0.922. Table 6.11 shows the values of all functions calculated for
every pair of options of the Acceptable set, and by considering the weighted sum of
the costs, trade-off contrast and extremeness aversion, the chosen option is Ap B .

Our criterion to choose the optimal option is the balance between costs and
benefits of each option with respect to another. As this is calculated in a pairwise
fashion, there may be situations in which there is a cycle, that is, d (o1, o2) <
d (o2, o1), d (o2, o3) < d (o3, o2) and d (o3, o1) < d (o1, o3). This situation arises
because we use different criteria to compare the attribute values of each pair of
options, for example, the price of o1 and o2 is compared based on a goal, and o1

and o3 based on a monadic preference. As user preferences are consistent, if we
analyse only the price attribute, we will find no cycles; however, as the d function is
calculated in a different manner according to different preferences, small differences
in the scales may lead to a cycle when considering the overall option costs.

In order to choose one option when this situation occurs, we adopt the
following strategy. We identify the set of options that are considered better than
the highest number of options, and then, from these, we choose the one with the
minimum-maximum balance for every option that is considered better than it. In
other words, if option o can be chosen as the optimal option, and for every option o′

that d (o, o′) > d (o′, o), we calculate the maximum value for the difference between
d (o, o′) and d (o′, o). And if this value is the lowest one when compared to the
value of every other candidate option (options that are better than the same amount
of options of o), than o is chosen.

In our experiment (see next section), which was performed with real user data,
there was only 1 (of 113) occurrence of cycle. Even though this number is low, we
use a workaround to solve this issue, and it is part of future work to completely
eliminate the possibility of cycles.

Finally, we discuss the complexity of our technique. As it can be observed in
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Table 6.12: Complexity Analysis of our Technique.
Pre-processing
PSM O(| Opt || Pe |)
OAPM O(| Opt |2| Att || Pe |)
AVPO O(| Opt |2 + | Pe |2)
Explication O(| Opt |2| Att || Pe |)
Elimination O(| Opt |2 + | Opt || Att |)
Selection
Cost O(| Opt |2| Att | +max (PPi ) | PPi | + | Pi || Att |)
Extremeness Aversion O(| Opt || Att | + | Opt |2)
Trade-off Contrast O(| Opt |2)
Decision Function O(| Opt |2)

the presented algorithms, our technique runs in polynomial time, and most of the
algorithms require comparing each pair of options according to each attribute. We
present the complexity of each part of our technique in Table 6.12, whose total is

O(| Opt |2| Att || Pe | + | Pe |2 +max (PPi ) | PPi | + | Pi || Att |) (6-30)

where

– Opt is the set of available options,

– Att is the set of attributes,

– Pe is the set of preferences,

– PPi is the set of preference priorities,

– max (PPi ) is the maximum number associated with the preference priorities,
and

– Pi is the set of attribute priorities and attribute indifferences.

6.8
Comparison with Related Work and Evaluation

One of the key advantages of our approach is the ability to handle different
types of preferences. In this section, we thus compare our technique with existing
approaches to reasoning about preferences in terms of the preference types they can
handle. We also evaluate our approach empirically by comparing our choices with
those of a human expert. As the input of our technique is high-level preferences,
and existing approaches cannot handle all of them, our empirical evaluation does
not make side-by-side comparison with existing work.

As discussed in previous chapter, many existing approaches are based on
utility functions (UFs). As with UFs it is possible to order available options,
thus choosing among them, different approaches (McGeachie and Doyle 2008,
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Table 6.13: Reasoning Approaches vs. Preferences.
Approach Preference Priority

Cd Ct G O Q R I D a i p
UF-based (McGeachie and Doyle 2008) X
SVM-based (Domshlak and Joachims 2007) X X X
SCSP (Bistarelli et al. 1997) X X
Bipolar preferences (Bistarelli et al. 2010) X X
Interval-valued SCSP (Gelain et al. 2010) X X
CP-Nets (Boutilier et al. 2004) X X
TCP-Nets (Brafman et al. 2006) X X X
Scoring Function (Agrawal and Wimmers 2000) X X X X
Winnow (Chomicki 2003) X X X X
BMO (Kießling 2002) X X X X
Query Personalisation (Koutrika and Ioannidis 2006) X X
SPARQL (Siberski et al. 2006) X X X
Legend — Cd: condition; Ct: constraint; G: goal; O: order; Q: qualifying; R: rating; I: indifference; D: don’t care;
a: attribute priority; i: attribute indifference; p: preference priority.

Domshlak and Joachims 2007) have been proposed to transform specific models
that capture qualitative preferences (which are closer to how users express
preferences) into UFs, i.e. quantitative preferences, which are consistent with
the constraints established by the qualitative preferences. Some approaches
(Bistarelli et al. 1997) extend Constraint Satisfaction Problems (CSPs) to
incorporate soft constraints (that can remain unsatisfied), namely SCSP,
associating a penalty (or preference) with each constraint, and creating an
optimisation problem of minimising penalty (or maximising preference). In
order to allow the representation of other kinds of preferences, extensions to
traditional soft constraints approaches were proposed: (i) bipolar preferences
(Bistarelli et al. 2010), which distinguish what users want (indicating preferred
options), and what they do not want (restricting the set of acceptable options); and
(ii) use of intervals (Gelain et al. 2010) to represent penalties (or preferences), as
it may be difficult to specify precise values. A third group of approaches, mainly
represented by CP-Nets (Boutilier et al. 2004) and TCP-Nets (Brafman et al. 2006),
takes another direction, proposing new graphical structures to represent and reason
about qualitative preferences. Finally, work in the area of databases proposes
extensions of query languages (Agrawal and Wimmers 2000, Chomicki 2003,
Kießling 2002, Koutrika and Ioannidis 2006, Siberski et al. 2006) to incorporate
preferences and algorithms to provide query results according to specified
preferences. Even though these approaches propose different solutions, they share
the common goal of making a choice based on preferences. However, as shown
in Table 6.13, they address limited kinds of preferences, restricting their natural
expression by humans. Our technique is the only one that exploits natural language
expressions — expressive speech acts — to make decisions on behalf of users.

Besides being able to deal with restricted kinds of preferences in comparison
to our technique, these approaches only choose between two options when the
preferences provided are sufficient to make the decision, i.e. if the decision involves
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Figure 6.6: Expert vs. our technique: first choices.

trade-off, users must have previously resolved it and specified their preferences.
However, as discussed by Tversky (Tversky 1996), people resolve trade-offs in light
of available options, and do not provide such preferences. Our technique, on the
other hand, resolve trade-offs using (i) preferences over individual attributes; (ii)
priorities; and (iii) user-centric principles, with the aim of performing a similar
reasoning that humans do.

Finally, note that this thesis is not concerned with preference elicitation
methods, as our goal is to provide a preference language as close as possible to
natural language, so that users can directly express their preferences, and based
on such preferences make a choice. However, we do not exclude the possibility of
combining our approach with elicitation methods, which can be simpler if the gap
between provided user preferences and the preference model (or language) in which
elicited preferences are captured is reduced, as our approach proposes.

The empirical evaluation of our technique is based on the study that
also informed the preference language itself (Chapter 2). Participants provided
preference specifications (in natural language) for use by an individual to buy a
laptop on their behalf. Both these individuals, and domain expert, were given a
laptop catalogue (with 144 laptops) from which to choose up to five options. The
three relevant parts of the study used for our evaluation are the initial preference
specification, the user choices and the domain expert recommendation. We use these
to compare our decisions against those of the user and domain expert. Similarly to
how the domain expert recommendation was assessed in the study, we calculate
a similarity score SS , which compares the recommendation with the user choice,
using Equation 2-1 — it takes into account the position of the up to five chosen
laptops using a weighted average. SS ranges from 0 to 100, with 100 indicating a
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Figure 6.7: Expert vs. our technique: up to five choices.

match to user choice.
Using a graphical user interface developed to input preferences according to

our preference language, we were able to store the preferences provided by 113
participants. Of the 192 user specifications, 79 (41%) use subjectivity or purpose,
and therefore cannot be expressed in our language. For example, “I’d like a laptop
to carry on my backpack.” Moreover, of these 79, 9 have no expert recommendation,
as they are too vague, such as “I would never delegate this task [buy a laptop] to
another person.” For the remaining specifications, we applied our technique (which
takes an average of 3.6026 seconds on an Intel Core i5 2.30GHz , 8GB of RAM,
with standard deviation 1.4051, to be executed for each request, with 144 laptops,
and 61 attributes), and obtained the similarity scores shown in Figures 6.6 and 6.7.
The former shows the similarity score considering the first expert choice and the first
choices of our technique compared to the first user choice, and the latter shows the
comparison between the first up to five choices. If the domain expert recommended
x laptops, we use the first x choices of our technique. Even though our technique
does not rank acceptable options, as we calculate a numeric value to compare them,
we use these numbers to obtain the first up to five choices. Both charts have their
x-axis ordered according the SS calculated for our technique.

The results show that the values obtained for the (human) domain expert and
our technique are not so different — considering only the first choices (labelled as
F), our technique has MSS = 63.19 and the domain expert has MSS = 61.25; i.e. our
technique has a better average SS than the expert. The same occurs for the up to five
choices (labelled as 5). These SS values, as well as standard deviation, minimum
and maximum, are summarised in Table 6.14. The difference between the obtained
similarity scores is significant when comparing only first choices, as determined by

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA



Chapter 6. An Automated Decision Maker with User-centric Principles 181

Table 6.14: Analysis of Domain Expert and our Technique choices.
Our Technique (F) Expert (F) Our Technique (5) Expert (5)

Average 63.19 61.25 61.94 61.44
Standard Deviation 13.36 11.93 8.00 8.32
Minimum 47.68 44.80 50.72 47.12
Maximum 100.00 100.00 100.00 96.39

a Wilcoxon Signed Ranks test — W (112) = 3711, p = 0.0497 (F), and thus we
reject the null hypothesis that domain expert and our technique choices are equal.
However, this is not the case of the up to five choices: W (112) = 3774, p = 0.1131
(5). As a consequence, we can conclude that our technique makes choices at least
as good as those of the domain expert.

6.9
Final Remarks

Previous studies (Lichtenstein and Slovic 2006) state that people have a set of
preferences that they are aware of, which are used as a basis to make decisions and,
when facing concrete decision making situations (Tversky 1996), they construct
new preferences to resolve trade-offs that cannot be resolved with this set of known
preferences. In this chapter, we presented an automated decision making technique
that uses preferences expressed by users in a high-level language, which is close
to how people express their known preferences in natural language. The technique
resolves trade-offs based on priorities, which indicate attributes they consider more
important, combined with user-centric principles, thus making decisions in a way
similar to how humans do, with the aim of automating tasks on their behalf. Our
technique makes a decision in a stepwise fashion: first, it evaluates preferences
over individual attributes; second, it eliminates dominated options and those that
do not satisfy cut-off values, obtaining a consideration set, which contains options
that require trade-off resolution; third, it chooses one option from the consideration
set evaluating option pros and cons, trade-off contrast and extremeness aversion,
being the latter two the main principles from psychology we adopt. The empirical
evaluation of our technique showed that it is able to make a choice on behalf of
the users at least as good as that made by a human domain expert, considering our
experiment.
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