
6

Final Remarks and Future Work

Maintaining the original design of evolving program families and their

respective features is a challenging task. Among other factors, this task is

mainly challenging when there are several development teams maintaining

and making decisions in different family members. These decisions vary from

the architectural design to implementation stages. When such decisions are

made without respecting the original design of the program families and their

features, they tend to degenerate the program family’s source code. Hence,

it is fundamental to analyse the feature evolution throughout all the fam-

ily members in order to forwardly recover (i.e. identify and classify) the im-

plementation elements realizing each family feature. There are many tech-

niques and tools for supporting feature mapping activity in single appli-

cations (Wong et al. 1999, Eisenbarth et al. 2003, Eisenberg and Volder 2005,

Poshyvanyk et al. 2007). There are others that explore source code history to

detect change dependencies, non-functional crosscutting features and charac-

teristics of the software evolution. However, all of them are unable to forwardly

recover the implementation elements realizing the features in evolving program

families.

To the best of our knowledge, there is no research work that analyses the

change history of the features’ implementation elements in evolving program

families over time. In particular, this occurs because existing techniques only

concentrate on an individual version of a single program. Even worse, exist-

ing techniques rarely analyse and recover the evolution of each family feature.

A few cases of recently-proposed techniques consider the change history of a

particular program to support the identification of non-functional crosscutting

features (Adams et al. 2010, Nguyen et al. 2011). However, they do not incre-

mentally analyse the change history of the features’ implementation elements

in program families over time.

In this context, history-sensitive heuristics are required to forwardly

recover the implementation elements realizing evolving common and varying

features in program families. The forward recovery of features encompasses the

multi-dimensional history analysis in order to identify and classify the features’

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA



Chapter 6. Final Remarks and Future Work 136

implementation elements. The forward recovery of program family’s features

can be useful to a wide range of repair actions, including the code restructuring

activities across the program family. First, a set of eight recurring types of

feature mapping mismatches were empirically identified and characterized in

evolving members of a program family. Second, we defined and formalized

a suite of five heuristics for expanding feature mappings for all the versions

of the family members. Finally, we defined history-sensitive heuristics for the

forward recovery of features in the code of evolving program families. In the

empirical evaluations, we evaluated the frequency rate of the documented

mapping mismatches and the accuracy of the two suites of heuristics. The

next section revisits the key contributions of this thesis and Section 6.2 points

out directions for future work.

6.1

Revisiting the Thesis Contributions

In this thesis we discussed the need of recovering the features’ implemen-

tation elements in degenerate program families. In this direction, we proposed

a suite of forward recovery heuristics that rely on expanded feature mappings.

These expanded feature mappings were generated by a suite of mapping expan-

sion heuristics. To define these mapping expansion heuristics, we documented

a set of recurring types of mapping mismatches. In summary, the six contri-

butions of this research work are described as follows.

1. A Catalogue of Recurring Mapping Mismatches (Chapter 3). The cata-

logue of mapping mismatches guides software engineers in promoting the

correctness and completeness of their feature mappings. Additionally, it

can also be used in conjunction with existing mapping techniques to

check the correctness of their generated mappings. These mapping mis-

matches were empirically documented through the analysis of evolving

members of a program family. This catalogue is a novel contribution as

there are no evidence about which types of mismatches can arise during

feature mapping activities (Nunes et al. 2011, Nunes 2011).

2. A Suite of Mapping Expansion Heuristics (Chapter 4). A suite of five

heuristics for the feature mapping expansion was defined and formalized

(Nunes et al. 2010, Nunes et al. 2012a). The mapping expansion heuris-

tics rely on the multi-dimensional historical of program families and the

catalogue of mapping mismatches. Their intent is also to support the au-

tomatic elimination of mapping mismatches given a set of evolving mem-

bers of the same family. The proposed heuristics incrementally analyse

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA



Chapter 6. Final Remarks and Future Work 137

the change history of the features’ implementation elements in program

families over time.

3. A Suite of Heuristics for Feature Element Recovery (Chapter 5). We

defined history-sensitive heuristics for the forward recovery of features in

the code of evolving program families (Nunes et al. 2012b). The recovery

heuristics use the expanded feature mappings as input information

provided by the mapping heuristics. The recovery heuristics aim at

classifying the implementation elements as part of common or variable

features of the program family. The output generated by the heuristics is

a Java project that is structured in terms of program family’s features.

These packages are further composed of sub-packages that represent the

several categories defined by each recovery heuristic.

4. Tool Support (Chapters 4 and 5). We also designed and implemented a

prototype tool, named MapHist (Nunes et al. 2012a), which effectively

supports the use of the mapping expansion heuristics. Additionally, we

also implemented the recovery heuristics taking into consideration the

output generated by the mapping heuristics; i.e. the expanded feature

mappings. The MapHist tool was implemented as an Eclipse plug-in

(Eclipse 2011). MapHist uses the representation of features provided by

ConcernMapper, which has a list of features’ names and the implemen-

tation elements that realize each feature.

5. Feature Visualization in Evolving Program Families (Chapter 4). The

expanded feature mappings have been successfully used for fea-

ture evolution comprehension in program families (Nunes et al. 2012a,

Novais et al. 2012). The feature evolution visualization was achieved

through the integration of the mapping expansion heuristics with a vi-

sualization tool, the so-called SourceMiner Evolution (SME). This inte-

gration enables developers to analyse the feature code evolution through

two or more family member versions using multiple graphical views.

6. Empirical Evaluations. We designed and executed empirical studies to

evaluate our catalogue of mismatches and the two proposed suites of

heuristics.

a) Experiments on Mapping Mismatches (Chapter 3). The aims of the

experiments were centered on observing the occurrence and frequency of

the mismatch categories. We run the experiments with 26 participants

using two different systems. From these experiments, we could notice that

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA



Chapter 6. Final Remarks and Future Work 138

in fact the documented mismatches occur in practice either performed

manually or using conventional mapping tools.

b) Experiments on Accuracy of the Heuristics (Chapters 4 and 5). We

also evaluated the accuracy of the two proposed suites on two industrial

evolving program families named OC and RAWeb (Section 4.6.1). First,

the expanded features mappings generated by the mapping expansion

heuristics were evaluated with respect to recall and precision measures.

Second, the forward recovery heuristics were also evaluated regarding

their categories in terms of precision and recall. The goal was to verify

the forward recovery of the elements associated with each category.

6.2

Future Work

In spite of the contributions of this thesis described in Section 6.1, we

have identified some future work. Basically, five main topics can be derived

and they are described as follows.

1. Further Evaluations. The catalogue of mismatches was evaluated through

two representative systems from different domains (Chapter 3). Addi-

tionally, the two suites of heuristics were evaluated on the top of two

evolving program families. The designed studies provided reasonable ev-

idence with respect to the accuracy of the proposed heuristics. However,

it is important to design other studies taking into consideration other

program families in order to evaluate (i) the generalization of our cata-

logue of mismatches, (ii) the accuracy of our heuristics, (iii) the accuracy

of the heuristics when varying the seed mappings, and (iv) if the exe-

cution order of the heuristics varies depending on the characteristics of

the program family’s source code. For instance, new mismatches might

be observed and identified based on false positives and false negatives

generated by the automatic support of the heuristics.

2. Comparison with other Techniques. We intend to evaluate our technique

with existing ones by applying them multiple times for each member

of the program family. It is important to highlight that existing tech-

niques were conceived with specific purposes. For instance, Nguyen et al.

(Nguyen et al. 2011) aims at identifying candidates crosscutting features

that should be implemented as aspects. On the other hand, our method

is more general and it is not related to a specific engineering activity.

3. Improved Tool Support. We also identified some improvements to be im-

plemented mainly regarding the recovery heuristics. First, it would be

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA



Chapter 6. Final Remarks and Future Work 139

interesting to provide support to a ranking process of the elements clas-

sified by each recovery category. This type of information provides de-

velopers with a detailed knowledge of the elements identified by each

category and their frequency throughout program family evolution. Sec-

ond, it could be useful to implement a more efficient recovery process

based on the feedback provided by the developers. Based on this interac-

tion, the heuristics could learn and disregard future recovery of a given

implementation element.

4. Generation of Feature Models. Feature models are used to represent the

commonalities and variabilities of a program family (Kang et al. 2006).

The availability of feature models is interesting as they provide a high

level knowledge about the features, their classification and their depen-

dencies. For this reason, it would be valuable to generate feature models

for each family member version and analyse their change impact under

the perspective of a high level representation. This analysis could antic-

ipate to some extent certain implementation issues during the program

family evolution.

5. Detection of Architectural Violations. As part of this thesis, we integrated

the mapping expansion heuristics with the SME visualization tool to

analyse the feature evolution through multiple views. Additional analyses

could be derived from these expanded feature mappings. For instance,

we could analyse how the presence of code anomalies, also known as

code smells, in a given feature implementation affect negatively other

features’ implementations. The presence of code anomalies can introduce

architectural violations, and consequently some architectural design rules

could help developers visually check the conformance of feature code

under evolution (Hochstein and Lindvall 2005, Eichberg et al. 2008).

6. Analysis of Feature Dependencies and Stability. Other analyses on ex-

panded feature mappings can be derived in terms of feature dependen-

cies and stability analyses. For instance, we could propose heuristics or

even visualizations to observe the number of changes that a feature has

undergone over time; i.e the feature stability throughout program family

evolution. Additionally, we could visually observe the change impact of a

feature over others or their dependencies. This way, we could rank which

features or group of features are more harmful to the program family

stability during its evolution.

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA



Chapter 6. Final Remarks and Future Work 140

In conclusion, this thesis represents a promising direction regarding our

macro goal that is the recovery of features in code of evolving program families.

In order to reach this macro goal, this work achieved a set of contributions

(Section 6.1). In particular, this thesis has addressed relevant issues related

to the feature mapping evolution and recovery of features’ implementation

elements. Nevertheless, as aforementioned there are also uncovered issues to

be explored in the future.

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA




