
5

Recovery Heuristics of Feature Elements

As discussed in Chapter 1, when a program family evolves over time, its

source code might be degenerated and thus makes it difficult to maintain the

members of the family. This degeneration is often induced by features that

are changed individually without considering other family members. For this

reason, it is important to identify and classify the implementation elements

realizing the family features. There is a growing body of relevant work that

have proposed techniques and tools to help developers explicitly identify code

related to a feature as presented in Chapters 1 and 2. However, existing

techniques that support the feature mapping activity are limited as they only

consider the history of a single member product (Chapter 4). More specifically,

there is no work that explicitly classifies features’ implementation elements by

taking into consideration the multi-dimensional history of a given program

family.

To tackle this limitation, this chapter presents recovery heuristics to au-

tomatically classify the variability degree of each family element in degenerate

program families. This chapter answers the third and fourth research questions

of this thesis (RQ3 and RQ4 in Section 1.3). The proposed recovery heuris-

tics use as input the feature mappings generated by the mapping expansion

heuristics, i.e. the expanded feature mappings (Chapter 4). These heuristics

rely on the analysis of the program family’s history and the family’s features

are recovered as Java project packages, which separate the implementation of

common features from variable ones (Section 5.2). This chapter also reports

a systematic evaluation of the accuracy of the recovery heuristics in the con-

text of two industrial evolving program families (Sections 5.4 and 5.5). Finally,

Section 5.8 summarizes this chapter.

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 5. Recovery Heuristics of Feature Elements 113

5.1

Recovery Methodology

The recovery heuristics also rely on the multi-dimensional historical

analysis as well as the mapping expansion heuristics (Chapter 4). The recovery

heuristics add a new step (Figure 5.1) to the methodology of the mapping

expansion heuristics (Section 4.3.1), which is the forward recovery. Considering

that extension, the recovery heuristics use as input the expanded feature

mappings generated by the mapping expansion heuristics (previous step). The

expanded feature mappings refer to all the versions of each family member

after analysing both horizontal and vertical histories of a program family.

More specifically, both horizontal and vertical histories are explored by the

recovery heuristics through a set of feature mappings provided by the mapping

heuristics (Chapter 4). There is a feature mapping for each version of the

family member; it contains a list of features and the respective code elements

for each feature realization within each family member version. For each family

member, the “horizontal” set of feature mappings captures the evolution of the

family’s features in this specific member. The recovery heuristics use as inputs

of their analyses all the horizontal feature mappings of all the family members.

These feature mappings are essential to explore the multi-dimensional history

of program family (Section 4.3.1).

Application A

Version 1 Version N

� � �

�

Feature Selection

� � �

�
Application N

Seed Mappings

Start

Legend:

Start Activity

Feature

List

Control Flow Output

Seed

Mapping

Mapping Expansion

Heuristics

Artifact End

End

Analyse

Members of the Program Family

Forward Recovery

Heuristics

Recovered

Program Family

�� �

Figure 5.1: Methodology of the Recovery Heuristics.

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 5. Recovery Heuristics of Feature Elements 114

5.2

Forward Recovery Heuristics

This section describes and formalizes the heuristics required to classify

the implementation elements realizing the features of a program family (Sec-

tions 5.2.1 and 5.2.2). It also overviews the algorithmic solution and imple-

mentation of the classification process (Section 5.3). The aims of the recovery

heuristics are to forward classify the code elements as part of common or vari-

able features of the program family. This classification can be useful to help

developers in the future, for instance, to: (i) determine how the existing fam-

ily members departed from the original intended design, and (ii) implement

code or design refactorings of the program family. Therefore, the output gener-

ated by the heuristics can be useful to circumvent the degeneration symptoms

(Section 1.1). More specifically, the heuristics generate a Java project that is

structured in terms of program family’s features. The family’s features in this

project are firstly structured into two packages: common and variable. These

packages are further decomposed into sub-packages that represent the cate-

gories defined by each heuristic (Sections 5.2.1 and 5.2.2). For each feature,

its corresponding package contains recommended code elements forwardly de-

tected by the historical analysis of all the family members.

The description of the heuristics is presented in the next sections in

terms of: (i) their strategy and rationale, and (ii) an illustrative example and

formalization. The following terms are defined and used in the formalization

of the heuristics in the next sections. A feature as fe in F(P), where F(P)

represents the set of selected features of the program family (P); ie as a code

element, which can be an attribute, a method or a class; FM(fe) refers to the

feature mapping, which contains the code elements realizing each feature; the

number of family members (n) and their versions (v) involved in the recovery

process.

5.2.1

Recovering Elements in Common

Strategy and Rationale. The first heuristic, named REC (Recovering

Elements in Common), is responsible for classifying common code elements of

a family; they refer to the code in common shared by the family members. For

each family member, the common elements refer to code elements included in

a specific version (not necessarily the first one), which remain untouched in

the next versions. In this context, REC suggests that such common elements

should be recovered as a part of the program family’s core. For each feature,

REC analyses the features’ code elements of all the members’ versions of the

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 5. Recovery Heuristics of Feature Elements 115

program family. As aforementioned (Section 5.1), there is one feature mapping

for each version of the family member. REC keeps track of the elements and

analyses which ones are originally common to all the members’ history.

To classify a code element in common across the family members, we

analyse the elements’ signature; we also analyse the element body in case of

methods. The goal is to reveal similarities or differences between the elements.

For instance, let’s suppose that a method body was not changed but either the

method name, or a parameter or a return type was modified. This means that

the method’s signature was changed, and consequently it is not considered

as a common element. The granularity levels of the analysed elements are

attributes, methods and classes. Ideally, common elements in the original

family design should be modularly separated in the family core code; this

strict separation should prevail along the family code history (Section 1.1).

Nevertheless, these common elements in degenerate program families might

have been moved to code realizing variable features in specific versions of one

or more family members (Section 1.1). REC analyses the feature mappings of

each program family version to detect these problems and infer a new set of

common elements that should be part of the recovered program family.

The heuristic REC relies on four categories in order to find and clas-

sify common elements under the multi-dimensional history perspective: (i) full

vertical and horizontal similarity, (ii) full vertical similarity, (iii) full hori-

zontal similarity, and (iv) partial vertical and horizontal similarity. All these

categories of common elements share a basic characteristic: the code elements,

once included in the history of each family member, remained untouched in the

following versions. The aforementioned categories differ in a way that common

elements emerged along the horizontal and vertical histories of the program

family. The categories are defined below and they are ordered based on the

similarity degree of common elements; those categories representing higher

similarity degrees are presented first.

Full Vertical and Horizontal Similarity. This category captures the

implementation elements of a feature that are present in all family members

and remained untouched in the next versions of each member. This category

refers to the implementation elements that have been included to realize

a certain feature since the beginning of the program family development.

This means that such elements are originally common to all the vertical and

horizontal histories of the family members. Figure 5.2 illustrates this category

where a given feature element was introduced in the first version of the program

family and it takes part of the vertical and horizontal histories.

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 5. Recovery Heuristics of Feature Elements 116

Horizontal History

Application A

Application N � � �

�

Version 2 Version N

Feature element

Vertical History

� � �

�

� � �

�

Members of the Program Family

Legend:

Version 1

Figure 5.2: Illustrative Example of Full Vertical and Horizontal Similarity.

Full Vertical Similarity. This category captures the code elements of a

feature that are fully present in each family member, i.e. they fully participate

in the vertical history of the program family. They might have been introduced

at any horizontal point of each family member history. In other words, this

category comprises the feature’s code elements that were included in each

family member consistently; once they were included, they remained untouched

for the rest of the horizontal history of each family member. This category

provides developers with a list of code elements that are fully in common

across all the family members. Figure 5.3 illustrates this category where the

same feature element was included in version 1 of Application A and version 2

of Application N and it remained untouched for the entire horizontal history

of both family members.

Horizontal History

Application A

Application N � � �

�

Version 2 Version N

Feature element

Vertical History

� � �

�

� � �

�

Members of the Program Family

Legend:

Version 1

Figure 5.3: Illustrative Example of Full Vertical Similarity.

Full Horizontal Similarity. This category captures elements of a

feature that are fully present in the horizontal history of a given family member.

More specifically, these elements were included in the first horizontal point

(first version) of a given family member and remained untouched during its

entire horizontal history. This category is useful to the developers in order to

reveal the common elements during the entire horizontal history of the family

members. Figure 5.4 illustrates this category where the a given feature element

was included in the first version of Application A and it remained untouched

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 5. Recovery Heuristics of Feature Elements 117

for the entire horizontal history of this family application.

Horizontal History

Application A

Application N � � �

�

Version 2 Version N

Feature element

Vertical History

� � �

�

� � �

�

Members of the Program Family

Legend:

Version 1

Figure 5.4: Illustrative Example of Full Horizontal Similarity.

Partial Vertical and Horizontal Similarity. This category captures

the code elements of a feature that are present in a set of versions of the family

members. This occurs because these elements are not fully present in all the

horizontal and vertical histories of the program family. For this reason, this

category is different from the aforementioned categories. Also, it is based on

a threshold defined by the developers to find partial common code elements

that is explained below. The assumption is that if code elements are present in

many versions of the family members, this situation potentially indicates that

they should be considered as common elements of the program family’s core in

the future. There are two possible cases of elements captured by this category.

First, code elements that were included in any horizontal point of the family

members and remained untouched in the next versions. These elements were

originally included to realize an existing feature in a given member version;

then, they started to be included in other versions of the same member and,

also, in other versions of different members to realize the same feature. Second,

it refers to the code elements of a feature that were removed from some versions

of family members. However, these elements remain to realize the same feature

in the rest of the family members. Figure 5.5 illustrates this category by

showing a feature element that participates in the some versions of the program

family history.

Formalization and Examples. The formal definition of REC is pre-

sented in Formulas 5-1 and 5-2. These formulas encompass all the categories

defined above. It is defined in terms of number of family members (n), the

member versions (v); a given code element (ie) mapped to a feature (fe); and

a threshold (α) that defines the number of versions in which a given element

should be present in when analysing all the family members. The threshold

is used by the full vertical and horizontal similarity and partial vertical and

horizontal similarity categories. This formalization, considering each category,

is explained below.

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 5. Recovery Heuristics of Feature Elements 118

Horizontal History

Application A

Application N � � �

�

Version 2 Version N

Feature element

Vertical History

� � �

�

� � �

�

Members of the Program Family

Legend:

Version 1

Figure 5.5: Illustrative Example of Partial Vertical and Horizontal Similarity.

REC(fe) =

n⋂

i=1

v⋂

j=1

{ie : ie ∈ FM(fe)} (5-1)

REC(fe) =

n⋂

i=1

v⋂

j=1

{ie : ie ∈ FM(fe)} > α (5-2)

Code elements belong to the full vertical similarity category when they

are present in all family members, which is represented by n in Formula 5-1.

The full horizontal similarity category captures code elements that are present

in all the versions (v) of one family member (n) in Formula 5-1. Elements are

captured by the full vertical and horizontal similarity category when they are

present in all family members and remained untouched in the next versions

of each member. Finally, elements are captured by the partial vertical and

horizontal similarity category if they are present in a particular number of

program family versions based on a given threshold α, as described in Formula

5-2. This threshold comprises the minimum number of program family versions

in which elements should take part to be classified as partial. The definition

of the threshold for the partial vertical and horizontal similarity category is

useful as developers may want to analyse specific members of the program

family (i.e. a subset of program family versions). In addition, this threshold

is also useful as depending on the analysed family, this value should vary to

achieve a good accuracy regarding the captured elements.

Figure 5.6 illustrates an example of code elements that comprise the

full vertical and horizontal similarity category. Considering the first three

applications of the program family in Figure 5.6. For each application’s version

there are the feature mappings, which contain the features and their respective

code elements. When analysing the evolution of the original code elements in

feature mappings of each application version, we can observe that the m1()

method, that realizes the feature F1, is present and untouched in all the N

versions of the three family applications. Once the elements are detected as

common elements of a particular feature, REC suggests them to be part of the

new common elements of the recovered program family’s core. Figure 5.6 also

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 5. Recovery Heuristics of Feature Elements 119

illustrates an example of code elements detected by the partial vertical and

horizontal similarity category. For instance, let’s suppose that it is defined a α

= 5 (versions). This means that the elements must be present in at least five

versions to be detected by the partial vertical and horizontal similarity category

(REC(fe) > 5). Note that the methods m2() and m3() were included to realize

the feature F1 in versions 2 and 3 of Applications 1, 2 and 3, respectively. These

methods (m2() and m3()) are suggested to be part of the common elements

of the analysed feature in the recovered program family. This occurs because

they exist in more than five versions of the program family.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

...

...

...

...

2 3 4 N1

2

3

N

1

A
p
p
lic

a
ti
o
n
s

Versions

Feature F1
class A
m1()
...

Feature F1
class A
m1()
...

Feature F1
class A
m1()
...

Feature F1
class A
m1()

...
âm2()

Feature F1
class A
m1()

...
âm2()

Feature F1
class A
m1()

...
âm2()

Feature F1
class A
m1()
m2()
...

Feature F1
class A
m1()
m2()

...
âm3()

Feature F1
class A
m1()

...

m2()
â

â

â

m3()
class C
mc1()

Feature F1
class A
m1()
m2()
...

Feature F1
class A
m1()
m2()
m3()
...

Feature F1
class A
m1()
m3()
class C
mc1()
...

Feature F1
class A
m1()
m2()
...

Feature F1
class A
m1()
m2()
m3()
...

Feature F1
class A
m1()
~m3()

mc2()

class C

...

mc1()
â

Feature F1
class A
m1()
...

Feature F1
class A
m1()

...
m2()

Feature F1
class A
m1()

...

m2()
âm3()

Feature F1
class A
m1()
m3()
class C
mc1()
...

Feature F1
class A
m1()
m3()
class C
mc1()
...

Legend: New Code Elements
Removed Code Elements

â Feature Mappings

Modified Code Elements~

Figure 5.6: Feature Mappings of a Program Family.

Concrete Example. The heuristic REC is also described through

concrete examples presented in Chapter 1 (Figures 1.2 and 1.3). The goal is to

discuss how challenging the recovery tends to be to the developers when they

need to classify precisely the code elements realizing the evolving common and

variable features. Figure 1.2 illustrates the ExportDialog class in Applications

I and II. We can observe that the ExportDialog class was modified in

Application II. However, the exportToXls() method in the ExportDialog

class has not been modified. This way, this method, that realizes the Report

feature, is identified by the heuristic REC as being of the full vertical and

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 5. Recovery Heuristics of Feature Elements 120

horizontal similarity category. Figure 1.2 illustrates a concrete example of the

partial vertical and horizontal similarity category, where the feature Scenario

was introduced in the framework code from a family application version. It

is important to mention how cumbersome the identification and classification

of the code elements of an evolving feature in program families. In particular,

this difficult tends to be even more exacerbated due to degenerate nature of

program families.

5.2.2

Recovering Variable Elements

Strategy and Rationale. The second heuristic, named RVE (Recov-

ering Variable Elements), is responsible for classifying variable code elements

that realize the features. The key characteristic that distinguishes variable el-

ements from common ones is the following: they represent code elements that

are modified or removed in the next versions of a family member after they

were included in a given version of this member. Therefore, they are not present

in the entire horizontal and vertical histories. Hence, RVE captures code el-

ements of a feature that were modified or removed along the family history,

exactly the opposite of REC. The idea of this heuristic is to observe the vari-

able elements when analysing the horizontal history of each family member. It

is important to mention that REC is first run, and consequently, it has priority

over RVE. In this case, a given element is only captured by one heuristic. The

same element is not captured by both heuristics. We did this choice in order

to prioritize the code elements that can be shared by all the family members.

The rationale of this heuristic is contrary to the partial vertical and

horizontal similarity category, which analyses the common elements taking

part of the other family members. For instance, these variable elements might

have been added in a family member version to implement new requirements of

an existing feature (Figure 1.2 in Section 1.1.2). After that, they were changed

or removed in the next versions of the same family member with the goal

of customizing specific versions. The idea behind this heuristic is to analyse

the elements of a feature and observe their changes throughout the horizontal

histories of the family members. We defined two categories to find variable

elements of a feature: horizontal variability and vertical variability.

Horizontal Variability. This category captures code elements that were

included to realize an existing feature in any horizontal point of a given family

member but they do not participate in its entire horizontal history. This occurs

because these elements were possibly modified or removed in the next versions

of the family member. For this reason, this category is different from the full

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 5. Recovery Heuristics of Feature Elements 121

horizontal similarity category (Section 1.1.2), which captures elements that

remained untouched during the entire horizontal history of a family member.

Figure 5.7 illustrates this category by pointing out a feature element that was

introduced in version version 2 of Application A and modified in version N.

Horizontal History

Application A

Application N � � �

�

Version 2 Version N

Vertical History

� � �

�

� � �

�

Members of the Program Family

Legend:

Version 1

Added Feature element

Changed Feature element

Figure 5.7: Illustrative Example of Horizontal Variability.

Vertical Variability. This category captures code elements of a feature

that are present in a few family members. In other words, they do not

participant in the entire vertical history of the program family. These elements

were introduced at one specific horizontal point of a family member but were

not consistently included in all the family members. This occurs because these

code elements were removed or modified across all the family members. This

category is fundamentally different from the full vertical similarity category

that captures common elements that participate in the vertical history of the

family (Section 1.1.2). Figure 5.8 illustrates this category by showing a feature

element included in version 2 of Application A and that was modified in version

2 of Application N.

Horizontal History

Application A

Application N � � �

�

Version 2 Version N

Vertical History

� � �

�

� � �

�

Members of the Program Family

Legend:

Version 1

Added Feature element

Changed Feature element

Figure 5.8: Illustrative Example of Vertical Variability.

Formalization and Example. The formal definition of RVE is pre-

sented in Formula 5-3. The formalization of RVE is defined if there is a given

code element that belongs to the current version of the feature mapping (j)

but it does not belong to the previous one (j-1) or to the next one (j+1). In

other words, this element is not present in the entire horizontal history of the

members and vertical history of the program family.

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 5. Recovery Heuristics of Feature Elements 122

RV E(fe) =

n⋃

i=1

v⋃

j=1

{∃ie ∈ FMij(fe)·(ie /∈ FMij−1(fe) ∨ie /∈ FMij+1(fe))} (5-3)

Figure 5.6 illustrates an example of code elements classified as variable

elements of a feature. For instance, let’s consider Applications 1, 2 and 3 in

Figure 5.6, respectively. Note that in version 3 of the Application 2 the C

class and the mc1() method were included. In version N of Application 2,

the mc1() method was removed and the mc2() method was included within

the C class. In this example, the mc1() and mc2() methods are captured by

the horizontal variability and vertical variability categories, respectively. It

is possible to observe that variable elements of a feature take part of some

versions of a family application but they are not present in its entire horizontal

history. Therefore, RVE is able to detect the variable elements of the features

by analysing the changes and removals of such elements during the evolution

of family applications. After that, it suggests these elements to be part of the

feature variable code of the recovered program family.

Concrete Example. Figure 1.2 (Chapter 1) illustrates how the fea-

ture Report was changed to include the XLSFilter internal class in the

ExportDialog class in a specific version of Application II (Section 1.1.2). This

internal class is identified by the heuristic RVE as it is present in a specific

version of Application II, which characterizes a vertical variability. In this case,

RVE captures this internal class and suggests it to be part of the variable el-

ements of the feature Report. The more family applications and their many

versions in a degenerated program family, the more difficult is for the devel-

opers to classify the variable elements that realize the features.

The result generated by both heuristics REC and RVE is a Java project

with two macro packages labeled common and variable, as illustrated in Fig-

ure 5.9. These two macro packages represent the classification of the features.

The feature is classified as common if it exists in all the mappings. Other-

wise, it is classified as variable. The feature F1, illustrated in Figure 5.6, is

classified as common. There are also sub-packages defined by the heuristics.

Then, the heuristics analyse the code elements of each feature and include

them in the respective packages: common.fullvh.F1 (full vertical and horizon-

tal similarity), common.partialvh.F1 (partial vertical and horizontal similar-

ity), common.vvariability.F1 (vertical variability) and common.hvariability.F1

(horizontal variability). We can observe that the code elements included in the

Java project are classified and grouped according to the categories proposed

by the recovery heuristics REC and RVE (Figure 5.9).

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 5. Recovery Heuristics of Feature Elements 123

RecoveredProgramFamily

src
common.fullvh.F1

A.java

m1()

common.hvariability.F1
C.java

mC1()

common.partialvh.F1

A.java

m2()

m3()

common.vvariability.F1

C.java
mC2()

Figure 5.9: Java Project of the Recovered Program Family.

5.3

Algorithm Solution and Implementation

This section describes the algorithm solution used by the recovery

heuristics and their implementation. Code 7 describes the main algorithm,

which encompasses three key parts.

1. Analyse the mappings. First of all, the feature mappings of all the

members’ versions of the program family are used as input information in

the recovery process (line 01). These feature mappings are produced for

all the versions of the family members by using the mapping expansion

heuristics (Chapter 4). The feature mappings could be produced by

other feature mapping techniques (Section 2.2). For each feature of a

given family member, it is verified in how many versions the feature’s

code elements appear. The implementation elements are analysed in

detail, including their signature and their body; i.e., through a syntactic

comparison. The goal is to verify if they are the same during the

program family evolution. For each element, it is computed the number of

versions that this element is included. This analysis is performed for each

family member’s history through the processing of the feature mappings.

After that, all the elements are stored in a hash table (line 01). Each

entry in the table contains a pair formed by the feature name and the

corresponding list of code elements that realize it through the history of

each family member;

2. Calculate the occurrence rate. The occurrence rate of each imple-

mentation element contained in hashApps (line 01) is verified by the

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 5. Recovery Heuristics of Feature Elements 124

verifyOccurrences(element) method (line 04). Based on the occur-

rence rate of the elements, they are separated and included in a list

maintained by each heuristic and its respective categories (line 05);

3. Detect the elements and create the recovered project of the

program family. The last step is to compare the lists of the family

members in order to classify the elements according to the categories

defined by each heuristic (line 08). This comparison is performed by

verifying the untouched elements and their occurrence rate in the lists.

The features are also classified as variable or common. Finally, the Java

project is created and the elements are added to it. Packages are labeled

with the names of the categories (Figure 5.9) and the respective elements

realizing each feature are added to each category (line 09).

The forward recovery was implemented as an extension of the MapHist

architecture as illustrated in Step 5 in Figure 5.10 (Chapter 4). This was

possible as the recovery heuristics rely on the expanded feature mappings of

the program family generated by the mapping heuristics (Chapter 4).

Algorithm 7 Main Algorithm of the Forward Recovery
1. hashApps⇐ analyseMappings()
2. for feature in hashApps do

3. for element in hashApps do

4. verifyOccurrences(element)
5. setElements(element)
6. end for

7. end for

8. compareLists()
9. generateRecoveredProject()

Eclipse Platform

Seed Mappings

Mapping

Collector

Mapping Expansion

Heuristics

Step 2

Step 1

Application A

Version 1 Version N

� � �

�

� � �

�

Application B

Step 3

Generation

of Mappings

MapHist

Applications

Mapping

Input

Comparison of

the Versions

Step 4

Compare

Recovery

Heuristics

Step 5

Members of the Program Family

Expanded

Feature

Mappings

Output

Forward

Recovery

Figure 5.10: The Forward Recovery Implementation.

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 5. Recovery Heuristics of Feature Elements 125

5.4

Assessment Methodology

This section describes the evaluation procedure of the recovery heuristics

regarding both OC and RAWeb program families (Section 4.6.1). This section

describes the industrial program families used in the evaluation. It also

describes the procedures for evaluating the recovery heuristics. The evaluation

focuses on both (i) the accuracy of the recovery heuristics in terms of precision

and recall measures and (ii) examples of how the developers can use the

classification of heuristics-based features’ code elements to restructure the

program family’ code. Five main procedures were followed to assess the

recovery heuristics:

1. Seed Mappings. The feature mappings are provided as input to the

recovery of the program family. In order to expand the feature mappings

developers need to provide seed mappings as input to the MapHist

tool, which supports the mapping expansion heuristics (Chapter 4). As

explained in Chapter 4, the seed mappings are used as basis to the

mapping expansion (Step 2);

2. Expansion of Feature Mappings. The expansion of the feature

mappings is realised in this step. Feature mapping expansion involves

the automatic identification of feature elements in the code departing

from the seed mappings (Step 1). As mentioned in Chapter 4, the

mapping heuristics take into consideration the provided seed mappings

and produce the feature mappings of each version of the family members.

We discuss the implications of the feature mapping imperfections in the

accuracy of the recovery heuristics (Section 5.5);

3. Forward Recovery Heuristics. We run the recovery heuristics (Sec-

tion 5.2) in order to classify the features’ code elements of the selected

program families. At the end of the recovery process, a Java project

is created with packages identifying: (i) the classification of each feature

(common or variable), and (i) the classification of its code elements based

on the categories defined by the recovery heuristics (Sections 5.2.1 and

5.2.2);

4. Evaluation of the Results. The Java project, which represents the re-

covered program family, was double-checked with the developer respon-

sible for producing the seed mappings of both program families. Two

developers analysed the recovered project of the OC program family and

one developer analysed RAWeb. The goal was to evaluate the accuracy

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 5. Recovery Heuristics of Feature Elements 126

of the identified code elements realizing the respective features (Section

4.6.1). To perform this evaluation, we provided developers with the list

of recovered elements per feature and asked them to analyse their cor-

rectness. The developers analysed the recovered features’ code elements

based on their history throughout the program family. Also, they used

their experience and knowledge of the program families’ source code to

identify the missed elements of a feature. For instance, a recovered ele-

ment was observed for all the family members in order to check if it was

present in all of them or was modified in any version of the family mem-

bers. In this way, developers were able to verify the correct and missed

elements comprising the features of each category;

5. Accuracy of the Forward Recovery Heuristics. After the develop-

ers assessed the recovered features’ code, the accuracy of the recovery

heuristics was measured by calculating recall and precision of each cat-

egory per feature. The purpose of recall measures is to verify for each

category if the heuristics are able to classify all the code elements of

each feature. We focused on the presentation of results for the following

categories: full vertical and horizontal similarity (F), partial vertical and

horizontal similarity (Pt), and horizontal and vertical variability (V).

The purpose of precision is to verify if the heuristics are able to classify

only the code elements that realize a feature based on the aforementioned

categories.

5.5

Discussion

The goal of this section is to discuss the precision and recall measures

of the recovery heuristics. This enabled us to analyse their accuracy during

the recovery process. The results are presented individually for each feature.

We also discuss how the classifications are useful for the family developers to

understand the family evolution and make certain decisions. Before running the

recovery heuristics, we set the threshold for the partial vertical and horizontal

similarity category. In the case of the OC program family, we defined α =

10, REC(fe) > 10 whereas for the RAWeb we defined (α) = 7, REC(fe) > 7.

These thresholds were chosen to capture half of selected versions of the program

families. We made this choice as they are closely related to the explanation

described in Section 5.2.1 to classify potential common elements present in

the program family history. However, optimal values for the thresholds may

obviously vary depending on the set of chosen members and versions (Section

5.7).

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 5. Recovery Heuristics of Feature Elements 127

Figure 5.11: Precision (P) and Recall (R) of the Full (F), Partial (Pt), and
Variable (V) Categories.

The forward recovery classifies and includes all the code elements that

contribute to the realization of a given feature. First of all, the features

were classified into common or variable (Sections 5.2.1 and 5.2.2). Then, the

elements are further classified into the aforementioned categories (F, Pt or

V) being assessed. Figure 5.11 shows the recovery results of each feature

regarding the number of identified elements, the recall measures based on each

category (F, Pt and V), and the overall precision measure of the categories.

The identified elements refer to attributes and methods of the program

families’ classes. The common features in OC are Route, Logger, Notification,

Persistence, Report, Export. The variable features are Stock and Importation.

In RAWeb, the common features are Dynamic Forms, Dynamic Tables, Search

Data, Persistence and Report ; and the variable one is Import Image.

Feature Recovery Accuracy. The heuristics have demonstrated to

be accurate when recovering either non-functional (crosscutting) features or

functional features. We can observe that the recall measures ranged from

92% to 100%. For instance, the lowest values of the horizontal and vertical

variability category are related to the features Route and Dynamic Forms.

On the other hand, for the other features, the recall measures for detecting

the variable elements were 100%. The variable code is easier to detect because

they have explicit dependencies to classes present in the base code. In addition,

these classes generally had already been previously recovered in the context

of categories F and Pt. This scenario can be observed through the example

illustrated in Figure 1.2 (Chapter 1), where the method exportToXls() in the

ExportDialog class was captured by the full vertical and horizontal similarity

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 5. Recovery Heuristics of Feature Elements 128

category (F). Consequently, the heuristic RVE is able to observe that the

ExportDialog class was modified and, hence, classify the modifications (e.g.

the internal XLSFilter class in Figure 1.2) as variable elements. Even though

the recall measures were not 100% for all the features, they have presented

high accuracy in the recovery of feature code. Therefore, it seems that our

proposal for forward recovery provides developers with a reasonably-reliable

way to understand the program family evolution (Section 5.2).

Vertical and Horizontal Variability. The precision measures were

higher than 90% in 10 out of 13 features. More specifically, for the variable

features Stock, Importation and Import Image the heuristics successfully

classified and identified all the code elements as variable elements. Additionally,

the recall measures were also high for this category of variable features. In

particular, these features are present in only two members of the family.

Their elements were only evolved in these family members and thus they

remained correctly classified as vertical and horizontal variability throughout

the program family evolution. As a result, there were not elements that

emerged during the program family evolution and modified the essence of these

variable features.

Full and Partial Vertical and Horizontal Similarities. Regarding

the precision measures of the common features, the results ranged from 71%

to 99%. The lowest values are related to the features Logger, Route, Dynamic

Tables. This means that a set of elements were detected, but they do not

precisely realize these respective features. It is possible to notice that there

were elements identified by the categories F, Pt and V that realize the features

Logger and Dynamic Tables. We could observe that most of the cases of code

elements identified and captured by the full vertical and horizontal similarity

category (F) refer typically to the interfaces and abstract methods that are

specialized by the family applications.

For instance, the entire PersistenceManagement interface is entirely

dedicated to realize the feature Persistence in Code 5.1 and, therefore, it is clas-

sified as (F). This interface remained untouched since the beginning of the pro-

gram family history. For some cases, interfaces like PersistenceManagement

realizing the features are untouched throughout the vertical and horizontal his-

tories of the program family. Therefore, the PersistenceManagement interface

is included in the package named common.fullvh.persistence. This category (F)

helps developers: (i) to understand which code elements have been originally

used for all the family members and (ii) to implement separately the code

elements like the PersistenceManagement interface as being part of the new

family core code. On the other hand, we also observed cases where interfaces

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 5. Recovery Heuristics of Feature Elements 129

and abstract classes are redefined typically to change the return type or the

implementation of concrete methods. As a result, these elements turn into

partial (Pt) or variable elements (V). Therefore, the categories (F, Pt and V)

provide insights to the developers of which elements should be restructured as

potential common or variable elements in the family’s source code.

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 5. Recovery Heuristics of Feature Elements 130

Code 5.1: Full Common Code (F) of the feature Persistence.

01 public interface PersistenceManagement {

02 void begin () ;

03 void open () ;

04 void commit () ;

05 void c l o s e () ;

06 . . .

07 }

Feature Code of Specific Member Versions. It is related to the

common code that was modified for specific versions of a family member. For

instance, all the detected elements realizing the feature Route were classified

as full (F) and variable (V). We noticed that most of the elements classified

as (F) are implemented in the framework code and they are massively used

for only one family member. The implementation of the feature Route reflects

the same scenario illustrated in Figure 1.3 (Chapter 1). In this scenario, there

are classes in the framework code that are used exclusively for one family

member. Another example is related to the feature Export, where some common

elements were changed by specific versions of the family applications and

turned into variable elements (V). This scenario reflects the same problem

illustrated in Figure 1.2 (Chapter 1), where the common element is modified

for accommodating a new requirement in a family application.

5.6

Usefulness of the Proposed Categories

This section discusses how the categories of the recovery heuristics

can play an important role in the developers’ decision making during the

restructuring process of the program family’s source code.

The full vertical and horizontal similarity category is useful to help de-

velopers observe and understand the implementation elements that remained

untouched during the program family’s history. For instance, Code 5.2 illus-

trates a piece of code that realizes the feature Dynamic Forms in RAWeb

program family. Developers can use such an information to make sure of which

elements should be present in the new program family’s core during the restruc-

turing of its source code. Therefore, the full vertical and horizontal similarity

category positively influences the quality and accuracy of the restructuring of

the program family’s source code. This occurs because the proposed recovery

heuristics support a systematic analysis of the program family’s evolution and

add more value to the maintenance tasks.

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 5. Recovery Heuristics of Feature Elements 131

Code 5.2: Full Common Code (F) of the feature Dynamic Forms.

01 public class Atr ibutoHelper {

02 public Atributo getAtributoById (Sess ion , id) {

03 . . .

04 }

05

06 public L i s t getAtr ibutoByClasse (Sess ion , S t r ing id) {

07 . . .

08 }

09 }

The full vertical similarity category is useful to help developers know

which elements fully participate in the program family’s vertical history. This

category provides developers with an information about the implementation

elements shared at any horizontal point by all family members. Developers

can also use this potential classification with the goal of restructuring the

detected implementation elements as being part of the new program family’s

core. On the other hand, the full horizontal similarity category represents

a complete and thorough investigation of the code elements involved in the

horizontal history of a family member. This category helps the developers

understand mainly the potential implementation elements that realize the

variable features and remained untouched across the entire horizontal history

of a family member. As a result, developers are able to better restructure the

variable features of the program family as long as the value of detailed analysis

of each member is systematically demonstrated the full horizontal similarity

category.

The partial vertical and horizontal similarity category provides develop-

ers with a way to analyse a set of versions of the program family. Based on

this category, developers can decide if they will consider those implementation

elements as being part of the program family’s core or variable. For instance,

Code 5.3 shows a piece of the PdfReport class, which realizes the feature Re-

port. This class was detected by the partial category according to the threshold

(α) = 7 for the RAWeb program family (Section 5.5). This category allows de-

velopers focus on parts of the program family in order to make decisions about

the restructuring of the implementation elements.

Code 5.3: Partial Common Code (F) of the feature Report.

01 public abstract class PdfReport {

02 . . .

03 public abstract boolean exportPdf () ;

04 protected abstract boolean i n i tVa lu e s () ;

05 protected abstract Map<Integer , L i s t<PdfPCell>> getHeaderMap () ;

06 . . .

07

}

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 5. Recovery Heuristics of Feature Elements 132

The horizontal variability and vertical variability categories detect the

implementation elements that are not present in the entire horizontal and

vertical histories of the program family. These elements are classified as

horizontal or vertical variability because they were only realize a given feature

in a specific family member version. For instance, Code 5.4 illustrates a piece of

the PersistenceHelper class, which is present in one member of the RAWeb

family. These categories show positive effects on how developers can restructure

the variability of the family’s features.

Code 5.4: Horizontal Variability Code (F) of the feature Persistence.

01 public class Per s i s t enc eHe lpe r {

02 importaAtr ibuto () ;

03 importaRelacionamento () ;

04 . . .

05 }

5.7

Threats to Validity

This section discusses the threats to validity of our evaluation.

Conclusion Validity. We identified two threats in this category: (i)

the set of selected members and their versions: our recovery process is largely

dependent on the selected sample of members and versions. To mitigate this

threat, we tried to select members and versions that underwent a large number

of changes and defined thresholds to better characterize the classification of

features’ code elements; (ii) the selected features: it is related to the set of

features selected in our assessment. If they were not representative of different

types of features, they could bias the results of the heuristics evaluation. To

mitigate this threat, we selected a wide range of features, such as functional

features (e.g. Notification and Dynamic Forms) and non-functional features

(e.g. Logger and Persistence). These features were also chosen because they

are critical in the domain of the selected program families; (iii) validation of

the feature’s code elements: it refers to the validation of the code elements

identified by the heuristics. To circumvent this threat, we validate the results

with the developers who are responsible for maintaining and evolving the

selected program families; and finally (iv) the use of threshold: it is related

to the use of threshold to detect code elements associated with the partial

vertical and horizontal similarity category. We set the thresholds to represent

the half of the versions in both program families. This is a threat as the results

can vary depending on the chosen values of the thresholds.

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 5. Recovery Heuristics of Feature Elements 133

Construct Validity. We identified two main threats in this category:

(i) seed mappings: it refers to the seed mappings, which were used in our

recovery process. In order to make the seeds provision realistic, we ensured that

the seed mappings had a low coverage degree, ranging from 15% to 20% per

feature (Chapter 4). We also mitigated this threat as we involved developers

who are knowledgeable about the features’ code elements; and (ii) feature

mappings: it is related to the feature mappings of each member version used by

the recovery heuristics. The accuracy of these mappings can directly influence

the results of the recovery heuristics. However, to the best of our knowledge,

we have relied on mapping expansion heuristics that exploit feature mapping

techniques (Chapter 2). In addition, they have presented high precision and

coverage measures for the expanded feature mappings (Chapter 4). Even in the

presence of imperfect feature mappings, our recovery heuristics have shown to

be highly accurate for most features (Section 5.5).

Internal and External Validity. The threat identified for the internal

validity is related to the history of the evaluated program families. To reduce

this threat, we chose two industrial program families, OC and RAWeb (Section

4.6.1), that have been extensively maintained over time. One threat to external

validity was also identified and it is related to the choice and representativeness

of the program families. To reduce this threat we selected program families

that consist of several evolving members and have a noticeable complexity and

significant size. This allowed us to better evaluate the accuracy of the proposed

heuristics. However, other program families have to be evaluated in the future

in order to provide more evidences about the accuracy of the heuristics.

5.8

Summary

The program family evolution often implies on the inclusion of new

features’ code elements, changes in existing ones and removals. When such

changes are carried out in an uncontrolled manner, the program family

source code tends to degenerate and affects important quality attributes (e.g.

maintainability). As a consequence, the family members become difficult to

be maintained and evolved. In particular, this occurs mainly because it is

not trivial to identify and classify what code elements realize each feature in

each family member. In this context, this chapter presented history-sensitive

heuristics for the forward recovery of features in code of evolving program

families (Section 5.2). They explore the multi-dimensional historical analysis

through a set of feature mappings (Section 5.1). As a result, these heuristics

generate a Java project of the new recovered program family that can be used

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 5. Recovery Heuristics of Feature Elements 134

as basis by the developers, for instance, to implement the code refactoring of

the program family. In this Java project, features are classified as common or

variable and grouped in two macro packages. Within these macro packages

there are sub-packages, which contain the code elements that realize each

feature. Developers can easily from this recovered project to understand and

restructure the features’ implementation elements according to the categories

defined by the recovery heuristics (Sections 5.2.1 and 5.2.2).

To the best of our knowledge, the forward recovery described in this

chapter is the first attempt of supporting a specific facet of family recovery:

the classification of feature variability in degenerate program families when

considering its multi-dimensional history analysis. It is also the first attempt

of recovery in the context of degenerate program families when considering

its multi-dimensional history analysis. We successfully assessed our recovery

heuristics on the top of two industrial program families (Section 5.5). The good

results demonstrated the accuracy of the heuristics to classify the features’

elements. They presented recall measures that ranged 85% to 100%; whereas

the precision measures ranged from 71% to 99%.

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

