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Mapping Expansion Heuristics

As discussed in Chapters 2 and 3, the feature mapping activity is one of

the critical factors to maintain and evolve software systems successfully. The

feature mappings are especially important when developers have to evolve or

maintain program families (Chapter 3). However, many factors make feature

mapping in evolving program families much harder than in single applications.

First, the feature mappings performed by developers or conventional mapping

tools may contain undesirable mismatches (Chapter 3). Second, program

families often depart from a framework and evolve to different systems to

accommodate various customer-specific requirements (Weiss and Lai 1999).

Therefore, the feature mapping of the original system may have been changed

for each family member. This tends to occur when the realization of the same

feature evolved differently for each family member (Chapter 1). Consequently,

it is primordial that developers identify and contrast the different feature

mappings in each family member; they need to fully understand when and

where the sets of implementation elements for each family feature start to

diverge across the change history of family members. Third, the feature

mappings per family member should be produced with high accuracy i.e., the

feature mappings should contain the minimum number of mismatches or in a

better case not contain them.

Chapter 2 presented many techniques and tools to assist developers in

feature mapping activity. However, most of them only take into consideration

each individual version of a single program; the change histories of those single

applications are simply discarded. They do not consider how the realizations

of the features have evolved over time in a program family. These existing

techniques are limited because they provide developers with the knowledge of

the implementation elements without considering the differences between the

family members.

This chapter describes a cohesive suite of five heuristics that aim at ex-

panding feature mappings in evolving program families. This chapter answers

the second and fourth research questions of this thesis (RQ2 and RQ4 in Sec-

tion 1.3). The mapping heuristics rely on the previously defined list of mapping

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA



Chapter 4. Mapping Expansion Heuristics 67

mismatches (Chapter 3). The mapping expansion refers to the action of auto-

matically generating the feature mappings for each family member version by

systematically considering its previous change history. Section 4.1 motivates

the feature mapping expansion problem in evolving program families through

a concrete example. Section 4.2 compares the idea and goal of the mapping

expansion heuristics with closest related work. Section 4.3 discusses a heuris-

tic method that takes into consideration the program family’s change history.

The suite of the mapping heuristics is described and formalized in Section 4.4.

Section 4.5 presents the MapHist tool, that supports the use of the proposed

heuristics. Section 4.6 shows the evaluation results of the mapping heuristics

by means of two evolving program families. Section 4.7 identifies the threats

to validity of this evaluation. The mappings generated by the proposed heuris-

tics play a key role in a variety of maintenance tasks involving the evolving

program family’s source code. For this reason, Section 4.8 describes how the

mapping heuristics were integrated with a visualization tool in order to assist

developers in these tasks through graphical perspectives. Finally, Section 4.9

summarizes the chapter.

4.1

Motivating Example

Figure 4.1 illustrates how the feature mapping is performed when using

conventional techniques for evolving applications (Chapter 2). This example

is based on the OC program family that is used in the evaluation process of

the heuristics (Section 4.6.1). For the sake of simplification, we selected two

family applications, Application I and II and two of their versions. Figure

4.1 shows a piece of code of the feature Scenario in Applications I and

II (Section 3.1.1). This figure illustrates the evolution of the MainDesktop

class in versions 1 and 2 of Applications I and II. In the first versions of

Applications I and II the developer mapped the checkUnsavedScenarium()

method as being responsible for realizing the feature Scenario (see Feature

Mapping - Version 1 of Applications I and II in the right side of Figure

4.1). However, the class attribute named scenarioInfo has not been mapped

to the feature Scenario, which characterizes a mismatch (false negative) in

feature mapping. Additionally, this happens because developers tend to focus

mainly on the behavior implemented by classes and methods (Chapter 3).

In the second version of Application I, the MainDesktop class was modified to

extend a class named BasicDesktop, which has not been mapped to the feature

Scenario. In addition to this change, in the second version of Application II,

the propertiesAction attribute and the changeDesktop() method are added
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to the MainDesktop class.

01              MainDesktop         BasicDesktop {

02           Map scenarioInfo;

03           boolean checkUnsavedScenario() {

04   user = Client.getInstance().getUser();

05      (ScenarioInfo info:scenarioInfo.values()) {

06      ...

07   }

08          false;

09   }

10

public class             extends

private

private

for

return

}

01              MainDesktop {

02           Map scenarioInfo;

03           boolean checkUnsavedScenario() {

04   user = Client.getInstance().getUser();

05      (ScenarioInfo info:scenarioInfo.values()){

06      ...

07   }

08          false;

09   }

10

public class

private

private

for

return

}

Application I - Version 1

Application I - Version 2

FN

IM

Scenario

class MainDesktop

checkUnsavedScenario()

scenarioInfo

FN

IM

Scenario

class

class

MainDesktop

scenarioInfo

checkUnsavedScenario()

BasicDesktop

Feature Mapping - Version 1

Feature Mapping - Version 2

Previous Mapping is
used in the mapping

expansion  process

01              MainDesktop {

02           Map scenarioInfo;

03           boolean checkUnsavedScenario() {

04   user = Client.getInstance().getUser();

05      (ScenarioInfo info:scenarioInfo.values()){

06      ...

07   }

08          false;

09   }

10

public class

private

private

for

return

}

Application II - Version 1

Application II - Version 2

FN

IM

Scenario

class MainDesktop

checkUnsavedScenario()

scenarioInfo

FN

IM

Scenario

class

class

MainDesktop

scenarioInfo

checkUnsavedScenario()

propertiesAction

changeDesktop(..)

BasicDesktop

Feature Mapping - Version 1

Feature Mapping - Version 2

Previous Mapping is
used in the mapping

expansion  process

_ elements included in mapping FN feature name IM implementation elementsmapping operation code not mapped

01              MainDesktop         BasicDesktop {

02           Map scenarioInfo;

04           boolean checkUnsavedScenario() {

05   user = Client.getInstance().getUser();

06      (ScenarioInfo info:scenarioInfo.values()){

07      ...

08   }

09          false;

10           void changeDesktop(ScenariumInfo){

11

12        (propertiesAction != null) {

13

14     }

15   }

16}

public class             extends

private

private

for

return

private

if

03           ScenariumAction propertiesAction;

...

...

private

Figure 4.1: Piece of Code of the Feature Scenario in Applications I and II.

Figure 4.1 shows how the described evolution scenarios may lead to

mapping mismatches in conventional feature mapping techniques. There are

two issues to be taken into consideration: (i) the occurrence of mapping

mismatches, such as the scenarioInfo and propertiesAction attributes and

the changeDesktop() method, and (ii) the evolution of the MainDesktop class

in different ways in Application I and II. The first issue is not addressed

by most of the feature mapping techniques. This occurs because they rely

on the interaction between developers and tools or the use, extension and

tuning of pre-existing test suites (Chapter 2). They assume that developers

should perform the mappings by themselves or should have available test

suites to exercise and map the features’ implementation elements (Section

2.2). However, these test suites are usually not accurate and do not provide
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a good level of coverage. As aforementioned, this problem can become even

more cumbersome when dealing with evolving program families. The second

issue refers to the different changes that the feature’s implementation elements

have undergone over time in the family members. Existing techniques do not

progressively consider the change history, the evolution of the MainDesktop

class from version 1 to version 2 in Applications I and II.

Even running existing tools that support the feature mapping activity

(Chapter 2) for every family application version, this leads to the production

of each feature mapping from scratch. These tools do not consider the previous

version of the feature mapping as the basis. Hence, this strategy is also likely

to be ineffective: elements identified in the previous feature mapping might be

missed in the new mapping. These mapping mismatches (i.e. false negatives)

can occur, for instance, due to minor, albeit typical, structural changes in the

current family application version. A few cases of recently-proposed techniques

consider the change history of a particular program to support the feature

mapping activity (Adams et al. 2010, Nguyen et al. 2011). However, they do

not incrementally analyse the change history of the features’ implementation

elements.

Feature mapping expansion involves the automatic identification of fea-

ture elements in the code. It is performed by analysing and comparing each

family application’s history in order to automatically produce the feature map-

pings for all the versions of the program family. The comparison between the

versions needs to be performed in order to find out what implementation el-

ements were removed, added or modified when analysing the family applica-

tions’ history (Doar 2007, Kawrykow and Robillard 2011).

As aforementioned, the expansion process should analyse the change

history of the family applications in order to generate the feature mappings

and reduce their mismatches. According to the example illustrated in Figure

4.1, the mapping expansion process includes the scenarioInfo attribute in

feature mapping (see Feature Mapping - Version 1 of Applications I and

II ). The previous feature mapping (Version 1), the list of changes and the

source code of the version are used to generate the feature mapping of the

subsequent version (Version 2). The MainDesktop class, which has already

been mapped, was modified to extend a class named BasicDesktop and new

attributes and methods were added to it. The expansion process considers

these changes in order to automatically generate the mappings of the different

applications’ versions. The expansion process includes the BasicDesktop class

(see Feature Mapping - Version 2 of Applications I and II ). The BasicDesktop

class also realizes the feature Scenario as it contains methods that are used
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in the MainDesktop class. Additionally, it includes the propertiesAction

attribute and the changeDesktop() method (see Feature Mapping - Version

2 of Applications II ). In this way, the mapping expansion process is able to

deal with missing and incorrect elements mapped to a feature in an evolving

program family when using conventional feature mapping techniques (Chapter

2).

4.2

Existing Limitations on Feature Mapping Expansion

This section aims at revisiting related work discussed in previous chapters

with the goal of emphasizing their limitations on feature mapping expansion.

We categorize related work into two groups: feature mapping techniques (Sec-

tion 4.2.1) and approaches that explore the source code history (Section 4.2.2).

None of related work discussed below explicitly support feature mappings in

evolving program families. Nevertheless, we also highlight other relevant as-

pects that distinguish or complement our mapping expansion heuristics with

respect to existing work.

4.2.1

Feature Mapping Techniques

As aforementioned in Section 2.2, there are many techniques and tools

that support the feature mapping activity. However, all these existing tech-

niques do not consider the knowledge of the program family’s change history

in order to observe how the features’ implementation elements and their re-

lationships have evolved over time. Even though it is possible to run these

existing tools for each application version individually, the influence of a fea-

ture mapping in a particular version of the family member can lead to other

potential elements being missed or incorrectly detected in future versions of the

same member. This means that feature mappings in evolving program fami-

lies are more sensitive to mismatches (Chapter 3). Our mapping heuristics

have the goal of expanding feature mappings in evolving program families by

explicitly taking into consideration the program family’s change history, and

consequently reducing the number of potential missing and incorrect elements

mapped to the features.

4.2.2

Source Code History

As presented in Section 2.4, some research work has explored the code

history for identifying crosscutting features (Breu and Zimmermann 2006,
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Adams et al. 2010, Nguyen et al. 2011). Adams et al. (Adams et al. 2010) pre-

sented a feature identification technique named COMMIT. This technique has

shown to be more effective only to identify non-functional crosscutting features.

A crosscutting feature is characterized in (Adams et al. 2010) as a feature in

which its implementation is scattered across multiple modules. This means that

the implementation of a crosscutting feature is not modular and cuts across

the boundaries of many classes and methods. However, many other features of

a program family are often domain-specific and do not exert a widely-scoped

crosscutting impact on the modular structure (Figueiredo et al. 2008).

Nguyen et al. (Nguyen et al. 2011) proposed a tool, so-called XScan, for

identifying, ranking, and recommending concern containers. Concern contain-

ers are defined as code units sharing a crosscutting feature. This tool identi-

fies and recommends top-ranked groups of code units that share crosscutting

features in both evolving (non-)aspect-oriented programs. These groups are

detected based on the similarity of interaction contexts related to two or more

method calls. This work only analyses non-functional crosscutting features,

which are also defined as not modular and scattered across multiple modules

in the application. Breu and Zimmermann (Breu and Zimmermann 2006) in-

troduced an aspect identification approach by analyzing how the fan-in number

changes over time. This technique has the same goal of the approach proposed

by Nguyen et al.

The similarities of these research work with ours are twofold: (i) they

evaluated their feature identification techniques in evolving systems, and (ii)

they identified implementation elements related to non-functional crosscutting

features. These techniques are complementary to ours. Nevertheless, our goal is

different as the proposed heuristics focus on the expansion of feature mappings

in evolving program families. The proposed mapping heuristics consider the

program families’ change history and, therefore, are able to observe how the

realizations of their features have evolved over time.

4.3

A Heuristic Method for Expanding Feature Mappings

This section provides an overview of the steps required for expanding

feature mappings. First, we describe the multi-dimensional historical analysis

adopted by all the mapping heuristics (Section 4.3.1). Second, the mapping

expansion heuristics are based on the knowledge of the mapping mismatches

described in Chapter 3. Finally, as the main goal of the heuristics is to expand

feature mappings in evolving program families, a comparison strategy between

the family versions is required. In particular, the process for expanding feature
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mappings entails a list of elements that were changed, included and removed

from one version to another. This list of changes is important to ensure that the

heuristics are able to detect and update the features’ implementation elements.

The comparison strategy and mapping expansion process are described in

Section 4.3.2.

4.3.1

Multi-dimensional History Analysis

The mapping expansion heuristics are based on a multi-dimensional his-

torical analysis illustrated in Figure 4.2. The analysis takes into consideration

both horizonal and vertical histories. The vertical history consists of a set of

applications that belong to a program family. It increases when new members

are developed from the program family core. The horizontal history refers to

the evolution of each family member; it consists of the implementation ele-

ments that realize each feature (feature code) across the versions of a family

member. These implementation elements have possibly been added, changed,

or even removed in some member versions. They are represented by classes,

methods and attributes in object-oriented systems. The vertical and horizon-

tal histories represent the family members developed in different time points

of the program family. The horizontal and vertical histories are similar to the

terminology already proposed by Krueger (Krueger 2002), which deals with

variation in both time and space.

For example, it considers a family application consisting of two versions

(Version 1 and Version 2). Now, let’s suppose that there are cases in Version 1

where a given feature is realized by one module. After that, this same module

in Version 2 is changed to realize an evolution task in the same feature. This

means that the feature was changed. This scenario is illustrated in Figure 4.2

where a feature was added in Version 1 (black box) and it was changed in

Version 2 (grey box). More importantly, the horizontal histories of the same

feature tend to be different across the family applications, as illustrated in

Figure 4.2. A concrete example illustrating the horizontal differences of the

feature Export across Applications I and II can be observed in Figure 1.2

(Section 1.1.2). This example shows the ExportDialog class in Application

I and how it was modified in Application II to implement a change related

to the feature Export. The mapping expansion heuristics rely on information

generated from these two dimensions of the historical analysis. Figure 4.3 shows

the methodology steps of the mapping expansion heuristics, and each of them

are described as follows:

1. Feature Selection. A list of features to be analysed is required. This list
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Horizontal History
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Figure 4.2: Multi-Dimensional History of a Program Family Evolution.
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Figure 4.3: Methodology of the Mapping Expansion Heuristics.

of features must belong to one or more family members. The developer

does not need to explicitly define if the chosen features are mandatory,

optional or alternative (Kang et al. 1990). They do not need either to

provide the feature relationships;

2. Seed Mappings. It is required to assign an initial set of elements

responsible for realizing each selected feature (Seed Mappings in Step 1).

The seed mapping is only required for the first version of each selected

family member. This means that only one mapping file is required.

Whether the developer selects features of many family members, it is

required to provide all seed mappings of each first family member version

as input;

3. Mapping Expansion Heuristics. The heuristics are responsible for
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expanding feature mappings through the family applications. The ex-

pansion of feature mappings implies on the detection of mismatches. To

this end, these heuristics use information about: (i) the seed mappings

(Step 2), and (ii) the family application history analysis as illustrated in

Figure 4.3.

The seed mappings are important in this expansion process because they

provide starting points so that the heuristics can generate feature mappings

with a high level of precision and recall. Nevertheless, the seed mappings can

have varied sizes. This means that developers can provide seed mappings, for

instance, with a set of three classes or more. This scenario is typically relevant

as developers might not know all the implementation elements realizing a

given feature in a family member. The reverse is also true: the presence of

an initial feature mapping will also guide the heuristics to perform the feature

mapping expansion. This is particularly important as different stakeholders

have different perceptions about the elements that should pertain (or not) to

the feature realization in the code. Additionally, the seed mappings might also

contain mismatches made by developers and feature mapping tools (Chapter

3).

4.3.2

Comparison Strategy and Mapping Expansion Process

The comparison between the versions of the family applications is essen-

tial to obtain information about their change history. This change history helps

to reduce the number of mismatches (Chapter 3) during the feature mapping

expansion (Step 3 in Section 4.3.1). This information is related to the list of

classes, methods and attributes that have been modified, added and removed

from one version to another. The adopted comparison strategy is based on se-

quential analysis. If the number of versions provided for analysis is V, then the

number of comparisons is V - 1. For example, if a family application has three

versions being analysed (Versions 1, 2 and 3), then the number of comparisons

is two (Versions 1-2 and Versions 2-3). This sequential analysis has also been

used by other studies (Nguyen et al. 2009, Adams et al. 2010).

The mapping expansion process in evolving applications of the same

program family widely depends on the precision of the version comparisons.

The expansion process is the action of generating mappings regarding the

features and their implementation elements of each family application version.

As the mapping expansion process is performed for each version, it is required

to observe the differences between the versions. The list of changes generated by

the comparison strategy is used an input by the mapping expansion process.
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This list of changes can be, for instance, refactoring of method or variable

names, inclusion of lines of code in existing methods. The mapping expansion

process analyses the list of changes in order to apply the following rules. First,

implementation elements mapped to a feature in a previous application version

and that were not removed or changed (e.g. new lines of code) in the next

version, they are mapped to the same feature. Second, the removed elements

are compared with the added ones. This comparison is required in order to

know if these elements suffered, for example, a simple refactoring of their

names. In this case, we compare the body of the removed method with the

added one in order to verify if they are similar (e.g. using abstract syntax

tree). If so, the added method is mapped to the same feature as they have the

same body. Otherwise, it is not mapped. It is important to highlight that this

added method can be mapped to other features.

4.4

Mapping Expansion Heuristics

This section describes the heuristics responsible for expanding feature

mappings. Their intent is to improve the accuracy of those mappings by

reducing the occurrence of mismatches given a set of evolving applications

of the same family. The application of the heuristics follows a particular

order (Section 4.4.1). The description of the heuristics is presented in terms

of: (i) their strategy and rationale highlighting the novel ideas; (ii) the key

part of their algorithmic solution; (iii) the differences and enhancements

compared to existing work; (iv) their abstract representation through an

illustrative example. The illustrative example comprises one family application

and two versions in order to make easier the understanding of an evolving

program family; and finally (v) their formalization that relies on set theory

(Hrbacek and Jech 1944). The heuristics presented in Sections 4.4.2 and 4.4.4

are able to simultaneously detect more than one type of mismatch. For this

reason, it was not needed to define one heuristic for each type of mismatch.

The following terms are defined and used in the formalization of the

heuristics. Feature as fe in F(A), where F(A) represents the set of selected

features of an application (A); M refers to all modules of an application; O

refers to all methods of an application; attribute as a; method or operation as

o; M(fe) refers to the set of modules (e.g. classes) that realize this feature fe;

O(fe) is the set of operations (e.g. methods) of a given module M that realizes

this feature fe; n is the number of family applications and v refers to their

versions.
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4.4.1

Execution Order of the Heuristics

The heuristics are executed following a certain order during the mapping

expansion process. This execution order was aimed at generating mappings

with a reduced number of mismatches. Moreover, when the feature mappings

are updated and expanded by a given heuristic, the other heuristics use

them naturally to keep on the expansion process. This execution order was

established after deep analysis of how the number of mismatches could be

reduced during the expansion mapping process. Additionally, we have observed

how the heuristics could be better explored through the output provided by

the previous heuristics. In the next sections it is explained in detail why

this execution order is essential. Also, it is illustrated how this order is

effective through a real example derived from the OC program family (Section

4.6.3). The execution order of the heuristics is described in Algorithm 1.

Algorithm 1 manages the historical information (program family versions)

to be executed by each heuristic. It is defined as follows: detecting omitted

feature partitions - DFP (Section 4.4.2); detecting code clone mismatches -

DCC (Section 4.4.3); detecting interfaces and super-classes - DIS (Section

4.4.4), detecting communicative feature mismatches - DCF (Section 4.4.5);

and detecting omitted attributes - DOA (Section 4.4.6). This main algorithm is

responsible for calling the respective heuristics taking into account the version

of the program family to be analysed. In the next sections we will describe

these respective heuristics.

Algorithm 1 processMappingExpansion(Versions) - Main Algorithm
1. for version in Versions do
2. detectFeaturePartitions(version) //Heuristic DFP

3. detectCodeClones(version) //Heuristic DCC

4. detectInterfacesClasses(version) //Heuristic DIS

5. detectCommunicativeFeatures(version) //Heuristic DCF

6. detectOmittedAttributes(version) //Heuristic DOA

7. end for

4.4.2

Detecting Omitted Feature Partitions

Strategy and Rationale. The first heuristic is named DFP (Detecting

Omitted Feature Partitions) and it is responsible for detecting methods com-

prising feature partitions that have not been mapped. Its goal is to circumvent

occurrences of the mapping mismatch related to multi-partition features (Sec-

tion 3.2.1). As these feature partitions correspond to entire methods, DFP can

also detect occurrences of the mapping mismatches related to feature overlap-
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ping and deficient module structure and documentation (Section 3.2.2). This

occurs because these mismatches can also refer to entire methods realizing

a feature. They are related as the occurrence of a mismatch can directly or

indirectly imply another one, and vice-versa (Section 3.3). Given a specific

feature, DFP analyses the already mapped methods by comparing them with

the non-mapped ones in terms of interaction similarity (Nguyen et al. 2011).

Interaction similarity is defined in terms of method interactions regarding its

callees and callers in similar contexts (Nguyen et al. 2011). This means that

two methods call or are called by similar ones. Figure 4.4 illustrates an example

of two methods (mC1 in the Client1 class and mC2 in the Client2 class) with

interaction similarity. They call the same methods (mA and mB in the Server

class) in their body in a given interaction context. The interaction context is

defined by the method calls before and after the calls to mA and mB in the

mC1 and mC2 methods (Figure 4.4). Through the interaction similarity, DFP

is able to capture feature partitions (methods) that do not contain explicit

references to other ones.

Server

...

mA(){};

...

void

void mB(){};

Client1 Client2 ClientN

Non-Mapped Feature Partition

Legend:

Mapped Feature Partition

Method call

...

mC1(){

...

Server.mA();

}

...

void

Server.mB();

...

...

mC2(){

...

Server.mA();

}

...

void

Server.mB();

...

...

mCN(){

...

Server.mA();

}

...

void

Server.mB();

...

...

Figure 4.4: Example of Interaction Similarity.

We adapted the similarity strategy proposed by Nguyen et al.

(Nguyen et al. 2011) by also considering information provided for both fea-

ture mapping and multi-dimensional history analysis (Section 4.3.1). The

use of feature mappings was needed to consider all types of features. The

original heuristic proposed by Nguyen et al. (Nguyen et al. 2011) is only

able to capture implementation elements that realize features that are scat-

tered across multiple modules. At large only non-functional features have

this characteristic (Adams et al. 2010). As a consequence, a set of functional

features, which are not scattered, is not captured. In other words, this means

that functional features are implemented through only one or few modules

(Figueiredo et al. 2009). Thus, DFP is a further development of the original

heuristic because it is able to capture elements that implement any types

of features regardless of whether they are widely scattered across multiple

modules or concentrated on only one. This is possible because DFP relies on

the seed mappings, which contain a list of features and the corresponding

initial set of implementation elements that realize those features. For instance,
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Figure 4.5 illustrates a widely scattered feature and a non-scattered feature.

The m1() method in the X class realizes a widely scattered feature and it

is called by many classes. These classes are called in a similar method with

similar context, which is the method mA() in the A class. As a consequence,

the m1() method is captured by the original heuristic. On the other hand,

the m2() and m4() methods realize a non-scattered feature and call the same

m1() method in the X class. As a consequence, these implementation elements

are only captured by DFP.

The multi-dimensional history analysis is essential to observe how the

interactions of the mapped and non-mapped methods evolved throughout the

family applications’ history. The historical analysis is essential for identifying

methods with evolving interaction similarities and detecting such methods

during the mapping expansion process. As part of this historical analysis,

DFP also takes into consideration the methods that were modified and added

with the goal of improving the accuracy of feature mappings (Section 4.3.2).

During the family application evolution, for instance, new methods might call

previously-mapped methods. As a result, the interaction similarity usually

changes over time. Therefore, DFP checks if the new method and the mapped

method have the same interaction similarity. If so, the feature mapping of the

family application version is updated by the inclusion of this new method. The

benefits of analysing the program family history are related to coverage and

consistency of the feature mappings in each family version (Sections 4.3.1 and

4.3.2).

Algorithmic Solution. The essence of the algorithmic solution imple-

mented by DFP is presented in Algorithm 2. We extended in our implementa-

tion the idea presented by Nguyen et al. (Nguyen et al. 2011) and considered

the interaction similarity of the features’ implementation elements during the

program family evolution. The original algorithm was extended by DFP to take

into consideration the seed mappings and the analysis of family application’s

methods under the perspective of different features. Now, the interaction simi-

larity is realized by comparing the mapped methods, those that realize a given

feature, with non-mapped ones. Thus, it is possible to contrast such similarities

with other elements contained in the seed mappings in order to verify which

other features can be realized by the non-mapped methods. As a result, DFP

is able to update the whole mapping by adding methods that realize one or

more features. Our assumption is that methods having similar interactions in

a family application tend to implement the same features. The similarity strat-

egy defined by Nguyen et al. (Nguyen et al. 2011) states that the crosscutting

features have the same behavior and/or they are similarly processed. Also, it
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contains thresholds for determining the similarity weights. These thresholds

are defined to avoid comparing all the methods of the family application and

harming the scalability of the algorithm. We also consider the same strategy

for all the types of features because we believe that methods that realize the

same feature tend to communicate with a set of similar classes. This means

that they call similar methods or implement the same interfaces or abstract

classes.

DFP compares the mapped methods (line 02) with the non-mapped

methods of each family application version (line 03) with the goal of find-

ing groups of similar methods that are not scattered and implement non-

crosscutting features (line 04). These groups of methods are run for each

version during the family applications’ history and they are stored in a list

named similarMethodGroups (line 04). After that, it is checked if the identi-

fied groups have been mapped as well. To do this, DFP analyses all the features

(line 01) and their methods with the goal of adding the similar methods to

the mapping considering the analysed feature (lines 05-06). Therefore, during

the expansion process of mappings DFP is able to: (i) detect new interaction

similarities, and (ii) update or remove existing ones because either mapped

methods were removed or modified (line 07).

Algorithm 2 detectFeaturePartitions(version) - DFP Algorithm
1. featureList ⇐ allFeatures(version)
2. mappedMethodList ⇐ mappedMethods(version)
3. nonMappedMethodList ⇐ nonMappedMethods(version)
4. similarMethodGroups ⇐
5. findHistoryMethodGroups(mappedMethodList, nonMappedMethodList) //it relies

on the strategy for comparing interaction similarity

6. for feature in featureList do
7. addSimilarMethods(feature, similarMethodGroups)
8. updateSimilarMethods(feature)
9. end for

Comparison to Existing Work. Dynamic and static analysis tech-

niques do not address the idea proposed by DFP with respect to identify

similar methods by considering the feature mappings and the program family

history (Section 4.2.1). Regarding the similarity strategy proposed by Nguyen

et al. (Nguyen et al. 2011), it was used in its essence to recommend or up-

date methods in charge of implementing the same non-functional crosscutting

features.

Illustrative Example. Figure 4.5 illustrates the abstract representation

of how DFP works for non-scattered features. In this figure there is a method

named m2() in the X class that has been mapped to the feature fe in the first

version of the family application. It is observed in the second version of the
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family application that the m2() method in the X class was modified. Now, it

calls the m1() method. This means that its interaction similarity was changed.

In addition, it is observed that the m4() method in the Y class also calls the

m1() method in the second version. Thus, when DFP analyses the interaction

similarities of the m2() and m4() methods in both family application versions

and initial feature mapping, it observes that these methods are likely to realize

the same feature. As a consequence, it adds them to the set of elements realizing

the feature fe (Figure 4.5).

Formalization. The formal definition of DFP is defined in terms of num-

ber of family applications (n), the family application versions (v), the methods

(o), the features (fe) and the relations (Formula 4-1). In the formalization of

DFP it was defined the partition(O,O(fe)) relation that indicates all mapped

methods to (fe) are compared with all the methods of the family application.

The goal is to discover if there are methods mapped to (fe) that are similar

to others, which are likely to realize (fe) and have not been mapped, by using

the similarity strategy. According to the illustrative example shown in Figure

4.5, we have: the number of applications (n = 1), the number of versions (v =

2), the methods to be analysed (m1(), m2() and m4()) and the feature fe. The

DFP formalization is defined in the following way.

DFP (fe) =
n⋃

i=1

v⋃

j=1

{o : o /∈ O(fe) ∧ ∃oj ∈ O(fe) ∧ (o, oj) ∈ partition(O,O(fe))}

(4-1)
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}

method m2(..) {
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Figure 4.5: Abstract Representation of the Original Heuristic and DFP.

4.4.3
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Detecting Code Clone Mismatches

Strategy and Rationale. This heuristic named DCC (Detecting Code

Clone Mismatches) is responsible for detecting similar pieces of code that have

not been mapped to a particular feature. Its goal is to detect the occurrences

of the mapping mismatch related to code clones (Section 3.2.1). This heuristic

analyses the entire family application version in order to detect all existing

clones. After that, for each of the detected code clones, it checks if they

have not been mapped but are similar to already mapped methods. If so, the

code clones are mapped to all features (one or more) realized by the mapped

methods. This occurs when a given mapped method is realizing more than

one feature at the same time. In addition, DCC also analyses the history of

the family applications with the goal of keeping track of the changes that

the mapped methods have undergone and thus updating their clones. To this

end, it verifies if the mapped methods and their respective clones, detected

in previous versions, were modified in the next ones. The goal of DCC is to

maintain the list of code clones realizing each feature. Thus, it can analyse

all the features’ implementation elements and know which clones are related

to more than one feature. We have used the tree edit scripting algorithm

proposed by Nguyen et al. (Nguyen et al. 2009) that uses the abstract syntax

tree to represent the program source code and its clones. Basically, it calculates

the structural similarity of two implementation elements through the distance

of their structural characteristics. Thus, two implementation elements are

considered clones if they have similar structure. Therefore, the novel idea

provided by DCC is the use of clone detection when analysing the feature

mappings and historical information of family applications.

Algorithmic Solution. Algorithm 3 presents the essence of the solution

implemented by DCC. As there is a large number of clone detection tools

in the literature, DCC can be jointly used with any existing tool (line 02).

In the current version of the algorithm, we have used the tree edit scripting

algorithm proposed by Nguyen et al. (Nguyen et al. 2009) to detect the code

clones. After that, it verifies if the detected code clones are similar to already

mapped methods (line 04-06). Finally, it adds all the clones to the features in

which the mapped methods are related to (line 07-09). During the expansion

process the family application versions are compared in order to observe if

the mapped methods and their clones have been modified during each family

application history.

Comparison to Existing Work. The heuristic DFP (Section 4.4.2),

which adapted the similarity strategy proposed in (Nguyen et al. 2011), also

uses clone detection to capture similar portions of code in a program. Apart

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA



Chapter 4. Mapping Expansion Heuristics 82

Algorithm 3 detectCodeClones(version) - DCC Algorithm
1. featureList ⇐ allFeatures(version)
2. clones ⇐ runCloneDetection(version)
3. elementList ⇐ mappedElements(version)
4. for element in elementList do
5. cloneElements ⇐ clonesMappedElements(clones)
6. end for

7. for feature in featureList do
8. mapAllCloneElements(feature, cloneElements)
9. end for

from (Nguyen et al. 2011), the dynamic, static and hybrid techniques for

feature mapping activity (Section 4.2.1) have not considered detection of

code clones in their essence. Although the heuristic DFP is able to deal with

code clones, we decided to define a heuristic to maintain the list of clones

associated with each feature. We made this choice because the detection of

clones performed by DFP is run in the algorithm for calculating the similarity

interaction. The heuristic DCC is able to capture all the clones of a family

application and present them to the developers. Thus, if the developers need

to observe only the clones of the features in an family application version,

then it is possible when running the heuristic DCC. Another advantage is

that DCC is decoupled of any existing clone tool. Hence, developers can use

any tool and define their respective thresholds for detecting the clone codes.

Consequently, it can also improve the individual performance of the heuristic

DFP by using other clone tools (Section 4.4.2). The goal of DCC is to facilitate

the maintenance tasks since the developer can observe the amount of similar

methods which are used for implementing a given feature. In addition, our

proposal of expanding the mappings by analysing the historical information

and taking into consideration the change propagation of the family applications

are the novelty when compared to (Nguyen et al. 2011) and existing work

(Section 4.2.1).

Illustrative Example. Figure 4.6 shows an abstract representation of

DCC. This figure illustrates a m1()method in the X class that has been mapped

to feature fe. In the second version there is a m2() method in the Y class, which

is similar to the m1() method, that has not been mapped. Consequently, DCC

detects that these methods are clones. Hence, as the m1() method has already

been mapped to fe, DCC also maps the m2() method to the same feature fe.

Formalization. The formal definition of this heuristic is defined in terms

of number of family applications (n), the family application versions (v), the

methods (o), the features (fe) and the relations (Formula 4-2). It was defined

the clone(o, oj) relation that establishes that a method o is similar to oj by

using the tree edit scripting algorithm (Nguyen et al. 2009). According to the
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example showed in Figure 4.6, we have: the number of family applications (n

= 1), the number of versions (v = 2), the methods to be analysed (m1 and m2)

and the feature fe.

DCC(fe) =
n⋃

i=1

v⋃

j=1

{o : o ∈ O(fe) ∧ ∃oj /∈ O(fe) ∧ clone(o, oj)} (4-2)

Class Y

Class X

Version 1

Legend:

code not mapped

mapping operation

method m1(..) {

} Feature fe

class X

m1(..)

Version 1
2

…
n

Class Y

Class Y

Version 2

method m2(..) {

}

code clone

Figure 4.6: Abstract Representation of DCC.

4.4.4

Detecting Interfaces and Super-Classes

Strategy and Rationale. This heuristic named DIS (Detecting Inter-

faces and Super-Classes) detects two cases of super-classes and interfaces: ei-

ther those that have not been mapped or those that have been incorrectly

mapped. Its goal is to detect the occurrences of the mapping mismatch involv-

ing interfaces and super-classes (Section 3.2.2). As DIS detects entire super-

classes and interfaces, the occurrences of the mapping mismatch related to the

deficient module structure and documentation are also automatically detected

(Section 3.3). For each feature, DIS analyses the super-classes and interfaces

of all already mapped classes. First, it verifies if there are interfaces and/or

super-classes that have not been mapped to the same feature and that are

inherited by these mapped classes. This means that DIS captures any inter-

faces and/or super-classes inherited by mapped classes. Second, it also verifies

if there are interfaces or super-classes that have been incorrectly mapped to a

feature because, for instance, they belong to an API or framework.

The rationale behind DIS is that abstract classes provide pre-defined

default behaviors that need to be comprehended and managed during the

program family evolution. For example, in maintenance and evolution tasks it

is required to know exactly how these default behaviors are defined in order to

modify them and/or to implement specific behaviors (subclasses). Additionally,

the mapping of interfaces is relevant because they also define default behaviors
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and a common communication point among the modules. For this reason, DIS

considers the mapping of all involved classes (subclasses, super-classes and

interfaces) in the feature implementation. As part of the expansion process

of mappings, DIS also takes into consideration the changes that a class has

undergone during the family application history, such as starting to implement

a new interface in a given family version. As a consequence, the expansion of

the feature mappings is generated by taking into account such types of changes.

The novel idea provided by this heuristic is the analysis of super-classes

and interfaces regarding the historical information of the evolving program

family (Section 4.3.1). Therefore, DIS is able to detect new super-classes

and interfaces, update them and remove incorrect ones from the mappings

generated during the program family’s change history analysis.

Algorithmic Solution. Algorithm 4 presents the main part of the al-

gorithmic solution implemented by DIS. Basically, this heuristic works seeking

classes and interfaces that are inherited by implementation elements already

mapped to a feature. DIS algorithm disregards all the classes that belong to

API or standard libraries. The search is performed for each mapped element

(line 03) by analysing its hierarchy of super-classes and interfaces of the ab-

stract syntax tree (line 04) (Eclipse 2011). After that, DIS verifies if the iden-

tified super-classes and interfaces have been mapped. Otherwise, it maps these

classes and interfaces to the same feature that their sub-classes were already

mapped (line 06-08). Finally, the elements mapped incorrectly, for instance,

which belong to an API are removed from feature mappings (line 09).

Algorithm 4 detectInterfacesClasses(version) - DIS Algorithm
1. featureList ⇐ allFeatures(version)
2. elementList ⇐ mappedElements(version)
3. for element in elementList do
4. hierarchyElements ⇐ detectHistClassesInterfaces(element)
5. end for

6. for feature in featureList do
7. addNewElements(feature, hierarchyElements)
8. end for

9. removeIncorrectElements(..)

Comparison to Existing Work. The dynamic techniques for feature

mapping activity do not exhibit classes that belong to frameworks and APIs

in their traces (Section 2.2.3). These techniques do not show also interfaces

and super-classes which are involved in the feature implementation and that

belong to the application domain. Developers when using static tools, in some

cases, may know the starting point of the feature implementation but not all

the involved implementation elements. However, in maintenance tasks it is

primordial for the developers to have full knowledge about all the modules
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and classes involved in the feature design and implementation. For instance,

FEAT (Robillard and Murphy 2002) supports part of the concept presented

by DIS. However, the developer needs to explicitly require the analysis from

a selected class. Contrary to FEAT and other research work (Section 4.2),

DIS provides support for the feature mapping expansion when analysing the

multi-dimensional history of an evolving program family (Sections 4.3.1).

Illustrative Example. Figure 4.7 shows an abstract representation

of DIS when detecting super-classes omitted from a feature mapping. For

example, Figure 4.7 illustrates a m2() method in the Y class that has been

mapped to the feature (fe) in the first version of the family application.

However, in the second version of the family application the Y class was

modified to inherit the X class, which has not been mapped. Hence, DIS

verifies if the X class belongs to the application domain, then it adds this

class automatically to the second version of the feature mapping.

Formalization. The formal definition of DIS is defined in terms of

number of family applications (n), the family application versions (v), the

modules (m), the features (fe) and the relations (Formula 4-3). A transitive

relation was defined to formalize the heuristic DIS, so-called descendant (m,

mj). This relation establishes that if a module (class) named m implements

another one named mj, m ∈ M(fe) and mj belongs to the application domain,

then mj ∈ M(fe). Consequently, the module mj is not part of a specific

framework or API. According to the Figure 4.7, we have one application (n =

1) and two versions (v = 2), the classes to be analysed (X and Y classes) and

the feature fe.

DIS(fe) =

n⋃

i=1

v⋃

j=1

{m : m ∈ M(fe) ∧ ∃mj /∈ M(fe) ∧ descendant(m,mj)} (4-3)
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}
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…

n

method m1(..) {

}
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Class Y
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method m2(..) {

}inheritance

change in versions

Figure 4.7: Abstract Representation of DIS.
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4.4.5

Detecting Communicative Feature Mismatches

Strategy and Rationale. This heuristic named DCF (Detecting Com-

municative Feature Mismatches) detects implementation elements (i.e. classes

and methods) incorrectly mapped to a feature. This occurs because there is

a large interaction of this feature with other elements that realize different

features. DCF has the goal of detecting occurrences of the mapping mismatch

related to overly communicative features (Section 3.2.1). The heuristic DCF

by means of fan-in number (Marin et al. 2007) is able to identify all classes

and methods that are communicating with other ones already mapped. Fan-

in number determines the number of distinct methods that invoke a given

method (Marin et al. 2007). We use the fan-in number because it is able to

capture all the dependencies from an implementation element. The dependen-

cies refer to declarations and references (implicit and explicit) fostered by the

use of object-oriented programming mechanisms.

The rationale behind DCF is to analyse the declarations and references

from mapped elements. As a result, a set of implementation elements, that

potentially are spread over many classes, is detected by DCF. These imple-

mentation elements are named referenced elements. As a second step, DCF

compares the referenced elements with the already mapped elements. Those

mapped elements which are not referenced ones are removed from the feature

mapping. The explanation behind these removals is that such elements were

incorrectly mapped because they contain strong dependencies with others that

realize a different feature. The novel idea realized by DCF is related to the use

of fan-in number from already mapped elements under a historical perspective

of the family applications. It captures all the dependencies of a given imple-

mentation element when analysing the historical information with the goal of

removing referenced elements incorrectly mapped. The strategy performed by

DFP could not be used in the heuristic DCF for two reasons. First, DCF is

not only focused on method calls but all kinds of references to other elements.

Second, the use of thresholds required by the heuristic DFP to compare the

interaction similarity of methods is restrictive (Section 4.4.2). Consequently,

DFP does not consider all the dependencies from a given element.

Algorithmic Solution. Algorithm 5 presents the essence of the algo-

rithmic solution implemented by DCF. The goal of DCF is to capture all the

dependencies from an implementation element taking into account its dec-

larations and references (implicit and explicit). DCF picks out each already

mapped element (line 01) and uses a search pattern (line 03) that is provided

by the Eclipse platform (Eclipse 2011). This pattern defines how the search
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results are found and can be customized based on the references and decla-

rations from an implementation element. A scope is also specified in order to

define where the search pattern is applied. In this case, the scope is the fam-

ily application version (line 04). After detecting the referenced elements (line

04), DCF analyses the already mapped elements in order to verify if they are

not in the list of referenced elements, and consequently remove them from the

mapping (lines 06-10).

Algorithm 5 detectCommunicativeFeatures(version) - DCF Algorithm
1. elementList ⇐ mappedElements(version)
2. for element in L do

3. SearchPattern.createPattern(..)
4. referencedElements ⇐ SearchEngine.createSearchScope(version)
5. end for

6. for element in elementList do
7. if element is not in referencedElements then
8. removedNonReferencedElement(element)
9. end if

10. end for

Comparison to Existing Work. There are other research work and

tools that use fan-in number with the goal of verifying certain types of depen-

dencies among features (Robillard and Murphy 2002, Eisenbarth et al. 2003,

Robillard and Weigand-Warr 2005, Marin et al. 2007, Zhang et al. 2008). Dy-

namic techniques are able to detect referenced implementation elements when

exercising features as they are based on execution traces (Section 2.2.3). Addi-

tionally, some static analysis tools also implement the fan-in number in which

the developers can obtain all the referenced elements when selecting a given

implementation element (Section 2.2.2). In particular, the heuristic DCF pro-

vides an enhancement to these existing work by capturing all the dependencies

from implementation elements and at the same time detecting inconsistencies

in the mapping when analysing the multi-dimensional history of a program

family. In addition, it also deals with the change analysis of the features’ im-

plementation elements which is not addressed by existing tools that rely on

the call graph (Section 4.3.2).

Illustrative Example. Figure 4.8 shows an abstract representation of

DCF. This figure illustrates the m1() and m2()methods in the X class that have

been mapped to the feature fe in the first version of the family application. The

m4() method in the Y class has also been mapped as both the m1() and m2()

methods communicate with it. However, the m3() method in the Y class was

incorrectly mapped. This mapping mismatch occurred because all the methods

in the X class communicate with the m4() method. As a consequence, the entire

Y class was incorrectly mapped. This way, DCF verifies each mapped element
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in order to verify all its referenced elements. After that, it verifies if these

referenced elements have been or not mapped to fe. According to this example,

DCF observes that the m1() and m2() methods call the m4() method in the

first version. However, DCF also verifies that the mapped elements do not have

dependencies with the m3()method and thus removing it from the mapping. In

the second version, it is observed that the m1() method was modified and does

not communicate with the m4() method anymore. Consequently, DCF removes

the m1() method and updates the feature mapping of the second version.

Formalization. The heuristic DCF is defined in terms of number of

family applications (n), the family application versions (v), implementation

element (ie), feature (fe) and relations (Formula 4-4). The implementation

elements can be classes and methods. In order to formalize this heuristic it was

defined the connected(ie, iej) relation that indicates that an implementation

element ie is connected (or calls) another one iej. Based on the example in

Figure 4.8, we have: n = 1, v = 2, the implementation elements to be analysed

are the methods (m1(), m2(), m3() and m4()), and the feature (fe). The DCF

formalization is defined as follows:

DCF (fe) =

n⋃

i=1

v⋃

j=1

{ie : ie /∈ O(fe) ∧ ∃iej ∈ O(fe) ∧ connected(ie, iej)} (4-4)
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Figure 4.8: Abstract Representation of DCF.

4.4.6

Detecting Omitted Attributes

Strategy and Rationale. This heuristic named DOA (Detecting Omit-

ted Attributes) is responsible for detecting class attributes that have not been

mapped. Its goal is to detect occurrences of the mapping mismatch named
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omitted attributes (Section 3.2.2). The idea of DOA is, first, to identify al-

ready mapped methods to each feature (fe). Then, based on attribute access

graphs, it is possible to detect all class attributes which are accessed by the

mapped methods within any classes of the family application version. Finally,

it is checked if they have already been mapped or not to the same feature

of the mapped method. As a consequence, DOA keeps track of all the class

attributes that are used by the mapped methods. This heuristic also analy-

ses the likelihood of omitted attributes being part of a feature by observing

those attributes which are not already part of another feature. This analysis

is performed by verifying which attributes have been incorrectly mapped to a

feature, when actually the method that accesses them has been mapped to an-

other feature. Additionally, DOA checks if those attributes were added and/or

changed simultaneously with the mapped methods throughout the family ap-

plication’s change history. Therefore, the novel idea proposed by DOA is the

multi-dimensional history analysis and the respective changes of the features’

elements during the expansion process of the mappings (Sections 4.3.1 and

4.3.2).

Algorithmic Solution. Algorithm 6 presents the main part of the

algorithmic solution implemented by DOA. First, DOA detects all the class

attributes that are accessed by each mapped method of a family application

version (line 03-05). This detection is performed by using the representation of

the abstract syntax tree of source code. After that, DOA maps the attributes

(line 07), if they were not mapped, to the feature that is being evaluated. DOA

algorithm is run for each family application version in order to add or update

the list of attributes in mappings during the expansion process (Section 4.4.1).

Algorithm 6 detectOmittedAttributes(version) - DOA Algorithm
1. featureList ⇐ allFeatures(version)
2. elementList ⇐ mappedElements(version)
3. for method in elementList do
4. attributeList ⇐ accessMethodAttributes(method)
5. end for

6. for feature in featureList do
7. addNewElement(feature, attributeList)
8. end for

Comparison to Existing Work. Dynamic techniques are useful for de-

tecting attributes that implement features, and consequently they can be used

for generating the seed mappings (Section 4.3.1). However, these techniques

are only suitable for user-level features (Section 2.2.3). Other types of features,

such as crosscutting features and/or fine-grained features that can not have

their elements completely exercised and revealed with user/test inputs, are not

detected. As a consequence, it is up to the developer performs either the entire
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mapping of a feature or complement it through the use of other techniques.

For instance, the developer could rely on static techniques (Section 2.2.2) for

complementing their mappings and thus deciding which implementation ele-

ments are part of the feature. FEAT (Robillard and Murphy 2002) supports

part of the idea realized by DOA as the developer can select a method and

navigate on its attributes through queries available for classes and methods.

However, the developer needs to explicitly carry out these actions of selecting

the method and picking out the relevant attributes. In addition, the developer

needs to perform these actions individually for each family application version

as FEAT does not support the analysis of multiple versions. In summary, DOA

provides the following enhancements when compared to existing tools: (i) it

provides the expansion process of mappings in evolving program families (Sec-

tion 4.3.1), and (ii) it maintains the consistency of the mappings during the

expansion process for considering the program family’s change history (Section

4.3.2).

Illustrative Example. Figure 4.9 illustrates an abstract representation

of DOA. For example, in this figure there are a X class and a m1() method

that have been mapped to the feature (fe) in the first version of the family

application. However, the class attributes named a1 and a2 were not mapped

and they also realize the same feature and are used by the m1() method. As the

m1() method has already been mapped and it accesses these attributes, they

are automatically added to (fe), as illustrated in Figure 4.9. DOA analyses the

family application’s history and the changes of the implementation elements

with the goal of expanding the mappings. This occurs when, for example, the

mapped attributes in the first version have their names modified in the second

version of the X class (Figure 4.9). Consequently, DOA automatically generates

the feature mapping of the second version of the family application taking into

consideration such changes. This occurs because the m1() method and the

a1 and a2 attributes have already been mapped and detected by DOA in a

previous version (Version 1).

Formalization. The formal definition of DOA is defined in terms of

number of family applications (n), the family application versions (v), the

attributes (a), the features (fe) and the relations (Formula 4-5). It was

defined attri(fe), which is the set of attributes that implements this feature

fe. Additionally, it was also defined the use(o,a) relation that indicates that

a method (operation) o uses a class attribute a. According to the illustrative

example shown in Figure 4.9, we have: the number of family applications (n

= 1), the number of family versions (v = 2), the attributes to be analysed (a1

and a2) and the feature fe. The DOA formalization is expressed as:
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DOA(fe) =

n⋃

i=1

v⋃

j=1

{a : a /∈ attri(fe) ∧ ∃o ∈ O(fe) ∧ use(o, a)} (4-5)

class X

Version 1

class X

attribute a3;

attribute a4;

…
Version 2

Feature fe

class X

m1(..)

…

Legend:

code not mapped

attribute a1;

attribute a2;

method m1(..) {

a1 = x( );

a2 = y( );

}

change in versions

Version 1
2

…
n

mapping operation

Figure 4.9: Abstract Representation of DOA.

4.5

MapHist: A Heuristic-based Tool for Expanding Feature Mappings

This section describes MapHist, a tool for expanding feature mappings

when analysing evolving program families. It was implemented as an Eclipse

plug-in (Eclipse 2011) and supports the use of the heuristics presented in Sec-

tion 4.4. Section 4.5.1 presents the tool architecture and its main functionali-

ties. Section 4.5.2 describes the representation of the implementation elements

and complementary tools used by MapHist.

4.5.1

The MapHist Architecture

MapHist relies on the mapping from implementation elements to features.

Figure 4.10 shows the MapHist architecture, which comprises four modules

described as follows:

1. Mapping Collector. This module is responsible for collecting the

features and the seed mappings with their initial set of implementation

elements. According to our heuristic methodology (Section 4.3.1), the

developer must select the family application versions that contain the

seed mappings, which are used as input by the MapHist tool (Section

4.3.1). To be more specific, it loads the features and their implementation

elements in a collection to be further processed by the mapping expansion
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Figure 4.10: The MapHist Architecture.

heuristics (Step 2). In the current implementation, MapHist supports

mapping files in XML format. Nevertheless, there is a MapHist interface

that can be implemented to manage other mapping file extensions. For

this reason, MapHist can be used together with any existing mapping

tool (Section 4.2.1).

2. Mapping Expansion Heuristics. This module comprises the set of

proposed mapping heuristics. The heuristics analyse the collection passed

by the mapping collector (Step 1). After that, each heuristic processes

this collection and executes its algorithm described in Section 4.4. As

mentioned, during the expansion process of the mappings the heuristics

also take into consideration the comparison among the versions (Step 3).

The heuristics require the generation or update of the feature mappings

when implementation elements that realize a given feature are detected.

A pair containing the feature and its respective implementation elements

is passed to the module of generation of the feature mappings (Step 4).

3. Comparison of the Versions. This module is responsible for compar-

ing the program family’s versions and reducing the occurrence of irrel-

evant information related to the change history of the family applica-

tions (Section 4.6.3). This irrelevant information was reduced through

our comparison process among the versions. To this end, we have used

JDiff (Doar 2007), which is a tool that compares the source code in Java

language and generates a XML file in terms of changed, removed and

added elements. As mentioned in Section 4.3.2, the comparison provides

information that is used as input for the expansion process. To minimize

irrelevant information to be processed by the heuristics we concentrated

on defining a comparison strategy and a set of rules to be followed by
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the expansion process. Even though we defined a comparison strategy

and used a tool for analysing the changes in the source code structure,

it was needed to deal with, for instance, small structural changes in a

method, such as simple refactoring of methods and variable names. These

kinds of structural changes do not modify the semantic behavior of the

implementation element. For this reason, we complemented the use of

the tool for analysis of source code changes, JDiff (Doar 2007), with a

clone tool called Clever (Nguyen et al. 2009). Hence, it was possible to

observe if a changed method in a given version had its body widely mod-

ified in the next ones (Section 4.3.2). We explored the multi-dimensional

historical analysis when using different strategies: a comparison strategy,

structural analysis of the program families’ source code and code clone

tools. This way, we do believe that it was possible to minimize irrelevant

information concerning program family’s change history to be processed

by the heuristics.

4. Generation of Feature Mappings. This module is responsible for

generating and manipulating the mapping files. It adds and removes

implementation elements required by the mapping heuristics. At the end

of the execution, a feature mapping file in XML format is generated

for each family application version. Developers can navigate on these

generated mappings in order to analyse and understand how the features

have evolved over time.

4.5.2

Representation of the Implementation Elements and Use of Existing Tools

Considering that MapHist was implemented as an Eclipse plug-in, we

have used the elements and relationships provided by JDT (Eclipse 2011). Ba-

sically, the heuristics manipulate elements that represent the program struc-

ture, such as compilation units, types, fields, methods, statements, parame-

ters, signatures, return types. Also, a set of mechanisms supported by JDT

was used. For instance, we implemented Visitors based on the AST (Abstract

Syntax Tree) in order to implement the manipulation of an implementation

element at a high level (i.e. methods) in the heuristic DOA (Section 4.4.6).

Additionally, we also implemented a Search Engine to do search in the source

code and have access to all references or declarations of an implementation

element based on call graphs (i.e. declarations of fields, implicit, explicit and

qualified references) for the heuristic DCF (Section 4.4.5). To implement the

heuristic DFP (Section 4.4.2) we adapted the interaction similarity algorithm
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proposed by Nguyen et al. (Nguyen et al. 2011) to consider the feature map-

ping and historical information. In the implementation of the DIS heuristic we

also dealt with the elements provided by JDT.

In order to compare the bodies of the methods we have used the

clone tool named Clever (Nguyen et al. 2009). The Clever tool has been used

during the expansion process and in the implementation of the heuristic

DCC because: (i) it already provides an Eclipse plug-in, and (ii) it uses a

different approach to compute tree editing scripts that obtained good results

in detecting code clones when compared to other related tools, such as

CCFinderX (Kamiya et al. 2002). We have used the ConcernMapper mapping

tool (Robillard and Weigand-Warr 2005). We have chosen the ConcernMapper

tool for two main reasons. First, its plug-in has an easy integration with

the Eclipse Platform. Second, its implementation is stable and it has an

extensive documentation available. The mapping is performed when a given

implementation element is related to a given feature. MapHist uses the

representation of features provided by ConcernMapper, which has a list of

features’ names and the implementation elements that realize each feature.

We tried to maximize the use of existing tools because they have

already been tested and evaluated in other software systems. Hence, we could

concentrate on the conception of the original ideas proposed by the mapping

heuristics. In addition, such tools have achieved good results when compared

with their related work. It is important to highlight that the MapHist tool was

designed to be decoupled of any kind of tool. To make this possible, interfaces

are provided in order to allow the inclusion of the target tools.

4.6

Evaluation

This section describes the evaluation process of the mapping heuristics.

Section 4.6.1 presents the target program families and the reasons why they

were selected. Section 4.6.2 describes the study procedures followed during the

evaluation process. Section 4.6.3 presents the analysis of the results achieved by

our mapping heuristics. Section 4.6.4 presents some discussions concerning the

results achieved by the mapping heuristics and other research work. Finally,

Section 4.6.5 discusses the limitations of our work.

4.6.1

Target Program Families

Two evolving program families were selected to evaluate the accuracy of

the mapping heuristics. One of them is the OC program family, which was
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already described in Section 3.1.1. The second family comprises applications

that follow a reference architecture used for generating Web information

systems for different purposes, such as managing the control of pollutants,

managing the drawing and manipulation of maps. This reference architecture

prescribes a set of inter-dependent components that implement a wide range

of features, such as storing, searching and updating entities, and automatic

generation of HTML pages. There are six family applications derived from

this reference architecture and they have been developed since 2008. For the

purpose of our analysis and evaluation, we have selected three of them due

to the number of available versions. For confidentiality agreement issues, the

fictitious name of RAWeb is used to refer to the program family. We selected

a total number of 13 versions, which refer to five versions of one family

application and four versions of the second and third family applications. The

reason for this particular set of versions is due to the fact that the RAWeb

applications were developed through large increments. For this reason, there

are few versions available of the family’s applications. These applications have

size that range from 100 KLOC to 110 KLOC.

Tables 4.1 and 4.2 describe the analysed features in OC and RAWeb

program families respectively, and which family applications realize them.

We selected common and variable features. This enabled us to observe how

they have been implemented and modified for each version of the framework,

reference architecture and family applications. Given the optional nature of

the core implementation, the features Route, Notification and Export are not

instantiated by all the family applications (Table 4.1). The same is true for the

feature Import Image. It is important to highlight that we used Applications

I and II of OC program family in the exploratory study for classifying

the mapping mismatches (Chapter 3). For this reason, we included a new

application (Application III ) to evaluate the mapping expansion heuristics.

Additionally, we selected different versions of Applications I and II of OC

program family in order to avoid including bias in the assessment of the

proposed mapping heuristics (Section 4.4). This bias is related to the fact

that the heuristics are based on the catalogue of mapping mismatches.
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Table 4.1: Analysed features in OC.
Family Applica-

tions
Features Description

All Logger
It saves information about program execution
and/or errors.

All Report
It represents the report exhibition, exportation
and printing.

OC framework,
Application I

Route
It represents a route of products between two
points in the logistics context.

OC framework Notification
It defines a system notification to users (i.e.
email).

OC framework,
Application I

Export
It represents the generation of reports for differ-
ent files formats (i.e. Excel).

All Transaction
It is responsible for storing and recovering data
from the database and ensuring ACID properties.

Applications II
and III

Stock
It manages the amount of different products in
the logistics domain.

Application III Importation
It manages and defines the rules of the importa-
tion of products.

Table 4.2: Analysed features in RAWeb.
Applications Features Description

All Dynamic Forms

It creates the Web pages automatically by includ-
ing all the fields and their types. Also, it validates
the respective fields according to its type (e.g.
String).

All Dynamic Tables
It dynamically exhibits all the fields and their
respective values of the object in a table. It also
provides options to exclude and edit such objects.

All Search Data
It allows the search for objects based on their
fields. It also allows saving the search result.

Application I Import Image
It imports large images in order to reduce them
and consequently makes their manipulation eas-
ier.

All Report
It represents the report exhibition, exportation
and printing.

4.6.2

Study Design

A number of procedures were followed during the evaluation process of

the mapping heuristics. The study procedures were organized in five steps:

1. The feature mappings were produced for each first version of the se-

lected family applications of the respective program families following

our methodology (Section 4.3.1). In the case of OC program family, the

seed mappings of the features (Table 4.1) were provided by two develop-

ers who have used and reviewed the source code of the selected family ap-

plications for their documentation. These seed mappings were performed

in cooperation by these two developers. The seed mappings of the OC

program family were about 20% of coverage considering the functional

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA



Chapter 4. Mapping Expansion Heuristics 97

features and about 15% of the non-functional crosscutting features. In

the case of RAWeb program family, the seed mappings were performed

by one developer. The seed mappings of RAWeb family were about 10%

for all the features. The developers involved in the production of the seed

mappings have not developed the program families but they have knowl-

edge of the selected members and features’ code. This occurs because

they have been involved in the documentation and evolution processes

of such family applications. For this reason, they have significant knowl-

edge of the features involved in the mapping expansion process. After

the developers produced the seed mappings, we analysed such mappings

in order to verify if they contained all the mismatches when considering

each feature (Chapter 3). This procedure was performed with the goal

of verifying if the mapping heuristics are able to expand the mappings

in the presence of all types of mismatches;

2. We ran the mapping heuristics using the MapHist tool in order to provide

the expanded mappings for all the versions of the family applications.

Consequently, the mappings of each family application version were

generated;

3. We measured the accuracy of the mapping heuristics by calculating

precision and recall after generating all the feature mappings of each

family application. The purpose of precision is to verify if the proposed

heuristics are able to select only the implementation elements that realize

a given feature; whereas recall measures verify if the heuristics are able

to detect all the feature’s implementation elements. The precision and

recall measures were computed manually after validating the results with

the developers who provided the seed mappings (Step 4). We have not

evaluated each heuristic apart because the heuristics are dependent on

the results of each other. As mentioned in Section 4.4.1, as feature

mappings are updated by a given heuristic, they are used as basis by

others during the expansion process. For instance, the heuristic DOA is

only able to detect omitted attributes whether methods are detected and

mapped by other heuristics, such as DFP, DCC. The heuristic DOA is

an example of how it is hard to assess each heuristic separately due to

the dependency among them. For this reason, we calculated the precision

and recall measures of the entire mappings;

4. We manually validated the obtained results by the heuristics with the

developers who provided the seed mappings of the program families’

applications. This step was important in order to assess if the feature
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mappings generated by the heuristics were correct according to the

developers’ knowledge. To perform this validation, we provided the

feature mappings of the family applications and asked the developers

who are knowledgeable about the systems’ source code about about the

mappings. The developers analysed the generated mappings in order to

evaluate the correctness of the implementation elements realizing each

feature. This way, we could observe which implementation elements were

incorrectly mapped or were missing in feature mappings. It is important

to highlight that the number of mapped elements increases or decreases

depending on the number of added, removed or changed elements from

one version to another one realizing the features (Section 4.6.3). This

is valid to show that the number of elements is varying and that the

heuristics are able to detect them and update the generated feature

mappings;

5. Finally, we provided a general discussion involving the recall and preci-

sion measures achieved by the mapping heuristics and previously data

reported by other works, such as XScan (Nguyen et al. 2011) and COM-

MIT (Adams et al. 2010). A direct comparison was not performed as

it was not possible to run the COMMIT and XScan tools. The rea-

sons were twofold. First, the COMMIT tool was only developed for

supporting C code which is executed through Perl scripts. As a con-

sequence, it could not be run because the selected program families have

been developed in Java. Second, the XScan tool (Nguyen et al. 2011)

only detects non-functional crosscutting features and we only selected

two of them (Logger and Transaction), which have not been evalu-

ated in (Nguyen et al. 2011). Both aforementioned tools were chosen

because they are able to identify implementation elements that share

non-functional crosscutting features in individual evolving applications

(Section 4.2.2). We discussed if the mapping heuristics assessed on the

top of evolving program families achieved as good results as using these

existing tools. As the authors of these works calculated the precision and

recall measures for the evaluated crosscutting features using their tools,

we used the variation of reported values to guide our discussions. We

have not selected the same applications used in the assessment of the

aforementioned tools because some of these applications were developed

in C language. Additionally, they are individual evolving applications

and thus they are not part of evolving program families.

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA



Chapter 4. Mapping Expansion Heuristics 99

4.6.3

Data Analysis

This section shows the analysis of the mappings of each evolving ap-

plication of the program families. We adopted this strategy for two reasons:

(i) to explain the results associated with the common and variable features,

and (ii) to analyse the precision and recall measures of the family application

versions. The latter enabled us to systematically analyse the effectiveness of

the proposed heuristics during the expansion process of the mappings. This

way, we could verify if the change history analysis of the program family have

influenced positively or negatively the accuracy of the mappings over time.

OC Framework. The results of the precision and recall measures for

each version of the OC framework are shown in Table 4.3. The results are

presented for each selected feature. As it can be observed, the mapping

heuristics presented in 5 (five) out of 6 (six) features recall measures of 100%.

The feature Export was the only one that presented recall measures that

ranged from 93% to 97%. It is possible to observe that during the framework

evolution, the recall has improved when analysing the historical information.

In terms of precision, in 4 (four) out of 6 (six) features the values were higher

than 90%. The lowest measures are related to the features Logger (from 66%

to 71%) and Route (from 82% to 88%). The explanation behind the results

associated with the features Logger and Route is that the OC family contains

a set of classes that share the same code. These classes are responsible for

creating the graphical user interface (GUI) through the Decorator pattern

(Gamma et al. 1994). There are classes that do not directly realize those

features but they contain interaction similarity with the others that realize

them (Sections 4.4.2 and 4.4.3). Consequently, according to the strategies of

interaction similarity and cloned code implemented by the heuristics DFP and

DCC respectively, many classes were mapped to these features. As a result,

they generated false positives. The factor that contributed, for instance, to

the low precision of the feature Logger was because the main classes that

realize it have not significantly changed throughout the selected versions of the

OC framework. In general, this scenario is particularly real as non-functional

crosscutting features do not have their requirements often changed. In order

to circumvent this problem, a solution could be to increase the thresholds

associated with both heuristics during the analyses of the historical changes.

Consequently, it would be possible to rank and focus on methods with a

higher degree of interaction similarity or code clones during the analysis of the

evolving program families. The idea is to disregard pieces of code with small

similarity. Despite the feature Logger has presented low values in terms of
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precision, the feature Transaction achieved good results. Therefore, the lowest

results are not associated with crosscutting features.

Table 4.3: Precision (P) and Recall (R) Results for each Version of the OC
framework (OC family).

Versions

V1 V2 V3 V4 V5
Features P R P R P R P R P R
Export 100% 93% 100% 98% 100% 98% 100% 98% 100% 97%
Logger 66% 100% 70% 100% 71% 100% 71% 100% 71% 100%

Notification 92% 100% 93% 100% 93% 100% 93% 100% 93% 100%
Report 93% 100% 97% 100% 97% 100% 97% 100% 97% 100%
Route 82% 100% 84% 100% 87% 100% 88% 100% 88% 100%

Transaction 94% 100% 93% 100% 94% 100% 98% 100% 98% 100%

OC Applications. Tables 4.4, 4.5 and 4.6 show the results of the

precision and recall measures for Applications I, II and III, respectively. For

example, when comparing the values of the Applications I, II and III, it can be

observed that there was a variation regarding the feature Logger in terms of

recall measures. Basically, this difference occurred because the feature Logger

in Applications II and III is more concentrated on a set of classes; whereas it

is very scattered in the Application I. For instance, the heuristic DFP could

not capture the methods that realize the feature Logger in Application I

because they do not contain many similar method calls when compared to

other ones. In particular, they implement a specific routine and thus they

have a low interaction similarity. In general, the recall measures presented a

good level of coverage for capturing all the relevant implementation elements

of each feature. For this reason, the values were almost 100% for all the

features (except Logger in Application I ), which mean that the heuristics

presented more false positives than false negatives. The precision measures

for all the features improved when compared to the OC framework values.

For example, the precision measures for the feature Logger improved for all

the family applications. When analysing the variable features (i.e. Stock and

Importation) the mapping heuristics also presented precision measures higher

than 90% for each feature in all the versions; whereas the recall measures were

100%. Therefore, it is possible to observe from these values that the mapping

heuristics have shown a good effectiveness with slight variations during the

analysis of the family application’s history.
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Table 4.4: Precision (P) and Recall (R) Results for each Version of Application
I (OC family).

Versions

V1 V2 V3 V4 V5
Features P R P R P R P R P R
Export 92% 100% 92% 100% 92% 100% 92% 100% 92% 100%
Logger 70% 90% 71% 92% 73% 93% 73% 93% 73% 93%
Report 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Route 80% 100% 83% 100% 84% 100% 84% 100% 84% 100%

Transaction 94% 100% 94% 100% 94% 100% 96% 100% 96% 100%

Table 4.5: Precision (P) and Recall (R) Results for each Version of Application
II (OC family).

Versions

V1 V2 V3 V4 V5
Features P R P R P R P R P R
Logger 85% 100% 78% 100% 80% 100% 80% 100% 80% 100%
Report 92% 100% 92% 100% 92% 100% 92% 100% 92% 100%

Transaction 90% 100% 90% 100% 91% 100% 91% 100% 90% 100%
Stock 95% 100% 92% 100% 93% 100% 93% 100% 93% 100%

Table 4.6: Precision (P) and Recall (R) Results for each Version of Application
III (OC family).

Versions

V1 V2 V3 V4 V5
Features P R P R P R P R P R

Importation 97% 100% 98% 100% 98% 100% 98% 100% 98% 100%
Logger 76% 100% 75% 100% 78% 100% 78% 100% 78% 100%
Report 97% 100% 98% 100% 98% 100% 98% 100% 98% 100%

Transaction 92% 100% 92% 100% 92% 100% 92% 100% 92% 100%
Stock 92% 100% 93% 100% 91% 100% 91% 100% 91% 100%

RAWeb Applications. Tables 4.7, 4.8 and 4.9 present the results of

the precision and recall measures for the Applications I, II and III of RAWeb

program family. As can be observed, the recall measures were 100% for all

the features. This means that the heuristics were able to successfully detect

all the code elements realizing the features. There are mainly two factors that

contributed to these high results: (i) the evolution of the applications’ versions

is more related to the inclusion of entire classes, interfaces or methods instead

of changing existing pieces of code and (ii) most of these classes are included

to extend interfaces or abstract classes which were already previously mapped.

This occurs because most of the included classes are totally responsible for

implementing the analysed feature. In these cases, the heuristic DIS is able to

capture these occurrences of classes and interfaces as it keeps track the use

of already mapped classes during each family member history. For instance,

the heuristics achieved maximum values for the feature Report in all RAWeb

applications. This mainly occurred because most of the classes realizing the

feature Report implement the IListReport interface, which had already been

mapped in previous versions. The precision measures presented similar values

when compared to the OC program family. In general, the precision measures
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were higher than 82% for all the features. The lowest precision values are

related to the feature Dynamic tables in Application I. This occurred because

some classes that are used to realize the feature Dynamic Tables communicate

with classes realizing the feature Report. We can conclude that the heuristics

present similar behavior when analysing both program families.

Table 4.7: Precision (P) and Recall (R) Results for each Version of Application
I (RAWeb family).

Versions

V1 V2 V3 V4 V5
Features P R P R P R P R P R

Dynamic Forms 93% 100% 94% 100% 94% 100% 94% 100% 94% 100%
Dynamic Tables 82% 100% 83% 100% 86% 100% 86% 100% 86% 100%
Search Data 95% 100% 95% 100% 97% 100% 97% 100% 97% 100%
Import Image 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Report 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 4.8: Precision (P) and Recall (R) Results for each Version of Application
II (RAWeb family).

Versions

V1 V2 V3 V4
Features P R P R P R P R

Dynamic Forms 98% 100% 98% 100% 99% 100% 99% 100%
Dynamic Tables 96% 100% 97% 100% 97% 100% 97% 100%
Search Data 92% 100% 93% 100% 93% 100% 93% 100%

Report 100% 100% 100% 100% 100% 100% 100% 100%

Table 4.9: Precision (P) and Recall (R) Results for each Version of Application
III (RAWeb family).

Versions

V1 V2 V3 V4
Features P R P R P R P R

Dynamic Forms 97% 100% 97% 100% 98% 100% 98% 100%
Dynamic Tables 95% 100% 96% 100% 97% 100% 97% 100%
Search Data 93% 100% 93% 100% 93% 100% 93% 100%

Report 100% 100% 100% 100% 100% 100% 100% 100%

Figure 4.11 shows the number of added (add), changed (chg) and removed

(rem) elements for a set of compared versions in the OC program family.

These elements refer to the attributes, methods or classes. The goal is to show

in absolute numbers the effectiveness of the mapping heuristics for detecting

such elements during the historical analysis of the program family. According

to this figure, we can observe that the number of changed and removed elements

are fully detected by our heuristics. This good accuracy occurred due to the

comparison strategy, tools used in our implementation and the set of rules

defined for the expansion process (Sections 4.3.2 and 4.5.1). This enabled us

to deal with any types of changes in an efficient way, such as refactorings

of variable and method names, change of method parameters (Sections 4.5.1

and 4.5.2). In terms of added elements, the heuristics also presented relevant
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effectiveness, even not detecting all the elements. This was mainly observed

for the recall measures involving the features Export and Logger in the OC

framework and Application I.
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Figure 4.11: Number of Elements throughout the History in OC program
family.

Figure 4.12 illustrates step-by-step how the heuristics expand the

mappings and remove the mismatches by following the execution order

defined in Section 4.4.1. The pieces of code realize the feature Route

and were derived from the OC program family (Section 4.6.1). The pro-

vided seed mapping contains the following implementation elements al-

ready mapped to the feature Route: the removeRoute(Route) method of

the RouteServiceDB class, the makeModalConfig() and loadProperties()

methods of the RouteConfigurator class, and the removeRoute(Route)

method of the RouteProxy class. First, the heuristic DFP is run and it de-

tects the updateRoute(route) and removeRoute(Route) methods with in-

teraction similarity. As the removeRoute(Route) method has already been

mapped, DFP maps the updateRoute(route) method to the feature Route

as well. Second, the heuristic DCC detects that the removeRoute(route)

and removeRoute(route) methods are code clones, which are in the

RouteServiceProxy and RouteProxy classes, respectively. As a consequence,

the removeRoute(route) method in the RouteServiceProxy class is mapped

to the feature Route. Third, the heuristic DIS detects that there are super-

classes and interfaces, RouteServiceInterface and Service, which have

not been mapped to the same feature and that are inherited by these

mapped classes: RouteServiceProxy, RouteProxy and RouteServiceDB. As

a result, RouteServiceInterface and Service are mapped to the fea-

ture Route. Fourth, the heuristic DCF detects that all the methods of the

RouteConfigurator class were mapped. However, DCF observes that there

are no methods that call the makeModalConfig() method. As a consequence,

the makeModalConfig() method is removed from the mapping. Finally, the
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heuristic DOA detects the class attribute named instance of the RouteProxy

class and maps it to the feature Route.

public class RouteServiceDB extends Service {

public RouteServiceDB() {

RouteConfigurator.loadProperties();

}

public void removeRoute(route){

call.open();

call.setRouteCode(route.getId());

call.execute();

call.close();

…

}

public void updateRoute(route) {

call.open();

call.setRouteCode(route.getId());

call.execute();

call.close();

…

}

…

DFP

DCC

DIS

DCF

public classRouteConfigurator {

private static Modal makeModalConfig() {.}

public static void loadProperties(){..}

}

DOA

5

Seed Mapping

• Route

class RouteServiceDB

removeRoute(Route)

class RouteConfigurator

loadProperties(..)

class RouteProxy

removeRoute (route)

mapping operation

Legend:

Automatically mapped
Code incorrectly mapped

public classRouteServiceProxy implements

RouteServiceInterface{

public Service removeRoute(route) {

return theService.removeRoute(route);

}

}

makeModalConfig(..)

4

1

1

3
3

2

1

4

5

3

2

public classRouteProxy implements

RouteServiceInterface{

private staticRouteProxy instance;

public Service removeRoute (route) {

return theService.removeRoute(route);

}

}

3

2

Figure 4.12: Workflow of the Mapping Expansion Heuristics.

4.6.4

Discussions

We also provided a general discussion concerning the results achieved

by the proposed heuristics and the XScan (Nguyen et al. 2011) and COM-

MIT (Adams et al. 2010) tools. The discussion is based on the variations

of results reported in the assessment of these tools (Nguyen et al. 2011,

Adams et al. 2010). These variations were chosen because both studies did

not present the values for each version of the evaluated application. As men-

tioned in Section 4.6.2, a direct comparison with such tools was not possible.

We discussed if the mapping expansion heuristics applied to evolving program

families presented acceptable results in the light of existing alternative tools.

Both studies have evaluated a set of non-functional crosscutting features, whose

their definition is presented in Section 4.2.2. For example, the similarity strat-

egy supported by the XScan tool was evaluated for a set of non-functional

crosscutting features in different applications, such as: persistence, iterator,

undo. The precision measures ranged from 41% to 100% (Nguyen et al. 2011).

Analysing these results against our precision measures, we can observe that

our measures ranged from 66% to 100%, where the lowest values were 66% for

the features Logger and 82% for Route in OC program family and Dynamic

Tables in RAWeb family (Section 4.6.3). It is important to highlight that the

Logger feature was not evaluated in (Nguyen et al. 2011). In terms of recall,

the measures ranged from 89% to 100%, whereas our measures ranged from

90% to 100%.
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On the other hand, the COMMIT technique presented results of precision

and coverage measures that ranged from 45% to 75% (Adams et al. 2010). The

authors only presented the average values considering all the detected crosscut-

ting features. It was not reported precision and coverage measures associated

with each feature individually as we showed in Section 4.6.3. However, based on

the aforementioned measure ranges, it is possible to observe that they are infe-

rior to the results obtained with our heuristics. When analysing the variations

achieved by XScan (Nguyen et al. 2011) and COMMIT (Adams et al. 2010),

it is possible to observe general gains of the mapping heuristics related to both

techniques. On the other hand, it is important to highlight that COMMIT has

also a complementary additional goal that is to detect code elements that have

been changed together intentionally (Section 4.2.2). So, a direct comparison

can not be drawn in this case.

In fact, concrete arguments and deep conclusions could not be described

due to the restrictions of a direct comparison with such tools. When comparing

quantitatively and qualitatively these tools a set of factors addressed by our

mapping expansion heuristics has a direct influence in the results of precision

and coverage measures. These factors are the following: analysis of evolving

program families and their change history, the ability of dealing with any type

of feature and not only non-functional crosscutting features, the input of seed

mappings (Section 4.4).

4.6.5

Limitations

The limitations of the mapping expansion heuristics are related to two

factors: seed mappings and new features that emerged in the change history

of each family member. The seed mappings are required by our heuristics,

which depend on inputs provided by the developers. They should contain

the list of selected features and an initial set of implementation elements

that realize each feature (Section 4.3.1). It is important to highlight that

these seed mappings should be provided by developers who have reasonable

knowledge of the program family and its features. The seed mapping is a

pivotal characteristic that can influence on the good results generated by the

heuristics. However, our heuristics do not depend on a complete and correct

mapping as they have the goal of expanding feature mappings (Section 4.3.1).

In our evaluation, the seed mappings of the OC family were about 20%

of coverage considering the functional features and 15% for the non-functional

crosscutting features. On the other hand, the seed mappings of the RAWeb

family were about 10% for all the assessed features. This occurs because
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the functional features are often domain-specific and they are realized by a

set of specific modules, which are not widely scattered in program families

(Figueiredo et al. 2008, Figueiredo et al. 2011). Based on this coverage level,

our heuristics have achieved good results in terms of precision and recall

(Section 4.6.3). The second factor is related to new features that emerge in the

family application versions. If new features arise but are not previously defined

in seed mappings, they are not automatically captured by our heuristics. In

these cases, developers need to provide more than one seed mapping and

execute the heuristics from a given version that contains these features.

4.7

Threats to Validity

This section discusses the main threats to validity of this study according

to the classification proposed by Wohlin et al. (Wohlin et al. 2000).

Conclusion Validity. Three threats were identified in this category.

The first one is related to the set of selected features in our evaluation that

can have favored the results achieved by the mapping expansion heuristics.

To reduce this threat we selected functional features, which are related to the

core domain of the program families (i.e. Notification), non-functional features

which are scattered for the entire evolving program families (e.g. Logger) and

variable features (e.g. Stock, Import Image). Additionally, these features were

also chosen because they are representative in the program family domain as

well as they have evolved over time. The second one is related to the validation

of the mappings generated by the mapping heuristics. To reduce this threat

we validated the mappings with the two developers responsible for providing

the seed mappings of the selected program families. The third one is related

to the use of thresholds to detect omitted feature partitions. This is a threat

as the results can vary depending on the chosen values of the thresholds.

Construct Validity. Three threats were identified in this category. The

first one is related to the procedures that should be followed to evaluate the

mapping heuristics. Consequently, we defined clear procedures to be followed

and applied during the analyses of all applications. They were responsible for

making the evaluation more precise and thus reducing possible inconsistences.

The second one is related to the seed mappings which were conducted by

two developers in the OC family and one developer in the RAWeb family.

These developers are not the original developers of the program families but

have a good knowledge of the program families’ source code and features.

Additionally, it was also possible to validate the mappings generated by the

heuristics with them. Finally, the third one is related to the scalability issues
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of the algorithms. The scalability of the algorithms can be high due to the

number of family members to be analysed.

Internal and External Validity. One threat was identified for the

internal validity. It is related to the history of the evaluated program families.

To reduce this threat we chose program families that are representative in the

industry scenario and have been extensively maintained over time. Regarding

the external validity only one threat was identified. It is related to the

representativeness of the evolving program families. To reduce this threat we

selected industrial program families that have a satisfactory complexity and

significant size to be evaluated by the mapping expansion heuristics (Section

4.6.1).

4.8

Integration of the Mapping Heuristics with a Visualization Tool

The mapping heuristics also presented false positives and false negatives,

as discussed in Section 4.6.3. For this reason, a graphical support has to be

provided to help developers check and visually analyse the feature mappings.

In this context, the mapping expansion heuristics also fostered advances on

the visualization of evolving program families.

Existing diff and visualization tools only support the representation

of modular structures in a program, such as packages, classes and meth-

ods (Cederqvist 1993, Pilato 2004, Voinea et al. 2005, D’Ambros et al. 2009).

They do not support the visual representation of features scattered through

the program; even worse, they do not enable to visualize the evolution proper-

ties of the feature code. The mapping expansion heuristics enable developers to

visualize the differences among the feature mappings of the family member ver-

sions in an attractive and easier manner under different graphical visualization

perspective. The visualization of the mapping evolution was achieved through

the integration of the mapping expansion heuristics with a visualization tool

named SourceMiner Evolution (SME) (Novais et al. 2011). This integration is

relevant in software maintenance tasks as industrial software projects often

involve the analysis of how one or more features evolved in the code history

(Corbi 1989, Bennett and Rajlich 2000). The comprehension of feature evo-

lution is far from trivial as it relies on: (i) selecting versions and features of

interest of a given application, (ii) understanding the implementation elements

(e.g. methods and attributes) that realize a feature across multiple versions,

and (iii) identifying feature dependencies that emerged during the family ap-

plication evolution.

To tackle these problems, we defined the so-called proactive and
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interactive visualization strategy to enable feature evolution analysis

(Novais et al. 2012). Figure 4.13 illustrates the integration of the mapping

expansion heuristics, so called proactive phase, with the visualization tool, so-

called interactive phase. This proactive and interactive visualization strategy

helps developers in several tasks in the context of software evolution, such as:

(i) understanding the evolution of features in terms of their implementation

elements; (ii) comparing any versions of an evolving member of a program

family; and (iii) interacting with the views.
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Figure 4.13: Proactive and Interactive Visualization Strategy.

The SME tool provides three views to support the feature evolution

analysis. Each view provides means for analysing the feature evolution under

different perspectives: structure, inheritance and dependency. The first view

is based on a Treemap, which is a hierarchical 2D visualization that maps

a tree-structure into a set of nested rectangles. This view addresses the

structural perspective as it reveals how the software is organized into packages,

classes and methods. The second one is the Polymetric view, which addresses

the inheritance perspective. This view shows which classes extend others or

implement certain interfaces. The third view aims to portray the dependency

among the modules of an application. It uses interactive directed graphs to

describe coupling between software’s modules, in this case, software modules

that depend on each other. These views are produced directly from source code

and feature mappings produced by the mapping heuristics.

The SME tool produces interactive visualizations that allow developers to

select and compare any two versions of a given family member. The developer

can select any color and associate it to existing mapped feature. SME paints

the implementation elements that realize a feature with the color selected by

the developer. The developer uses a range bar slider to select any two sequential

versions to observe the differences between them (Novais et al. 2011). The
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three views will portray the elements of the most recent selected version and

compare it with the other one. As an example, consider two sequential versions

i and i + 1. The elements of version i + 1 are drawn in the views, and colors are

used to portray their differences from the previous one. Three different colors

are used to show developers the differences among the versions of the family’s

members. These colors are: light blue, dark blue and purple. SME paints in

light blue color the implementation elements that realize features in version i

but are removed in version i + 1. On the same token, if an implementation

element realizes a new feature in version i + 1, it is painted in dark blue.

A purple color is used to represent an element removed from a feature in

version i and added to another feature in version i + 1. The last case, many

times involve elements that have been removed from one feature and added

to another one, or vice-versa. For this reason, these elements are named as

transferred. Figure 4.13 shows the views and the colors used. SME also allows

developers interacting with the views as developers can choose if they accept

or not that a given implementation element, suggested by the heuristics during

the expansion process of the mappings, is mapped to a feature.

Figure 4.14 illustrates an example of the Treemap view. It shows the

evolution of the TransactionService class from version i to i+1. This

example was extracted from the OC program family (Section 4.6.1). In

TransactionService class there are some methods that realize the feature

Transaction. We can observe that the method shutdown() was added to the

version i+1 to realize the feature Transaction. On the other hand, the method

getProxy() was removed from the feature Transaction realization in the code

in version i+1. The heuristics detect both added and removed elements during

the family member evolution and generate the feature mappings that are used

by the views in SME. In this sense, the light blue color represents the method

getProxy() and the dark blue color represents the method shutdown().

In fact, we could observe how important the feature mappings are useful

for a variety of software maintenance tasks by means of the integration of the

mapping expansion heuristics with a visualization tool (Novais et al. 2012).

This integration can also be used to eliminate the occurrences of false positives

and false negatives in the feature mappings. We run two experiments and

observed that the existence of feature mappings is useful to the feature

evolution comprehension in evolving program families. As a consequence of the

feature evolution comprehension, developers can implement code refactorings

or even the complete reengineering of the program family. When developing

the program family reengineering, it is also possible to recover its architecture.

Additionally, developers are able to analyse the impact of a given refactoring
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Figure 4.14: Evolution of the feature Transaction in the Treemap view.

over other modules through of the feature mapping visualization (Section

2.2.1). It is not the scope of this thesis to describe the aforementioned

experiments. We intend to analyse in the future the use of this integration

in the refactoring tasks of degenerate program families.

4.9

Summary

The software maintenance and evolution tasks require developers to ex-

plicitly identify all the implementation elements that realize each feature before

implementing changes on it. The identification of the features’ implementation

elements is even more essential when developers need to analyse and maintain

evolving program families. For instance, developers may need to understand

how the features have evolved over time in a program family. Producing fea-

ture mappings of evolving applications of a same program family tends to be a

cumbersome and time-consuming task for developers. Therefore, the process of

expanding automatically feature mappings when considering evolving program

families is valuable.

By analysing the state-of-the art of feature mapping techniques, we

verified that there is no support to analyse the feature code and expand

feature mappings during the program family evolution. In this chapter, we

defined and formalized a suite of five mapping heuristics for expanding feature

mappings in evolving program families (Section 4.4). They rely on a multi-

dimensional historical analysis which encompasses both horizontal (versions)

and vertical histories (family members). Additionally, these heuristics are based

on the catalogue of mismatches (Section 4.3). We also design and implement a
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prototype tool, the so-called MapHist, that supports the use of the proposed

heuristics (Section 4.5).

The mapping heuristics are able to help developers understand how the

feature code has been evolved in evolving program families. We also successfully

evaluated the accuracy of the proposed mapping expansion heuristics in two

industrial program families named OC and RAWeb program families (Section

4.6). In summary, our results demonstrated that our heuristics achieved good

results in terms of precision (from 93% to 100%) and recall measures (from 66%

to 100%). The variation of such results showed the accuracy of the mapping

expansion heuristics when comparing with previously variations reported by

related work (Section 4.6.4). Finally, the integration of the mapping expansion

heuristics with the SME tool has been successfully used for feature evolution

comprehension in program families (Section 4.8). This integration allows

developers visualizing and analysing the feature evolution through multiple

views.
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