
3

Mismatches in Feature Mappings

As discussed in Chapter 2, the feature mapping activity is primordial

to guide software developers in several maintenance and evolution tasks, such

as understanding and restructuring the implementation of existing features.

This activity is even more valuable when little documentation of the software

systems is available or original developers are not involved in its development

anymore. Without feature mappings developers might, for instance, implement

a change in non-related modules or even miss relevant modifications for a

given change request (Revelle et al. 2005). As a result, these changes tend to

cause the program family degeneration and make difficult the identification

and classification of code elements realizing the features (Chapter 1).

Many techniques and tools have been proposed to support the fea-

ture mapping activity (Section 2.2). Even though these techniques and tools

have facilitated this activity, it is still manual and error-prone to a large

extent (Revelle et al. 2005, Robillard and Murphy 2007, Robillard et al. 2007,

Figueiredo 2009, Figueiredo et al. 2011). In particular, even when the fea-

ture mapping activity is partially supported by a tool, developers still need

to verify if their initial assignments are correct and complete. The goal is

to maintain correct and complete mappings according to the current ver-

sion of the software system. However, this is not trivial to achieve as each

feature is usually scattered and tangled across the modular decomposi-

tion of a software system (Eisenbarth et al. 2003, Robillard and Murphy 2007,

Antoniol and Gueheneuc 2005).

Correct and complete mappings are still more difficult to achieve when

there are cases where the realization of the same feature evolved differently

for each family member over time. This mainly occurs when it is required to

generate correct and complete mappings for each version of the family members

departing from an initial mapping (Chapter 4). In this context, the mapping

developers or reviewers need to check for each feature and each family member

version if: (i) elements in the module implementations are missed (i.e. false

negatives), and (ii) all the mapped elements are correct (i.e. false positives).

The occurrences of false negatives and false positives in feature mappings

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 3. Mismatches in Feature Mappings 43

are so-called mapping mismatches. The checking activities are essential to

guarantee the maximum mapping precision before the actual software change is

carried out. Nevertheless, software engineers are not equipped with any kind of

guidance to promote or review the correctness and completeness of their feature

mappings. As a result, the feature mapping activity is often cumbersome and

performed in an ad-hoc fashion.

In fact, the number of mapping mismatches tends to be high according

to recent studies (Revelle et al. 2005, Robillard et al. 2007, Figueiredo 2009,

Figueiredo et al. 2011). However, existing studies do not try to characterize

and classify actual recurring mismatches made by different developers. For

instance, they do not investigate which feature properties and module struc-

tures tend to lead to such mismatches. There is also no work in the lit-

erature that analyses which mismatch categories mostly influenced inaccu-

rate feature mappings. In particular, it is not known in the literature which

types of mismatches can arise during the feature evolution mapping. Addi-

tionally, there is no evidence of which mismatches are more frequent. This

limitation has also been becoming increasingly relevant given the growing

number of empirical studies that rely on the assumption of reliable feature

mappings (Revelle et al. 2005, Robillard et al. 2007, Greenwood et al. 2007,

Figueiredo et al. 2009, Ferrari et al. 2010, Figueiredo et al. 2011).

To tackle the aforementioned problems, this chapter presents the char-

acterization and classification of eight feature mapping mismatches commonly

made by developers. It answers the first research question of this thesis (RQ1

in Section 1.3). More specifically, we detect and classify the recurring mapping

mismatches concerning an analysis of a program family (Section 3.1). These

mismatches are associated with various properties of features and modules

in the source code (Section 3.2). We present concrete examples and discuss

potential reasons on why such mismatch categories might occur on feature

mapping activity. We also discuss and identify potential relationships among

the mapping mismatches (Section 3.3). In order to further evaluate to what

extent these mismatches also occur in wider contexts, we run two experiments

using two software systems (Section 3.4). The goal of such experiments is to

verify the occurrence rate of the mismatch categories. We also compare our

work with previous studies (Section 3.5) and summarize the chapter (Section

3.6).

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 3. Mismatches in Feature Mappings 44

3.1

Identifying Mapping Mismatches

This section describes the OC program family (Section 3.1.1) used for

identifying the recurring types of mapping mismatches. Additionally, it also

describes the study procedures (Section 3.1.2).

3.1.1

Target Program Family

As aforementioned in Section 1.1.2, the OC program family is from the

logistics domain of the oil industry. It has been developed in Java and consists

of seven evolving members. The family members were derived from a single

framework and are considered part of a program family for several reasons: (i)

they share functionalities from the original framework, and (ii) they underwent

various forms of changes, which resulted in significantly different functionalities

at different levels of granularity. The analysed framework and applications of

OC program family were chosen because: (i) they represent real applications

in the industrial scenario of the logistic domain; (ii) these applications have

been evolved since 2006 and contain many versions (horizontal history); and

(iii) the framework’s size is approximately 130 KLOC and the applications’

sizes range from 40 KLOC to 100 KLOC. Therefore, they have significant size

and complex modules.

Table 3.1: Features analysed in OC Program Family.
Features Description

Logger It saves information about program execution and/or errors.
Product It represents a product and its characteristics in the logistic

domain.
Report It represents the report exhibition, exportation and printing.

Notification It defines a system notification to users (e.g. email).
Route It represents a route of products between two points in the

logistic context.
Export It represents the generation of reports for different files formats

(e.g. Excel).
Scenario It represents exportation and importation properties of the

products.
Blend It identifies a blend of products, a composition of products.

Exception Handling It is the policy to handle exceptional conditions (i.e., the
strategy within try-catch blocks).

Persistence/Transaction It is responsible for storing and recovering data from the
database and ensuring ACID properties.

We selected the framework and two members of the OC program family

in order to reveal the mapping mismatches. Four versions of each family

member and framework were selected, which represent a total of 12 versions.

Table 3.1 describes the analysed features. A set of (non-)crosscutting features

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 3. Mismatches in Feature Mappings 45

was selected. The following crosscutting features of the OC program family

were chosen: Persistence/Transaction, Exception Handling and Logger. We

also selected features of the logistic domain: Product, Report, Notification,

Route, Export, Scenario and Blend. These features were chosen because: (i)

they represent important functionalities in this domain, and (ii) they are also

relevant under an architectural perspective of the program family as they have

affected the original architecture during the evolution of each system element.

3.1.2

Study Procedures

This section describes the study preparatory steps followed to detect

and classify the feature mapping mismatches made by developers, and explain

the reasons behind them. Basically, the study procedures were divided into

three stages. First, we selected the versions and features to be mapped in

each family member. As aforementioned, a set of twelve versions of the OC

program family was chosen. Multiple versions of the OC program family

were used for the feature mapping activity in order to find out how feature

realizations evolved over time. This was interesting for our analysis because

we could observe the nature of the feature mapping mismatches throughout

the family member versions. Second, two developers were responsible for

mapping the features’ implementation elements by using the ConcernMapper

tool (Robillard and Weigand-Warr 2005), which is a static tool (Section 2.2.2).

The developers had to produce mappings with precision and coverage as

maximum as possible. They mapped the same set of features in twelve versions

of the OC program family (Section 3.1.1). These developers are experienced

and have several programming skills, including extensive knowledge of object-

oriented programming and Java language.

The ConcernMapper tool (Robillard and Weigand-Warr 2005) was used

as its plug-in is well documented and has an easy integration with Eclipse. It

was used as the goal was to identify technique-agnostic mismatches made by

developers. We did this choice as our goal was to detect the highest number of

possible mapping mismatches when developers interact with the source code. In

fact, interaction with source code is also required in feature mappings partially

derived with hybrid and dynamic techniques (Sections 2.2.3 and 2.2.4). We

also observed that the identified mismatches can also occur on the use of

conventional dynamic techniques (Section 3.5.2).

Finally, all the feature mappings produced by each developer were

analysed by the author of the thesis in order to verify the differences among

them and thus observing and correlating the occurrences of the mapping

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 3. Mismatches in Feature Mappings 46

mismatches. All the other developers were involved in review meetings in

order to evaluate the mapping accuracy. They were involved in the following

activities: (i) the validation of detected false positives and false negatives

(mapping mismatches), and (ii) the discussion about the characterization

of detected common mapping mismatches (Section 3.2). The evaluation of

the feature mappings is representative as it contains several types of (non-

)crosscutting features with different sizes (number of code elements) and

scopes.

3.2

Catalogue of Mismatches in Feature Mappings

The mismatches were revealed by observing the feature mappings of the

selected family members (Section 3.1.1). The goal was to identify, characterize

and categorize recurring mapping mismatches in order to help developers avoid

them. A set of eight mismatches was characterized and classified into two broad

categories: (i) Feature Characteristics: types of mismatches that were found to

be related to particular properties of how features are realized in the source

code (Section 3.2.1), and (ii) Module Characteristics: types of mismatches that

are related to properties of the modularity units affected by the mappings, such

as classes, super-classes and methods (Section 3.2.2). For each category, we

identified a set of mismatches and described the reasons for their occurrences.

Additionally, we also used illustrative examples to explain each mismatch

subcategory. The categories of mismatches are related to missing or incorrect

code elements in the mappings. This means that for the absence of elements,

pieces of modularity units were omitted. That is, developers did not map either

coarse-grained or fine-grained elements responsible for realizing the feature.

Incorrect elements are those that, although mapped, do not contribute to

realizing the feature.

3.2.1

Feature Characteristics

This category is mainly related to feature implementation. The causes

for the occurrence of mapping mismatches refer to: (i) dependencies among

the implementation elements that contribute to realizing the same feature; (ii)

interaction among features which is based on how feature realizations share

implementation elements (e.g. methods); and (iii) the existence of modular-

ity anomalies, such as code smells (Fowler 1999, Figueiredo et al. 2009), as-

sociated with the feature implementation, such as the Feature Envy smell

(Fowler 1999, Figueiredo et al. 2009).

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 3. Mismatches in Feature Mappings 47

Multi-Partition Feature. The multi-partition feature is a specific case of

feature implementation scattered in several modules (classes or methods). A

scattered feature has multiple partitions when: (i) a sub-set of modules (i.e.

a given partition of the feature) that implement this feature contain explicit

references among them, and (ii) one or more of the other modules (i.e. forming

another partition of the same feature) do not contain explicit references to the

sub-set in (i). The lack of explicit references between feature partitions is the

reason for elements of a partition are not often included in feature mapping.

Figure 3.1 illustrates a case of multi-partition feature, which is represented by

a disconnected graph. According to this figure, classes in the A.1 sub-graph

contain explicit references to each other. On the other hand, classes in the A.2

sub-graph which implements the same feature are not explicitly connected to

classes in the A.1 sub-graph. This mismatch was made by two developers that

did not map the modules without explicit references (A.2). The reason is that

they started the mapping activity by browsing the code of classes that contain

explicit references to each other in a specific feature partition (A.1). As a result,

the other classes responsible for implementing the feature were not mapped.

This mismatch happened, for instance, with the feature Scenario. This feature

is very scattered and is realized by several classes that do not have explicit

references among them. It is common to observe that feature partitions are

often added, modified or removed through the program family evolution.

Feature A

Class

A.2

A.1

Figure 3.1: Multi-Partition Feature.

Overly Communicative Features. Overly communicative features are char-

acterized when there are two sets of interconnected classes realizing two differ-

ent features. Then, let’s consider the features A and B. There are dependencies

among the classes realizing the features A and B in order to allow the com-

munication between these features. Figure 3.2 illustrates how this mismatch

is characterized. We observed that this scenario occurred in the following sit-

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 3. Mismatches in Feature Mappings 48

uation. The developers start mapping the classes that implement the feature

A. After that, they incorrectly map a set of classes that implement the feature

B as being part of the feature A (or vice-versa). The reason for this mis-

match is that most of the classes of the feature A communicate with other

ones that implement the feature B, so called overly communicative features.

For instance, this scenario occurred with the features Scenario and Notifica-

tion in OC program family (Table 3.1). There are several classes related to the

feature Notification that communicate with classes of the feature Scenario,

such as CommonScenariumServiceDB class in Code 3.1. Therefore, developers

that started to map the feature Scenario also mapped classes related to the

feature Notification (lines 03-06) as being part of the feature Scenario. The

strong dependencies between the two features in the source code tend to cause

misunderstanding on feature mapping activity. It is naturally reasonable that

dependencies among the features’ implementation elements might be changed

or removed as program families evolve.

Feature A

Class

Feature B

Figure 3.2: Overly Communicative Features.

Code 3.1: Example of Communicative Feature.

01 public class CommonScenariumServiceDB {

02 public void s e ndNo t i f i c a t i on (Scenar iumInfo) {

03 N no t i f = s e r v i c eNo t i f i c a t i o nDa t a . bu i l dApprova lNot i f i c a t i on (. .) ;

04 N No t i f i c a t i o n S e r v i c e . g e t In s tance () . not i fyToAl lUser s (. .) ;

05 }

06 . . .

07 }

Label :

N − Feature No t i f i c a t i o n

Code Clones. It encompasses the existence of cloned code

in the source code. They are similar pieces of code imple-

menting the same feature in different modules (Johnson 1994,

Baxter et al. 1998, Kamiya et al. 2002, Basit and Jarzabek 2005,

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 3. Mismatches in Feature Mappings 49

Kim et al. 2005, Nguyen et al. 2009, Basit and Jarzabek 2009). The exis-

tence of multiple code clones is the reason for developers to miss or neglect

the mapping of all clone occurrences of a particular feature. In addition, if

the same clone instance is related to more than one feature, developers tend

to neglect the mapping of the clones of a given method to different features.

This scenario can become even more difficult when instances of code clones

increase or decrease over time.

Feature-Sensitive Code Smells. It is related to the existence of code smells

associated with the feature implementation in the source code (Fowler 1999,

Carneiro et al. 2010). Code smells are symptoms in the source code that

may be indicative of software quality problems (Fowler 1999). Although the

traditional definitions of code smells are not directly based on the defi-

nition of separation of features, some research work have associated their

occurrences with a poor modularization of features (Greenwood et al. 2007,

Figueiredo et al. 2009, Figueiredo et al. 2011). There are several kinds of code

smells (Fowler 1999) that usually make them hard to produce accurate fea-

ture mappings, such as Feature Envy, God Class, God Method. For example,

a method that implements a feature that is different from the main feature

realized by the class implementation is classified as Feature Envy. God Classes

are classes that implement more than one feature at the same time, whereas

God Method refers to methods that implement more than one feature. Two

specific types of mismatches associated with the occurrence of code smells were

observed in the OC program family and are discussed below. They are Features

Interlacing and Features Overlapping.

Feature Interlacing. It occurs when two or more features partially

affect one (or more) module(s) in common (Greenwood et al. 2007,

Figueiredo et al. 2008). The interlacing can be classified into two categories:

module and method-level interlaces. We have observed that the higher the

tangling among features in a module, the more difficult the feature mapping

activity is. For instance, there were cases where lines of code of specific

methods were not mapped to a particular feature. Basically, the main factor

associated with this mismatch is the existence of blocks of code inside the

class that do not implement the main purpose of a method. This means

that feature interlaces are often associated with the Feature Envy code smell

(Fowler 1999). Code 3.2 illustrates a slice of code that implements the fol-

lowing features: Exception Handling, Logger and Notification. It is possible

to observe the interlacing among these three features. In fact, this interlacing

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 3. Mismatches in Feature Mappings 50

hampered the developers’ understanding and performance during the map-

ping activity. However, feature interlaces are not necessarily associated with

bad OO programming practices; even when using well-known object-oriented

techniques, it is not possible to completely separate all tangled features of

interest (Figueiredo et al. 2008).

Code 3.2: Example of Interlacing among Features.
01 EH try {

02 i f (! i sLoggedUser) {

03 N notifyNewUserLogged (user) ;

04 }

05 EH } catch (Inva l idLog inExcept ion) {

06 L theLogger . l og (. . .) ;

07 EH } catch (Request Interna lExcept ion) {

08 L theLogger . l og (log in , requestExcept ion) ;

09 N mailLoginErrorToSupport (. .) ;

10 }

Labels :

EH − Feature Exception Handling

N − Feature No t i f i c a t i o n

L − Feature Logger

Feature Overlapping. It occurs when two features entirely share one or

more code elements (e.g. methods, attributes or classes). This mismatch

is different from feature interlacing because the shared elements entirely

contribute to both features rather than being disjoint. Feature overlapping

can be classified as component overlapping, operation overlapping, or lines of

code overlapping (Figueiredo et al. 2008). In these cases, developers tend to

map the implementation elements to one of the features and not mapping the

same elements to other ones that are realized by the same code fragments.

We mainly noticed that the existence of this mismatch is often related to the

occurrences of the following code smells: God Class, God Method, and Feature

Envy (Fowler 1999). Code 3.3 illustrates this mapping mismatch, which is

classified as lines of code overlapping. According to this figure, there is a

God Method that is responsible for starting a set of services. Lines of code

of the features overlap this God method, such as the Logger (line 04), Base

Data Access (line 03), Transaction (lines 6-7) and Instrumentation code (lines

05-08). We have observed two different problems: (i) different features being

implemented in the same method, and (ii) instrumentation code only used to

test the system and activate the transaction. As a result, this method was not

mapped for all the features that it realizes, such as Logger and Transaction.

Therefore, this element was omitted in feature mapping. The occurrences of

feature overlapping might also decrease or increase during the program family

evolution.

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 3. Mismatches in Feature Mappings 51

Code 3.3: Example of God Method.
01 private void c r e a t e L o g i s t i c S e r v i c e s () {

02 l o g i n S e r v i c e = Log inServ i ce . g e t In s tance () ;

03 u s e rS e r v i c e = UserServiceDB . ge t In s tance () ;

04 l o gS e r v i c e = LogServ ice . g e t In s tance () ;

05 i f (isInTestMode ()) {

06 t r an s a c t i o nS e r v i c e = Transac t i onSe rv i c e . g e t In s tance () ;

07 }

08 }

3.2.2

Module Characteristics

This category is associated with the modularity properties of the imple-

mentation elements. Basically, these properties are associated with interfaces

and super-classes, attributes, and entire classes and methods.

Interfaces and Super-Classes. It is characterized when developers map the

main class realizing the feature but miss to include its super-classes and in-

terfaces in the mapping. Developers often neglect super-classes and interfaces

in the application as they require the system navigation and analysis through

the program hierarchical structure. However, the opposite problem might also

occur: the incorrect inclusion of super-classes and interfaces in the mapping.

These are typically the cases of super-classes and interfaces comprising a frame-

work or API realizing a different feature. However, developers incorrectly map

these super-classes and interfaces as being part of the feature implementation

under analysis. Code 3.4 illustrates these two cases in the OC program fam-

ily. In the first case, the NotificationServiceInterface interface was not

mapped. It should be included in the mapping as it refers to the feature No-

tification, which is responsible by the notification services of the user. In the

second case, the super-class was incorrectly mapped as the AbstractAction

class is related to an API for manipulating users’ request. As program families

evolve over time, the inclusion, removal and change of interfaces and super-

classes are often.

Code 3.4: Piece of Code with Super Classes and Interfaces.
// Omitted i n t e r f a c e f o r the f e a t u r e No t i f i c a t i o n

01 public class No t i f i c a t i o n S e r v i c e implements No t i f i c a t i o n S e r v i c e I n t e r f a c e {

02 . . .

03}

// Incor rec t mapping f o r the f e a t u r e Scenario

01 public abstract class ScenariumAction extends AbstractAct ion {

02 . . .

03}

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 3. Mismatches in Feature Mappings 52

Omitted Attribute. It occurs when an attribute is missing in a feature

mapping (Adams et al. 2010). We found that in general developers tend to

mainly focus their mappings on the behavior implemented by the methods.

They often forget to observe the class data when producing the mapping of each

feature. Attributes in feature mappings are especially important as they might

indicate other types of implementation elements that take part of a feature

implementation. This occurs because an attribute might be used and modified

by more than one method. Code 3.5 illustrates an example where developers

only mapped the pieces of source code inside the checkUnsavedScenarium()

method. They did not map the infos and selectedInfo attributes that

realize the feature Scenario. The occurrences of omitted attributes may directly

increase or decrease when new methods realizing the features are added,

changed or removed during the program family evolution.

Code 3.5: Piece of the Code of Feature Scenario.

01 public class MainDesktop {

02 private Map<Code<ScenariumInfo >, ScenariumInfo> i n f o s ;

03 private ScenariumInfo s e l e c t e d I n f o ;

04 private boolean checkUnsavedScenarium () {

05 user = Cl i en t . g e t In s tance () . getUser () ;

06 context = ServerMonitor . g e t In s tance () . getLoginContext () ;

08 for (Scenar iumInfo i n f o : i n f o s . va lue s ()) {

09 . . .

10 }

11 return fa l se ;

12}

Deficient Module Structure and Documentation. It is related to the

absence or incorrect mapping of an entire implementation element. Entire

implementation elements are defined as classes and methods totally responsible

for realizing a feature. Intuitively, it is expected that they are easier to be

mapped to the feature because their entire structure contributes to the feature

implementation. However, this mismatch was commonly found in OC program

families, and the reasons can be associated with a series of module-specific

properties. Some of these reasons found were: (i) names of classes, methods

and attributes that do not directly reflect the feature functionality - i.e. there is

no naming pattern for variables and methods during the system evolution; (ii)

absence of detailed comments in the module code in order to help understand

its purpose; and (iii) classes and methods that are misplaced in packages and

classes, respectively. Examples of features omitted in the OC program family

were Scenario and Notification. For instance, there is a feature Permission

in the OC program family, which is responsible for defining permissions for

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 3. Mismatches in Feature Mappings 53

several types of features, such as Scenario and Product. This way, two possible

steps followed by developers to map the implementation elements realizing the

feature Permission are: (i) they identify the dedicated classes related to the

feature Permission, and (ii) they select the exact occurrences of methods that

realize the permission of the feature Scenario.

Code 3.6 shows the FolderAdminFrame class that is responsible for

allowing access to the administrator tree and more specifically the folders of

the feature Scenario, such as the getFrame() method. This method is part of

the feature Permission but it was not mapped by two developers. The reason

for this mismatch is that developers did not verify which methods implement

the permission of the feature Scenario. For this reason, this entire method was

incorrectly mapped to the feature Permission. On the other hand, for the case

where implementation elements were incorrectly mapped we noticed that this

mismatch is also related to the existence of well-known code smells: Feature

Envy, God Method and God Class (Fowler 1999). In both cases, developers

tend to incorrectly map parts of the class structure to the feature. As this

mismatch refers to the existence of entire classes and methods realizing a

feature, its occurrences may often arise over time.

Code 3.6: Example of Features Scenario and Permission

01 public class FolderAdminFrame extends GenericFrame {

02 private ScenariumInfoTree in foTree ;

03 public FolderAdminFrame getFrame (GenericFrame , ScenariumInfoTree) {

04 frame = GenericFrame . getGenericWindow (. .) ;

05 i f (frame == null) {

06 frame = new FolderAdminFrame (. .) ;

07 }

08 return new FolderAdminFrame (. . .) ;

09 }

10 . . .

11}

3.3

Correlating the Mapping Mismatches

The previous sections presented eight mapping mismatches grouped

into two categories. These mismatches are not fully independent, and the

occurrence of a mismatch can directly or indirectly imply another one and

vice-versa. This section discusses the potential relationships between the

mismatches observed in the mappings of the OC program family (Section

3.2). Documenting such relationships help developers understand and identify

alternative reasons for a particular mapping imperfection. Figure 3.3 provides

an overview of the mapping mismatch relationships, which are represented

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 3. Mismatches in Feature Mappings 54

by arrows connecting two mismatches. The relationships are named “can be

related” and “can influence”. The term “can be related” represents the case

when a mismatch can be seen, and consequently quantified over different

perspectives depending on its granularity and specificity. The term “can

influence” means the existence of a mismatch can affect the emergence of

another one.

c
Deficient Module Structure and

Documentation

Omitted Attribute

Interfaces and Super-Classes

Code Clones

Multi-partition Feature

Overly Communicative Features

Feature Overlapping

Feature Interlacing

can be related

can be related

can be related

can be related

can influence

can influence

can be related

Figure 3.3: Mapping Mismatches Relationships.

The mismatch classified as Deficient Module Structure and Documen-

tation is that one with more associations with other mismatch categories

(Figure 3.3). In this case, it contains a relationship indicating that it “can

be related” to the following mismatches: Feature Overlapping, Interfaces

and Super-classes, Multi-Partition Feature, Code Clones and Overly Com-

municative Features. For instance, Code 3.4 shows an example of mapping

mismatch where the NotificationServiceInterface interface is missed;

i.e. it is a false negative in feature mapping. This mapping mismatch can

be analysed and quantified under two different perspectives: (1) the entire

NotificationServiceInterface interface or the deficient module structure

and documentation was not mapped to the feature Notification, or (2) the

interface and super-class were not mapped to the feature Notification. Hence,

this mapping mismatch can be quantified as: Deficient Module Structure and

Documentation and/or Interfaces and Super-Classes. The other relationships

follow the same reasoning. However, they need to be carefully analysed depend-

ing on each case. This explanation also applies to the relationship between the

following mismatches: Interfaces and Super-classes and Overly Communicative

Features.

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 3. Mismatches in Feature Mappings 55

Regarding the relationship named “can influence”, we observed in our

analyses that it occurs, for instance, between the following mismatches: Feature

Interlacing and Omitted Attribute. This is due the cascade effect that the

former mismatch can generate. For instance, as described in Code 3.5 there

is a interlace involving the feature Scenario and other ones related to the

system core. This feature interlace might have affected the manifestation of

the mapping mismatch, which in turn caused the attributes being omitted in

the mapping. Analogous reasoning applies to the relationship between Multi-

Partition Feature and Code Clones.

3.4

Experimental Evaluation

This section presents the evaluation of the mapping mismatches through

two experiments. It shows and discusses the main results in terms of the

frequency rate in which mapping mismatches occur in other contexts.

3.4.1

Selected Software Systems and Features

We used two software systems in the experiments in order to verify

the occurrence of mapping mismatches. The chosen systems were: (i) a typi-

cal Web-based system called Health Watcher (Soares et al. 2002), and (ii) an

evolving software system called MobileMedia (Figueiredo et al. 2008). We se-

lected the object-oriented versions implemented in Java of both systems. A

set of (non-)crosscutting features was selected for each software system. Five

features from Health Watcher were selected: Concurrency, Distribution, Ex-

ception Handling, Persistence and View ; and four features from MobileMedia:

Exception Handling, Security, Sorting and Favourites. Descriptions of these

features are provided in Table 3.2. Descriptions of the features Exception Han-

dling and Persistence are presented in Table 3.1. These features were chosen

because (i) they are representative in these software systems, and (ii) they

are different in terms of functionality and granularity. Therefore, the selec-

tion and assessment of different kinds of features were important to enable us

to observe the occurrence of mismatches performed by developers during the

mapping activity.

It is important to highlight that the members of the OC family do

not contain detailed and extensive documentation, but only the source code

remains as basis artefact (Section 3.1.1). On the other hand, both Health

Watcher and MobileMedia systems contain detailed documentation, such

as application domain, description of the features, main classes involved

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 3. Mismatches in Feature Mappings 56

Table 3.2: Features analysed in Health Watcher and MobileMedia systems.
Systems Features Descriptions

HealthWatcher Concurrency It provides a control for avoiding inconsistent informa-
tion stores in the system database.

Distribution It is responsible for externalizing the system services at
the server side and supporting their distribution to the
clients.

View It is responsible for processing the web requests submit-
ted by the system users.

MobileMedia Security It improves the user’s privacy and it requires authen-
tication to access to albums (i.e. login and password).

Sorting It provides a service for sorting media by the number of
accesses.

Favourite It provides services to set favourite media and visualize
them.

in the system architecture (Soares et al. 2002, Figueiredo et al. 2008). These

systems were chosen as: (i) they were developed by different designers, which

complicated even further the feature mapping activity; (ii) we needed reliable

and complete reference mappings, which were performed independently by

the original developers; and finally (iii) the diversity of the systems was

also important to analyse how the mismatches are representative under the

perspective of different developers.

3.4.2

Experimental Procedures

We ran the experiments with 26 software developers from two institu-

tions. In the first one, 13 undergraduate Computer Science students in their

final year of study mapped features onto Health Watcher. In the second one,

13 graduate (Master and PhD) students mapped features onto MobileMedia.

All these developers claimed to have knowledge of Java and object-oriented

programming, Web technologies, database systems, UML and Software En-

gineering. Before starting the experiment, it was explained to the developers

how the mapping activity should be done. This demonstration worked as a

training session since not all developers were familiar with the feature map-

ping activity. In this training session, we demonstrated the mapping activity

of one feature being realized by two classes of a software system. We used a

different feature and software system to avoid biasing the experiment results.

The training session also included some guidelines of feature mapping activity,

for instance, it was indicated that two or more features could be mapped to

the same code fragment.

In the experiment we focused on a manual mapping activity in or-

der to maintain the goal of the study (Section 3.1.2). Developers involved

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 3. Mismatches in Feature Mappings 57

in the experiment received the source code of four classes of each sys-

tem: Health Watcher and MobileMedia. The chosen classes in the Health

Watcher system were EmployeeRecord, Employee, ServletInsertEmployee

and HealthWatcherFacade; whereas in the MobileMedia system were

MediaData, AlbumListScreen, AlbumController and MediaListController.

We restricted our experiment to four classes and three features of each sys-

tem because we wanted to be able to complete the experiment in one hour.

These classes were selected because they are representative and important to

realize the chosen features. Additionally, they are relevant classes because be-

long to different layers in the system architecture. We selected few classes in

the experiment as the feature mappings were performed by hand by the de-

velopers. We did this choice in order to avoid manipulating many variables,

such as the use of tools. In addition, as aforementioned our study is centered

on observing the recurring mapping mismatches performed by the developers;

i.e. technique-agnostic mismatches. The produced mappings were also used

to analyse the impact of feature mappings on crosscutting feature measures

(Figueiredo et al. 2011).

The detection and quantification of the mapping mismatches were per-

formed in a manual way. First, we separated the mappings performed by each

developer considering each feature. Second, we started to analyse the map-

pings and associate them with the types of mapping mismatches (Section 3.2).

During our analyses, we only count one type of mismatch per wrongly mapped

code fragment. We selected the mismatch category that, according to the de-

veloper, was the main cause for a mapping mismatch. It is also important

to highlight that other reasons for the mismatches may exist, and this may

be further explored in future work. However, we focused on the analysis of

the mappings under the perspective of our mapping mismatch classification

derived from the analysis of the OC program family (Section 3.2).

3.4.3

Quantifying the Mapping Mismatches

Figure 3.4 presents the occurrence rate of the mismatches in both Health

Watcher and MobileMedia systems considering the 26 developers involved

in the experiments. This figure is organized in terms of the categories of

mismatches, the total number of mismatches for each type of category, and

the total number of developers that made this mismatch in both systems

considering all the features. For the set of selected classes in the Health Watcher

system, the following mismatches were not detected: Feature Overlapping, Code

Clones and Multi-partition Feature. On the other hand, it was not observed

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 3. Mismatches in Feature Mappings 58

the following mismatches in the MobileMedia system: Code Clones, Overly

Communicative Features and Interfaces and Super-Classes. The occurrences

of code clones were the only one mismatch not observed in both systems

considering the set of selected classes in the experiments. The strategy that

we followed to detect it was to search for code blocks with similarity degree

equal or larger than 90% among the classes realizing the same feature. We

realized that the occurrences of code clones could not be found in the software

systems used in the experiment because they were implemented from existing

frameworks and APIs; it was visible that the goal of their implementation was

to minimize the occurrence of redundant code.

Developers- 20

#Developers - 5

#Developers - 23

#Developers - 15

#Developers - 13

#Developers - 10

#Developers- 13

0 20 40 60 80 100 120 140

Deficient Module Structure and Documentation

Feature Overlapping

Feature Interlacing

Omitted Attribute

Code Clones

Interfaces and Super-Classes

Multi-Partition Feature

Overly Communicative Features

Occurence Rate of the Mapping Mismatches

Figure 3.4: Mapping Mismatches in both Health Watcher and MobileMedia
systems.

According to these results, we observed that the developers tend to make

the same mapping mismatches. For example, Deficient Module Structure and

Documentation mismatch was evident for almost all developers considering the

following features: Distribution, View and Sorting. Generally, these mismatches

tend to occur when there are few methods (e.g. 1-2 methods) inside a class.

However, this mismatch occurred even in a class totally responsible for realizing

the feature View (e.g. the ServletInsertEmployee class). We observed that

the developers mapped only some lines of code of the ServletInsertEmployee

class to the feature View. However, the developers should have mapped it

completely instead.

The occurrence of Feature Interlacing is mainly related to specific cross-

cutting features, namely: Exception Handling, Security and Concurrency.

The reason is that crosscutting features are tangled with other features

in object-oriented systems (Figueiredo et al. 2011, Greenwood et al. 2007,

Figueiredo et al. 2009, Figueiredo et al. 2008). The occurrence of Multi-

Partition Feature was more evident in fine-grained features, such as Favorites

and Sorting. Similarly to crosscutting features, the implementation of these

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 3. Mismatches in Feature Mappings 59

fine-grained features tends to be scattered over several methods. The mis-

matches Omitted Attribute and Interfaces and Super-Classes tend to uniformly

occur with different kinds of features. We discuss below some occurrences of

mapping mismatches grouped by feature.

We observed that the feature Distribution is related to the following

mismatches: Deficient Module Structure and Documentation, Overly Commu-

nicative Features and Interfaces and Super-Classes. Code 3.7 illustrates an

example of the Interfaces and Super-Classes mismatch where all the develop-

ers neglected the mapping of the IFacade interface (line 02) to the feature

Distribution in Health Watcher system. In addition, they did not also map the

entire rmiFacadeExceptionHandling() method (lines 04-06), which provoked

the Deficient Module Structure and Documentation mismatch. Regarding the

Overly Communicative Feature mismatch, 13 developers made it due to the

fact that there is a large interaction between classes of the feature Distribution

and classes that access the database repository. As a consequence, they mapped

the classes that access the database as being part of the feature Distribution.

The same reasoning behind this mismatch applies to the feature Persistence.

The mapping mismatches associated with the feature Security were:

Omitted Attribute and Feature Interlacing. For instance, most of the developers

did not map the passwd attribute, which contributes to realizing this feature.

In addition, the mapping of this feature includes lines of code tangled with

other features. As a consequence, many developers did not map all the lines of

code. It is possible to perceive how these mismatches are related and in fact,

one can influence another (Section 3.3). However, this is not always true and

for this reason, they were documented separately.

Code 3.7: Piece of Code of the Feature Distribution.

01 public class HealthWatcherFacade extends java . rmi . s e r v e r .

UnicastRemoteObject

02 implements IFacade {

03 . . .

04 private void rmiFacadeExceptionHandling (. .) {

05 . . .

06 }

07}

The feature Sorting is mainly realized by the MediaListController

and MediaData classes. This feature is scattered over four methods of the

MediaListController class as illustrated in Code 3.8. Two of these methods,

exchange() and bubbleSort(), are totally dedicated to realizing the feature

Sorting. Two mapping mismatches were recurrently associated with this fea-

ture. First, most of the developers (D2, D3, D5, D7, D12, D13) did not map at

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 3. Mismatches in Feature Mappings 60

least one of these methods (e.g. Deficient Module Structure and Documenta-

tion mismatch) or they incorrectly mapped other methods that do not realize

the feature Sorting. Second, developers only mapped a few implementation

elements that realize the feature, and consequently characterized the Multi-

Partition Feature mismatch. In fact, most of the developers did not map the

method calls that contribute to realizing the feature Sorting (lines 03, 05, 07,

09-11). The occurrence of Multi-Partition Feature mismatch also occurred for

the feature Favourite.

Code 3.8: Piece of code of the Feature Sorting.
01 public boolean handleCommand(Command) {

02 . . .

03 showMediaList (. . .) ;

04 . . .

05 showMediaList (. . .) ;

06 }

07 public void showMediaList (. . .) {

08 . . .

09 i f (s o r t) {

10 bubbleSort (medias) ;

11 }

12 . . .

13 }

14 private void exchange (MediaData , int , int) {

15 . . .

16 }

17 public void bubbleSort (MediaData) {

18 . . .

19 }

The feature Exception Handling is mostly associated with the Feature

Interlacing mismatch. Code 3.9 illustrates an example of the occurrence of

this mismatch in the MobileMedia system. The main issue with the mapping

of this feature is that most of the developers mapped the entire code inside

try-catch statements. That is, developers tend to associate the entire try block

with the feature Exception Handling. As illustrated in Code 3.9, the pieces of

code mapped to the feature Exception Handling do not actually include the

code fragments on lines 02 to 04. Basically, this mapping mismatch occurs due

to the interlacing of the features Exception Handling and Security.

Code 3.9: Piece of Code of the Feature Exception Handling.
01 try {

02 password = getCurrentScreen () ;

03 getAlbumData () . createNewAlbum (. .)

04 getAlbumData () . addPassword (. .) ;

05 } catch () {

06 . . .

07 }

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 3. Mismatches in Feature Mappings 61

3.4.4

Threats to Validity

This section discusses the threats to validity according to the classifica-

tion proposed by Wohlin et al. (Wohlin et al. 2000).

Conclusion Validity. We identified two possible threats to this cat-

egory: (i) reliability of mappings : subjective decisions were made during the

feature mapping activity, and (ii) heterogeneity of developers : two develop-

ers were involved in the mapping activity of the OC program family (Section

3.1.1) and 26 developers were involved in the experiment regarding the Health

Watcher and MobileMedia systems. To reduce the risks associated with the

category (i) for all the software systems, the developers received instructions

before starting the feature mapping activity. In order to classify and cate-

gorize the mapping mismatches, the developers studied the selected systems

(Section 3.1.1). In addition, there were meetings with the development team

in order to obtain the needed knowledge to accomplish this activity in a bet-

ter way. Considering the two experiments, the developers received instructions

and explanations about the software systems and features before starting the

mapping activity. We tried to reduce the risk (ii) involving developers with

similar knowledge. Two experienced developers were in charge of feature map-

ping activity of the OC program family. These developers are not the original

developers of the OC family but have a good knowledge of is source code and

features. On the other hand, a group of 13 undergraduate and post-graduate

Computer Science students were selected to accomplish the experiment us-

ing the Health Watcher and MobileMedia systems, respectively (Section 3.4).

All these students claimed to have experience in the following topics: object-

oriented programming, Java language, Web technologies, database systems,

UML and Software Engineering.

Construct Validity. We identified the following risks: (i) mapping

mismatches treated in an inadequate way : specific mismatches that should

be treated in a different way might have biased the results, (ii) interaction

of the developers with the system: the developers were aware of the proposed

study. To reduce the risk (i) we defined procedures to be followed during the

feature mapping activity and quantification of the mapping mismatches. The

quantification strategy of the mismatches was performed in a manual way

in which we analysed them under a perspective of each feature. However,

other deductions could be performed based on the mapping mismatches

relationships (Section 3.3). Regarding the risk (ii) the developers were prepared

to accomplish this task through the instructions they received before the

feature mapping activity. These developers were selected because they have

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 3. Mismatches in Feature Mappings 62

knowledge of the relevant topics addressed in the experiments. In addition,

they performed the experiment in a voluntary way.

Internal and External Validity. We only identified one possible risk

for internal validity: the complexity of the features. This complexity might have

made one developer make more mismatches than others. However, this threat

was minimized because all the developers mapped the same set of features using

the same versions of the system. Threats to external validity are conditions that

allow results generalization. The first identified risk was the selected systems. In

order to minimize this threat, we chose members of an industrial program fam-

ily from the logistic domain named OC program family, a typical Web-based

system named Health Watcher (Soares et al. 2002, Greenwood et al. 2007),

and an evolving software system named MobileMedia (Figueiredo et al. 2008).

All the target software systems are representative from different domains

and they have a significant size. Health Watcher and MobileMedia were ex-

tensively used and evaluated in previous research work (Soares et al. 2002,

Greenwood et al. 2007, Figueiredo et al. 2008, Ferrari et al. 2010). In addi-

tion, these systems contain many types of (non-)crosscutting features with

different complexity degrees. This way, they enabled us to observe the differ-

ences among the feature mappings. It is important to mention that we only

evaluated a part of these systems in the experiments (four classes of each one).

As a consequence, we do not observe, for instance, occurrences of Code Clones

in these classes.

3.5

Limitations of Related Work

This section discusses how our research addresses the limitations of

existing work. The key related work are classified into two categories: feature

mapping studies and techniques for supporting feature mapping activity.

3.5.1

Feature Mapping Studies

A few recent studies were conducted to better understand the feature

mapping activity (Revelle et al. 2005, Robillard et al. 2007, Figueiredo 2009).

For instance, Robillard et al. (Robillard et al. 2007) conducted an empirical

study to assess the overall accuracy of interactive manual mapping activity

in four systems. The subjects of this study used the ConcernMapper tool

(Robillard and Weigand-Warr 2005) to perform the feature mappings. The

authors selected 16 features in the target systems. For each feature they asked

three subjects to produce feature mappings. However, in this work the authors

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 3. Mismatches in Feature Mappings 63

do not identify and classify the recurring types of mapping mismatches made

by the subjects. In addition, they do not have the intention to ameliorate the

accuracy of the mappings performed by the subjects.

Revelle et al. (Revelle et al. 2005) identified which factors influenced

the consistent feature mapping activity in two case studies. Two developers

were instructed to map features in the source code. They also provided some

guidelines to help developers map features in the source code. However, the

influential factors identified by the authors are very general, and they do

not explicitly reveal the actual mapping mismatches made by developers.

In addition, the authors do not catalog the mapping mismatches taking

into consideration certain properties related to specific features and/or code

structure. In addition, both Robillard’s and Revelle’s studies do not consider

different types of (non-)crosscutting features.

Figueiredo (Figueiredo 2009) conducted an experimental study to investi-

gate the accuracy of feature mappings performed in a manual way. He evaluated

the impact of the mappings on the precision of metrics to quantify crosscutting

features properties. The amount of hits, false positives and false negatives for

each feature mapping was measured. His work is different from ours because

he has not identified or categorized the mapping mismatches made by devel-

opers. As a consequence, developers are still left without any guidance on how

to correct and extend their feature representation.

Revelle and Poshyvanyk (Revelle and Poshyvanyk 2009) evaluated 10

different techniques that encompass various combinations, such as textual,

dynamic and static analyses. The authors selected two open source systems

for assessing the effectiveness of these techniques at finding implementations

of features. They did many combinations in order to identify which ones tend

to improve the accuracy of the produced mappings. They also found that on

average the use of marked traces is more effective to discover more methods

that realize a feature than full traces. This work is different from ours because

despite analysing several combinations in terms of feature mapping techniques,

Revelle and Poshyvanyk do not characterize and classify the types of mapping

mismatches performed by each combination of tools.

3.5.2

Mapping Mismatches and Existing Techniques

This section discusses aforementioned related work with the in-

tent of describing their limitations when considering mapping mis-

matches. As mentioned in Chapter 2, some tools and techniques sup-

port developers in manually performing feature mappings, such as

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 3. Mismatches in Feature Mappings 64

ConcernMapper, ConcernTagger, FEAT, Feature Manipulation En-

vironment, and intentional views (Robillard and Weigand-Warr 2005,

Mens et al. 2006, Robillard and Murphy 2007). There are several semi-

automatic techniques for supporting the feature mapping activity

(Eisenbarth et al. 2003, Mens et al. 2006, Robillard and Murphy 2007,

Kellens et al. 2006, Antoniol and Gueheneuc 2005, Savage et al. 2010,

Adams et al. 2010). The evaluation of these techniques focuses mainly on

hits, false positives and false negatives. In general, the rate of mapping mis-

matches is often very high (Revelle et al. 2005, Figueiredo 2009). However,

all these studies do not reveal the nature of mismatches made manually by

developers when either completing or correcting feature mappings. Our work

is different because we are interested in characterizing and classifying the

recurring mapping mismatches. This classification is also useful for enhanc-

ing feature mining techniques. The categories of mapping mismatches were

identified in the exploratory study using a static technique, ConcernMapper

tool (Robillard and Weigand-Warr 2005). However, these mismatches can

also occur on the use of dynamic techniques. As aforementioned in Section

2.2.3, the dynamic techniques are not able to detect, for instance, overlapping

features. This occurs because they rely on the analysis of execution traces that

are executed for a specific scenario and considering only user-level features.

Other mapping mismatches follow the same rationale, such as Multi-Partition

Features, Code Clones.

3.6

Summary

Developers and maintainers need constantly to understand, restructure

and extend features during the maintenance and evolution tasks. The feature

mapping activity is important to allow developers to have the full knowledge

about all the implementation elements realizing a given feature. Even though

there are many tools and techniques that facilitate the feature mapping

activity, the developers still need to verify if their mappings are correct and

complete. However, there is no characterization and classification of which

mapping mismatches are more frequent in the literature.

To fill this gap, this chapter presented and discussed a series of recur-

ring mismatches made by developers when mapping a set of (non-)crosscutting

features. Initially, we analysed the feature mappings of an evolving program

family. Two experienced developers were in charge of mapping 10 features

in the source code of OC family versions by using the ConcernMapper tool

(Robillard and Weigand-Warr 2005) (Section 3.1). We classified the mapping

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 3. Mismatches in Feature Mappings 65

mismatches into two categories, depending whether a feature or module prop-

erty was the most influential factor for the mismatch (Section 3.2). For each

category, we described a set of mismatches and explained how they occur. For

instance, high feature tangling (Greenwood et al. 2007, Figueiredo et al. 2009)

is interleaved with other features at the level of methods or modules; and overly

communicative features are characterized when there are many dependencies

among classes that implement different features. As a consequence, these in-

tricate feature realizations tend to harm the correct identification of elements

in the source code. We also identified the relationships among the respective

mapping mismatches (Section 3.3).

As a second step, we verified the frequency rate of the mismatch cat-

egories through two experiments (Section 3.4). These experiments were im-

portant in order to verify if in fact the categorized mapping mismatches are

representative and relevant. These experiments involved 26 developers and two

different systems with various features. The analysis of the feature mappings

demonstrated the occurrence of many documented mismatches. The experi-

mental results confirmed that the mapping mismatches often occur when de-

velopers need to interact with the source code.

The feature mapping mismatches tend to be more frequent in degenerate

program families due to the different realizations of the same feature for

each family member. In this sense, the catalogue of mapping mismatches is

a key step to reduce the occurrences of false positives and false negatives

during the generation of feature mappings in degenerate program families.

These feature mappings are generated by a set of heuristics, so-called mapping

expansion heuristics (Chapter 4). In particular, this catalogue is also useful as

the mapping expansion heuristics identify features’ implementation elements

departing from an initial mapping, which can have even more mapping

mismatches.

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

