
2

Background and Related Work

A key activity to support the analysis of degenerate program families

is the identification of how each feature is realized in the source code. This

activity is called feature mapping. Once that feature mappings are produced

for all family members, existing techniques can be used to recover fundamental

information about each feature, such as its variability degree. Based on these

analytical activities, refactoring strategies can be applied to address symptoms

of program family degeneration.

Therefore, this chapter provides an overview of existing techniques to

support feature mapping, design reengineering and refactoring activities. Along

the sections, we also present an overview of the limitations of such techniques

to be applied to the context of recovering degenerate program families. Given

the empirical nature of certain contributions of this thesis, we also describe

some existing studies on addressing different aspects of degenerate program

families. Before discussing those techniques, we present an overview of the

main concepts used throughout this thesis.

The remainder of this chapter is organized as follows. To begin with, the

terminology addressed in this thesis is defined in Section 2.1. Subsequently,

Section 2.2 discusses the feature mapping activity and its relevance to soft-

ware maintenance and evolution tasks. It also discusses other similar terms

commonly adopted in the literature, such as concept assignment problem, fea-

ture location and traceability. The definition of these terms is important to

clearly understand their similarities and differences when comparing to the fea-

ture mapping activity. In addition, this section presents a set of existing tech-

niques and tools for supporting feature mapping activity. Section 2.3 presents

a critical review of existing studies that describe reengineering methodologies

and techniques to improve the reusability of software infrastructures. These

methodologies and techniques try to create design abstractions of a software

system from different software assets, such as source code and design docu-

mentation. Their goal is to help developers understand the software assets and

improve their reusability. Section 2.4 presents some studies that explore the

code history as information source with the goal of identifying certain types

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA



Chapter 2. Background and Related Work 28

of features in individual evolving applications. Section 2.5 discusses clone de-

tection techniques and presents the main aspects that differentiate them from

our work. The discussion of these techniques is relevant in order to make it

clear why they can not be used directly to classify the feature’s implemen-

tation elements in evolving program families. Finally, Section 2.6 summarizes

this chapter.

2.1

Terminology

Program families consist of two or more members that share com-

mon features (Weiss and Lai 1999). The different properties of each family

member comprise the variable features (Weiss and Lai 1999, Xue et al. 2010).

The program family increases as new family members are developed from

the common features and realize different combinations of variable features

(Weiss and Lai 1999). Given this scenario, it is worthwhile to study the com-

mon and variable features of each family member (Parnas 1976). A feature is

defined as a prominent or distinctive user-visible aspect, quality, or charac-

teristic of a software system (Kang et al. 1990). Features can be classified, for

instance, as functional (e.g. sorting) and non-functional (e.g. exception han-

dling) (Apel and Kästner 2009). Variable features can be classified into two

categories: optional and alternative features (Kang et al. 1990). Optional fea-

tures can be present or not in an software system. Alternative features should

be present in a software system as they are mutually exclusive.

A program family may not be considered a software product line

(SPL) (Weiss and Lai 1999, Parnas 2008). SPL is a set of software-intensive

systems sharing a common, managed set of features that satisfy specific

needs of a particular market or mission with a well-defined scope, and

that are developed from a common set of core assets in a prescribed way

(Clements and Northrop 2002). These assets are not only restricted to code

elements, but any software element (e.g. architecture, requirements) used

to generate the software systems of the SPL (Clements and Northrop 2002).

SPL aims mainly at reducing time-to-market and increasing the reuse

of software assets during the development of similar software systems

(Clements and Northrop 2002, Apel and Kästner 2009). According to Parnas

(Parnas 2008), several product lines could contain members of a family. The

features of a SPL can be represented through a feature model that describe

the common and variable features of software systems (Kang et al. 1990,

Apel and Kästner 2009). The feature model also describes the relationships

and dependencies among the features of a particular domain.

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA



Chapter 2. Background and Related Work 29

As our work is centered on analysing the program family evolution, it is

also important to define and differentiate the terms software maintenance and

evolution. The terms maintenance and evolution are very broad in the litera-

ture and have many definitions and interpretations. In this work, we have used

the definitions proposed by IEEE. Maintenance is defined as the process of

modifying a software system or component after delivering it with the goal of

correcting faults, improving performance or other quality attributes, or adapt-

ing it to a changed environment (IEEE 1990). In a fine-grained view, Lientz

and Swanson (Lientz and Swanson 1980) divided the aforementioned defini-

tion of maintenance into three categories: corrective, perfective and adaptive

maintenance. On the other hand, evolution encompasses the process of manag-

ing all the changes made on software systems (Lehman 1980, Lehman 1984).

According to the Lehman’s laws of evolution (Lehman 1980, Lehman 1984),

software systems are always condemned to change over time.

It is widely recognized that program families are constantly evolving

over time (Parnas 1976, Parnas 1994). For this reason, a significant number

of changes is carried out. At the implementation level, the implementation

elements realizing the family features are often added, changed or even

removed. The implementation elements are represented by methods, classes

and attributes in the family member implementation when considering object-

oriented programming. However, these changes can lead to the program

family degeneration. A degenerate program family is characterized when its

original source code has evolved in such a way that it is no longer possible

to identify and classify the implementation elements realizing common and

variable features in the family.

Therefore, it is essential to analyse the evolution of degenerate program

families with the goal of forward recovering their features’ implementation

elements. The forward recovery analyses the program family evolution in

order to identify and classify the features’ implementation elements according

to their variability nature. This way, the forward recovery requires feature

mapping (Section 2.2.1) and feature classification.

2.2

Feature Identification Support

This section discusses the feature mapping activity (Section 2.2.1) and

a set of techniques and tools that support such an activity (Sections 2.2.2 to

2.2.5).

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA



Chapter 2. Background and Related Work 30

2.2.1

Feature Mapping Activity

Understanding and restructuring how features are realized in the source

code are often required in software maintenance and evolution tasks. For

this reason, developers have to gather full knowledge about all the imple-

mentation elements that realize one or more features (Eisenbarth et al. 2003,

Robillard and Murphy 2007). Maintenance and evolution tasks often re-

quire the explicit identification of all code elements responsible for re-

alizing each feature of a software system, the so-called feature map-

ping (Wilde and Scully 1995, Chen and Rajlich 2000, Eisenbarth et al. 2003,

Rohatgi et al. 2008). This is essentially important before performing a change

in a software system as developers must identify the main code elements as-

sociated with these tasks. The feature mappings are also relevant when: (i)

developers need to analyse and evolve software systems or program families

over time (Parnas 1976, Eisenbarth et al. 2003, Robillard and Murphy 2007);

and (ii) when the implementation elements of a feature are tangled and scat-

tered through many modules of the software system (Kiczales et al. 1997,

Robillard and Murphy 2007, Figueiredo 2009). In this thesis, the terms iden-

tification and location of code elements are used interchangeably.

Feature mappings are often required in a wide range of maintenance

and evolution tasks performed on software systems and program families

(Alves et al. 2005, Kolb et al. 2006). For instance, program families often

evolve, and each feature implementation needs to be previously understood

before realizing a change on it. To this end, feature mappings are fundamental

to provide developers with a full knowledge about the realization of each fea-

ture and its relationships with other features in the code. Therefore, the lack of

feature mappings in program families harms a wide range of maintenance tasks,

such as (i) understanding how a feature is implemented in a family member

(Chen and Rajlich 2000, Eisenbarth et al. 2003, Robillard and Murphy 2007);

(ii) refactoring the implementation of specific features (Ratzinger et al. 2007,

Kästner et al. 2007); (iii) the complete reengineering of the program family

(Kang et al. 2005, Zhang et al. 2011); and (iv) the recovery of the family’s

software architecture (Eixelsberger et al. 1998). Some studies evaluated the

accuracy of the feature mapping activity in different software systems. The

limitations of these studies are important to motivate the catalogue of map-

ping mismatches related to specific features and/or code structure (see Section

3.5.1). The mapping mismatches are thoroughly discussed in Chapter 3.

There are also other terms used in the literature to the feature mapping

activity. These terms also involve the action of assigning implementation ele-

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA



Chapter 2. Background and Related Work 31

ments to a feature, which are: concept assignment problem, feature location

and feature traceability. Concept assignment problem is the process of discov-

ering high-level concepts and assigning them to the respective artifacts within

a specific program (Biggerstaff et al. 1994). It allows developers to understand

the program through the relationship between the high-level concepts and parts

of the program. Feature location techniques aim at identifying automatically at

least one code element that contributes to the feature implementation based on

the execution analysis of a program (Wong et al. 1999, Eisenbarth et al. 2003,

Eisenberg and Volder 2005, Poshyvanyk et al. 2007). Therefore, this term has

been widely used in the context of dynamic techniques for feature mapping

(Section 2.2.3). The notion of concept assignment is more general than feature

location because it is related to the understanding of any concept relevant to

the program structure.

On the other hand, the term traceability is defined as a way

of establishing relationships between the different software artifacts

(Cleland-Huang et al. 2007, Grechanik et al. 2007, Rilling et al. 2007). These

artifacts can be architectural descriptions and diagrams, requirements de-

scription or UML models, classes or methods, and test cases. The explicit

relationships or links among the different artifacts in a software system al-

low developers to understand, for instance, the change impact analysis, the

relations and the respective dependencies among these artifacts. In summary,

traceability is different from the mapping activity as it is broader and deals

with the semantic relationship among different software artifacts. The feature

mapping activity is more specific and only focuses on explicitly identifying

the code elements realizing the features. In the context of our research work,

we have used the term feature mapping activity to the process of identifying

code elements realizing a given feature.

There is a vast amount of techniques and tools addressing the fea-

ture mapping activity (Eisenbarth et al. 2003, Robillard and Murphy 2007,

Antoniol and Gueheneuc 2005, Kellens et al. 2006, Savage et al. 2010,

Adams et al. 2010). Feature mapping techniques are usually classified

as static (Chen and Rajlich 2000, Robillard and Murphy 2007) (Sec-

tion 2.2.2), dynamic (Wong et al. 1999, Eisenberg and Volder 2005,

Koschke and Quante 2005, Cornelissen et al. 2009) (Section 2.2.3) or hybrid

(Eisenbarth et al. 2003, Poshyvanyk et al. 2007, Rohatgi et al. 2008) (Section

2.2.4). These different techniques rely on different types of information, such

as the static structure of software systems and the program execution traces.

Unfortunately, none of them is able to identify the features’ elements from an

evolving program family. This limitation is mainly because these techniques

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA



Chapter 2. Background and Related Work 32

only take into consideration the history of individual application versions. The

following subsections present an overview, advantages and limitations of each

technique.

2.2.2

Static Techniques

Static techniques require the interaction between developers and

the tool in order to assign semi-automatically each feature to the im-

plementation elements (Chen and Rajlich 2000, Eisenbarth et al. 2003,

Robillard and Murphy 2007, Marin et al. 2007, Zhang et al. 2008). For in-

stance, some tools provide functionalities to search code elements of a chosen

feature (e.g. lexical information). Consequently, developers can complement

their feature mappings based on the outputs provided from a particular search.

The analysis of static tools is performed on a particular program

code without the need of executing it. These tools are based on depen-

dency graphs derived from the static code structure (Lyle and Weiser 1987,

Chen and Rajlich 2000, Robillard and Murphy 2007). For this reason, they

provide information with different types of dependencies in a system,

such as data-flow dependencies. Some examples of static tools are Con-

cernMapper, ConcernTagger, FEAT, Concern Manipulation Environment

(Chung et al. 2005, Robillard and Murphy 2007, Savage et al. 2010).

The static techniques that provide search mechanisms use the fan-in num-

ber to identify and search code elements of a given feature (Marin et al. 2007,

Zhang et al. 2008). Fan-in is based on the number of distinct methods that

invoke a given method. For instance, the concern graph proposed by Robillard

and Murphy (Robillard and Murphy 2007) also uses the fan-in and fan-out

queries. Fan-in queries return elements that know about the queried element.

Fan-out queries return elements that the queried element knows about. Its

goal is to help the developers to locate, analyse and document scattered fea-

tures based on pre-defined queries. The static techniques only use the source

code as the principal artifact, differently from the dynamic and hybrid tech-

niques that also require suites of test cases (Sections 2.2.3 and 2.2.4). More-

over, the static techniques also provide the developer to visualize the classes,

methods and attributes related to each feature from a tree-structure visual-

ization. In particular, static techniques are more suitable for developers who

have some knowledge of the software system’s features and source code. This

occurs because the developers have to manually map the features’ implemen-

tation elements. For this reason, even though these static tools have facilitated

the feature mapping activity, there are some drawbacks associated with these

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA



Chapter 2. Background and Related Work 33

tools. For instance, developers still need to check if their mappings are correct

and complete. As a result, this activity tends to be cumbersome and performed

in an ad-hoc fashion.

2.2.3

Dynamic Techniques

The dynamic techniques aim at identifying code elements that imple-

ment user-level features through program executions (Wilde and Scully 1995,

Wong et al. 1999, Eisenberg and Volder 2005, Koschke and Quante 2005,

Cornelissen et al. 2009, Savage et al. 2010). For example, some techniques

are software reconnaissance (Wilde and Scully 1995) and execution slices

(Wong et al. 1999). They rely on execution trace analyses to locate code

implementing user-level features. User-level features only represent functional

features which characterize a system’s behavior that can be trigged by the

user. The resulting execution traces are compared to the specific components

that realize the user-level features. For instance, FLAT3 (Savage et al. 2010)

combines dynamic traces with information retrieval to identify user-level

features. FLAT3 is based on several existing tools, such as the lucene library,

MUTT, ConcernTagger and ConcernMapper.

Most of these dynamic techniques rely on the use, extension and tuning

of pre-existing test suites. These suites need to have a high degree of code

coverage for a given system. This often implies that a test coverage analysis

is required in order to estimate the accuracy of feature mappings. However,

dynamic techniques are usually not accurate, and most of the tools only provide

coverage at the level of methods and branches. Additionally, another limitation

of the dynamic techniques is that they can not often distinguish overlapping

features. This occurs because they only identify methods that are executed

for specific scenarios of user-level features. Thus, the same methods may also

contribute to several feature implementations. Other weaknesses are: limited

scalability due to the huge amount of data may be derived from a program

execution trace, the difficulty to decide which is the optimal set of test cases

to be executed (Poshyvanyk et al. 2007, Cornelissen et al. 2009).

2.2.4

Hybrid Techniques

Other authors proposed hybrid techniques that blend character-

istics of both static and dynamic techniques (Eisenbarth et al. 2003,

Poshyvanyk et al. 2007, Rohatgi et al. 2008). They follow the same ideas

of the dynamic techniques because they use execution traces of a program to

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA



Chapter 2. Background and Related Work 34

identify the code elements realizing each feature. Additionally, they aim at

improving the accuracy of feature mappings by also integrating static tech-

niques. Hybrid techniques aim at reducing the disadvantages and imprecision

of both static and dynamic techniques. The most used techniques are based

on latent semantic indexing (LSI) and scenario-based probabilistic ranking

(SPR) (Poshyvanyk et al. 2007). LSI is an information retrieval method that

analyses the relation between words and documents in bodies of text. On the

other hand, SPR is a dynamic technique that analyses the link of the features

in the source code and identifies entities of the program that implement

specific features. However, the aforementioned weaknesses of both static and

dynamic techniques (Sections 2.2.2 and 2.2.3) are still present in the hybrid

tools that support the feature mapping activity.

2.2.5

The Differences of the Feature Mapping Techniques

As aforementioned, there are three types of techniques for feature map-

ping activity in the literature namely static, dynamic and hybrid techniques.

Table 2.1 summarizes the main differences of these techniques according to

seven criteria that we have just explained in previous sections, which are: sup-

port, types of features, target artifact, feature evolution, overlapping features,

forward recovery of features’ implementation elements and basis information.

For instance, the static techniques offer a manual support for the mapping

activity of any type of feature. Given the manual mapping activity, the detec-

tion and mapping of overlapping features have to be performed at the same

way. For this reason, the mapping activity using static techniques tends to be

error-prone and time-consuming. The static techniques rely on the source code

and call-graph.

The dynamic techniques offer an automatic support and are only able

to detect user-level features. However, the user-level features not always

correspond to those ones that the developers need to investigate or analyse

their evolution. In addition to the application’s source code, the dynamic

techniques also depend on a suite of quality test cases to activate the code

elements of a given feature. In particular, the dynamic techniques are often

unable to detect overlapping features. As can be observed in Table 2.1, none

of the techniques provides support to the feature evolution mapping and the

forward recovery of features’ implementation elements.

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA



Chapter 2. Background and Related Work 35

Table 2.1: Differences among the Feature Mapping Techniques.
Criteria Static

Techniques

Dynamic

Techniques

Hybrid

Techniques

Support Manual Automatic Manual and

Automatic

Types of Features Any User-Level Fea-

tures

Any

Target Artifact Source code Source code and

Suite of Test

Cases

Source code

and Suite of

Test Cases

Feature Evolution No No No

Overlapping Features Detected

Manually

No Detected

Manually

Forward Recovery of

Features’ Implemen-

tation Elements

No No No

Basis Information Call-graph Program execu-

tion trace

Call-graph

and Program

execution

trace

2.3

Reengineering Methodologies and Techniques

Knodel et al. (Knodel 2005) proposed a generic process for integrating

and incorporating existing assets into an asset base of a Software Product Line

(SPL) infrastructure. The goal of this work is to allow organizations to reuse

existing assets in their own asset base rather than creating assets with similar

functionalities. In addition, the authors highlight the need of maintaining the

asset’s internal quality. However, this process is very general and the proposed

recovery process is based on a set of manual activities. Moreover, a tool is not

presented to automate this process and even a detailed evaluation is not carried

out. This work only focuses on asset reuse and is not interested in features

that can impact on a set of elements or modules of a given asset. The authors

mention that feature location techniques (Section 2.2) can be integrated into

their asset recovery and incorporation process, but they do not mention how

this can be done. They also mention the use of historical analyses to capture

change and bug dependencies from bug tracking systems as they are used as

input of their asset incorporation process. The goal is to determine couplings

among files in order to evaluate the feasibility and effort of incorporating an

asset into the asset base. However, this approach is not presented in detail

and no example is provided. This work is very different from ours because we

are interested in recovering the implementation elements of evolving program

families’ features. In addition, we exploit the evolution history of a program

family to improve the feature recovery process (Chapter 5). On the other hand,

they are more interested in defining a high-level process to incorporate existing

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA



Chapter 2. Background and Related Work 36

assets into the SPL infrastructure. In our work, we are interesting in defining

history-sensitive heuristics for recovering features of evolving program families

in a semi-automatic way (Chapter 5).

Abi-Antoun and Aldrich (Abi-Antoun and Aldrich 2009) defined a tech-

nique called SCHOLIA to statically extract hierarchical runtime architec-

ture from object-oriented code using annotations. This technique follows the

extract-abstract-check strategy and it is used to extract and compare an

extracted architecture with the target one. SCHOLIA represents a runtime

object call graph during the architecture extraction. In order to reach the

extraction, it is possible to annotate the code to define the system’s ar-

chitecture. This technique is concerned about comparing how the code is

in conformance with the intended architecture in order to avoid architec-

tural violations in the code. There are other studies that extract informa-

tion from existing system implementations and reason about this informa-

tion with the intention of reconstructing the original software architecture

(Kazman and Carrière 1999, Krikhaar 2009). However, this thesis is different

as it is centered on identifying and classifying the code elements realizing each

feature in evolving program families. Additionally, it focuses on analysing the

evolution of the program family’s source code rather than its high-level archi-

tecture.

Kang et al. (Kang et al. 2006) reported the experience of re-engineering

the credit card authorization systems (CAS) components. The main goal of

the re-reengineering process was to improve the reusability of components.

They described a set of principles for developing the re-engineering process.

Kang et al. (Kang et al. 2005) also presented a re-engineering process of a

legacy system into product line assets. They reported how the information

was extracted from a legacy system. It involves: (i) the reverse engineering

process; (ii) the identification of operation units from the object relationships

by analysing the method invocations and data flows. Basically, these operations

are classified into three categories: sensor, controller and actuator; and finally,

(iii) the recovery of conceptual architecture and process architecture. Our

work is different because we forward recover the features’ implementation

elements. We are not interested in components’ reusability but in identifying

and classifying the implementation elements in the source code realizing each

feature in evolving program families.

Arango (Arango 1998) proposed a domain-engineering framework for the

generation of reuse infrastructures. Basically, this work focused on defining

a set of principles at the domain analysis level with the goal of providing

software reuse. His approach is based on a set of systematic methods that

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA



Chapter 2. Background and Related Work 37

try to maximize the system reuse through the evolution of a model of the

problem domain. He characterized a conceptual model of reuse and formalized

it using first order logic. Additionally, the author also adapted a high-level

recovery model with the goal of identifying information missing from the

domain model. However, this work is different from ours because (i) it does

not provide heuristics to deal with the forward recovery of features at the level

of source code; (ii) it does not deal with evolving program families; and finally

(iii) it only focuses on software reuse.

Tulio et al. (Tulio et al. 2012) proposed a semi-automatic approach for

extracting a software product line (SPL) from legacy systems. This work uses

the CIDE tool to associate colours to the lines of code that implement a feature.

The goal of this work is to extract optional features based on a set of feature

seeds. The algorithm proposed in this paper is a fixed-point algorithm with two

phases. The first phase is called color propagation where the program elements

that reference the seeds are visually annotated with a color reported by the

developer. The second phase is called color expansion where the algorithm

checks whether a color can be expanded to its enclosing lexical context. Our

goal is different because we analysed program families and their evolution

histories in order to support the forward recovery of the code elements realizing

any type of feature.

There are many studies that extract information from the application’s

source code and generate pattern descriptions (Kramer and Prechelt 1996,

Shi and Olsson 2006, Tsantalis et al. 2006, Alnusair and Zhao 2010). For ex-

ample, Shi and Olsson (Shi and Olsson 2006) use control-flow graphs (CFG)

for representing patterns. To do this, this work relies on processing the Ab-

stract Syntax Tree (AST) of methods in order to build a CFG for program

elements. After this construction, the control-flow graphs are analysed in or-

der to verify restrictions related to a given design pattern. However, all of these

studies are different from ours because they are concerned about extracting in-

formation of design patterns. On the other hand, our research work is centered

on forward recovering implementation elements of a feature when analysing

evolving program families.

2.4

Source Code Refactoring and History Analysis

This subsection briefly describes how some previous research work ex-

plored code refactorings and history analysis. Their purpose was often to

propose refactoring techniques to extract SPLs, detect change dependencies

through the use of APIs and frameworks, crosscutting features, and character-

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA



Chapter 2. Background and Related Work 38

istics of the software evolution. However, all of them are different from ours.

Our goal is to identify and classify the feature’s code elements of a evolving

program family based on its complete evolution history rather than a single

program version or a single horizontal program history.

Several research work have proposed and evaluated refactoring methods

for extracting SPLs from legacy systems (Alves et al. 2005, Liu et al. 2006).

These methods rely on the refactoring of features and evaluation of

specific languages for managing variability in SPL (Kästner et al. 2007,

Liebig et al. 2010). Others have explored the software historical information

for different purposes, such as: (i) detecting code anomalies, for example, re-

lated to improper design decisions (Fowler 1999, Kazman and Carrière 1999,

Ratiu et al. 2004); (ii) capturing code changes in order to analyse their im-

pact on software quality and maintenance (Herzig 2010); and finally (iii)

analysing dependencies of the code changes for detecting types of change pat-

terns (Fluri et al. 2008, Alam et al. 2009, Wu et al. 2010).

Adams et al. (Adams et al. 2010) presented a feature mining technique

named COMMIT that analyses the source code history to statistically cluster

functions, variables, types, and macros that have been changed together

intentionally. The authors compared this technique to others, called HAM

and CBFA. The COMMIT technique is different from the others due to the

following reasons: (i) it deals with variations of a feature in terms of its

implementation elements which are often implemented by partially cloned

code; (ii) it identifies variables and types related to a feature; and (iii) finally,

it is able to identify composite features which are composed of multiple

sub-features. The COMMIT workflow is based on all the lines of code that

were added, removed or modified by a developer. This technique has shown

to be more effective only to identify non-functional crosscutting features. A

crosscutting feature is a feature in which its implementation is scattered across

multiple modules (Adams et al. 2010). This means that the implementation of

a crosscutting feature is not modular and cuts across the boundaries of many

classes and methods. However, many other features of a program family are

often domain-specific and do not exert a widely-scoped crosscutting impact on

the modular structure (Alves et al. 2005, Figueiredo et al. 2008).

Nguyen et al. (Nguyen et al. 2011) proposed a tool, called XScan, for

identifying, ranking, and recommending concern containers. Concern contain-

ers are defined as code units sharing a crosscutting feature. This tool identifies

and recommends top-ranked groups that share some crosscutting features in

both evolving aspect-oriented (AO) and non-AO programs. These groups are

detected based on the similarity of interaction contexts related to two or more

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA



Chapter 2. Background and Related Work 39

method calls. Nguyen et al. defined a set of formulations and algorithms for

recommending these concern containers. Basically, these formulations are de-

scribed in terms of interaction similarity at different levels, such as internal and

external similarities of the callees and callers of a given program method. This

work only analyses non-functional crosscutting features, which are also defined

as not modular and scattered across multiple modules in the application.

Dagenais et al. (Dagenais et al. 2007) defined a technique to infer struc-

tural patterns to be checked as a software system’s source code evolves. The

goal of this work is to make descriptions of a feature implementation in

order to check if its structural characteristics are valid in future versions

of the application’s source code. Seven categories of structural character-

istics are used: callersOf(), calledBy(), accessorsOf(), accessedBy(),

overrides(), implements(), declaredBy(). The usefulness of this technique

is tied to the characteristics of the feature being analysed. This occurs because

the authors assume that the implementation elements that realize a high-level

feature present common characteristics to infer patterns to be checked in an

evolving software system. The technique proposed by Dagenais et al. is differ-

ent from our for several reasons: (i) it only tries to leverage structural patterns

that may exist among the elements in a mapping; (ii) it does not consider the

evolution history analysis of program families; and finally (iii) it does not take

into consideration the program family’s change history in order to generate

the feature mappings according to the current version of the family member.

Xue et al. (Xue et al. 2010) described a method for assisting developers

to detect changes in product feature models. This method is based on a set

of feature models that refer to each family product. These feature models are

compared to each other by using a tool named GenericDiff, which is based

on both dependencies and relationships. Feature models of different products

are analysed to determine, for instance: (i) if the same features contain

different names, and (ii) if the same features belong to different composite

features. Xue et al. analysed the evolution of the requirements in terms of

feature models. However, this work is very different from ours because Xue

et al. (Xue et al. 2010) are concerned about detecting differences in feature

model from different products rather than analysing evolving program family’s

source code and recovering the implementation elements realizing the family’s

features.

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA



Chapter 2. Background and Related Work 40

2.5

Clone Detection Techniques

Cloning is known as a phenomenon found in many software systems

and its existence tends to harm maintenance tasks (Mayrand et al. 1996).

Some research work has explored the detection and analysis of

similar code fragments, the so-called simple clones (Johnson 1994,

Baxter et al. 1998, Kamiya et al. 2002, Basit and Jarzabek 2005,

Kim et al. 2005, Nguyen et al. 2009, Basit and Jarzabek 2009). Basically,

they use different techniques, such as abstract syntax tree, plain text, to-

kens, and others. For example, Basit and Jarzabek (Basit and Jarzabek 2005,

Basit and Jarzabek 2009) described a strategy for detecting design-level sim-

ilarity patterns that relies on a token based approach. In order to reach this

goal, the authors formulated heuristics to identify clone patterns and used

data mining techniques to infer some properties, such as detecting structural

clones. Structural clones are part of bigger replicated program structures.

Clone detection techniques are also used as a way to

determine similar code that could be factored out into as-

pects (Bruntink et al. 2004, Bruntink et al. 2005). Bruntink et al.

(Bruntink et al. 2004, Bruntink et al. 2005) assessed the identification of

crosscutting features through different clone detection techniques. This oc-

curs because the crosscutting features’ code is not well modularized and is

typically duplicated throughout the software system. The clone tools and

techniques are only focused on detecting similar pieces of source code when

comparing several files of a software system. Indeed, they can be used in a

complementary way in our work. However, it is not trivial to use directly these

clone detection techniques when recovering feature’s implementation elements

in evolving program families for two main reasons. First, these techniques

do not implement the feature concept; i.e. they do not provide information

about which implementation elements realize a given feature. Second, these

techniques only compare files of a software system without the intention of

classifying the implementation elements. Therefore, we go one step further

because we explore the evolution history analysis in order to forward recover

the features’ implementation elements of program families. In other words, we

take into consideration a more fine-grained perspective and reason to recover

implementation elements realizing a feature in evolving program families.

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA



Chapter 2. Background and Related Work 41

2.6

Summary

This chapter presented the main concepts addressed in this thesis. It

also presented an overview of existing studies and a critical discussion of their

limitations. Section 2.1 presented the definitions of the main terms discussed

throughout this research work, such as program family, family member, fea-

tures. Section 2.2 presented the definition of feature mapping activity and other

similar terms commonly used in the literature, which are: concept assignment

problem, feature location and traceability. It also presented the most known

techniques and tools responsible for supporting the feature mapping activity.

In fact, there is a variety of techniques and tools that help developers map

the implementation elements to features (Sections 2.2.2 to 2.2.4). The feature

mapping is seen as a relevant information source for improving the mainte-

nance and evolution tasks of software systems and evolving program families.

This occurs because these mappings provide developers with a full knowledge

of a software system in terms of the implementation elements realizing its fea-

tures. However, all these existing techniques that support the feature mapping

activity do not consider the knowledge of the program family’s change his-

tory in order to observe how the features’ implementation elements and their

relationships have evolved over time.

Section 2.3 reported some studies that proposed methodologies and tools

for recovering the original design of a software system (e.g. architecture) and

extracting software product lines from a legacy system. However, there is no

work that explores program families and their evolution history with the intent

of forward recovering implementation elements realizing the features. Existing

research work are limited as only support the feature mapping activity and

consider the history of a single application. Also, they do not address the

forward recovery of elements realizing each feature. Section 2.4 detailed studies

that analyse the source code history with different purposes, such as proposing

refactoring methods, detecting crosscutting features and dependencies. Finally,

Section 2.5 presented some research work that explores the detection and

analysis of similar code fragments. Despite all the efforts, none of related work

discussed in this chapter provides any type of support for the forward recovery

of features’ implementation elements in evolving program families.

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA




