
1
Introduction

A program family is a set of similar programs, named family members1,

that share common features and also realize variable features (Parnas 1976,

Weiss and Lai 1999). Family members are developed from these common fea-

tures, and variable features are included in some members. A feature is a promi-

nent or distinctive user-visible aspect, quality or characteristic of a software

system (Kang et al. 1990). Each feature is realized by code elements in the pro-

gram implementation. Program families are often developed from either frame-

works or reference architectures, which encompass the common features to be

shared among the family members (Fayad et al. 1999, Weiss and Lai 1999).

The variable features represent the particularities of each family member

(Kang et al. 1990).

There are some advantages of developing program families, such as

the possibility of evolving the implementation of common features and vari-

able features independently. There are numerous examples of well-known

program families in industry, such as Adobe Acrobat (Adobe 2012) and

Mozilla (Mozilla 2012). In fact, software systems have been increasingly built

as program families rather than stand-alone applications in a wide range

of software domains (Alves et al. 2005, Figueiredo et al. 2008, Adobe 2012,

Mozilla 2012, Android 2012). These domains range from popular operational

systems or games for mobile phones, for instance, Android (Android 2012),

GM (Alves et al. 2005) and BestLap (Figueiredo et al. 2008) to train control

systems (Eixelsberger et al. 1998). Regardless of the domain, program families

are often a key part of organizations’ economic strategy as they become more

profitable (Alves et al. 2005, Quilty and Cinnéide 2011). For instance, given

the growing variety of mobile devices and their varying hardware constraints

(e.g. memory, screen size), embedded mobile systems are often developed as

a program family in order to accelerate their time-to-market and reach more

users who own different devices (Alves et al. 2005).

The family members often evolve from frameworks or reference architec-

1For the remainder of the text we use the term family applications and family members
interchangeably.

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 1. Introduction 12

tures, while also accommodating specific requirements from customers. As new

requirements emerge, a program family undergoes a wide range of changes dur-

ing its evolution (Fluri et al. 2008, Alam et al. 2009). At the implementation

level, code elements realizing each feature are often added, changed or even

removed through the family evolution history. However, when such changes

are performed in the program family’s code without a careful planning, they

tend to cause its degeneration over time (Parnas 1994, Weiss and Lai 1999).

According to Hochstein and Lindvall (Hochstein and Lindvall 2005),

a degenerate software system is characterized by changes that lead to

the continuous software quality decline. In particular, this decline makes

the software code harder to maintain and evolve than it should be

(Hochstein and Lindvall 2005). Changes made in the implementation of a pro-

gram family can also lead to its degeneration. Similarly to stand-alone software

systems, many symptoms (Hochstein and Lindvall 2005), such as code smells

(Fowler 1999), could lead to the program family degeneration. However, we

consider in this work degradation symptoms that are particularly critical to

program families (Section 1.1.1). In the context of this work, a degenerate pro-

gram family is characterized by changes that make it increasingly harder to

distinguish the code elements realizing common and variable features in the

family. When this distinction cannot be made in the implementation assets,

it becomes difficult or prohibitive to maintain or evolve the program family

(Parnas 1994).

Program family degeneration is often induced by feature code that is

changed individually in a family member without considering other fam-

ily members. There might be extreme cases where the code of the same

common feature has been copied and changed inconsistently in each fam-

ily member (Parnas 1994, Weiss and Lai 1999). Then, it becomes difficult to

change and introduce new features in the family implementation. The un-

derlying causes for the program family degeneration range from the lack

of planning and understanding of the requirements to the time pressure

and inadequate management (Eick et al. 2001, Hochstein and Lindvall 2005).

We have observed that the program family degeneration is very often

(Eick et al. 2001, Hochstein and Lindvall 2005). There are examples of pro-

gram families in industry that degenerated over time, such as Mozilla and

Netscape (Eick et al. 2001, Hochstein and Lindvall 2005).

Once degeneration symptoms manifest in a program family, it is partic-

ularly important, to foster restructuring actions in its implementation. The

problem is that these restructuring actions cannot be performed before under-

standing how features are realized in the family implementation. This task is

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 1. Introduction 13

challenging for two reasons. First, in degenerate program families, the iden-

tification of code elements realizing each feature is hard. Given inconsistent

changes through the family evolution, it might be, for instance, that two or

more family members are providing different implementations for the same

common feature. Second, it is also hard, if not impossible, for developers to

figure out which are the commonalities and variabilities as the family im-

plementation evolves. Therefore, in order to regain control of the degenerate

program family, developers need to be supported with means to identify the

elements realizing common and variable features.

The remainder of this Chapter is organized as follows. Section 1.1 defines

the problem tackled in this thesis. Section 1.2 points out some limitations of

related work. Section 1.3 describes the aims and research questions. Section

1.4 presents the thesis contributions. Finally, Section 1.5 points out how this

thesis is organized.

1.1
Problem Statement

A program family might degenerate due to unplanned changes in its

implementation, thus hindering the maintenance and evolution of family

members. Basically, the unplanned changes occur, for instance, when (i) one or

more common features are updated individually in a member implementation

without considering other family members, and (ii) the implementation of a

common feature is included only in the code of a specific member. When these

undesirable changes occur often, the program family degenerates over time.

Section 1.1.1 discusses the degeneration of program families and Section 1.1.2

describes concrete examples of degeneration symptoms. Finally, Section 1.1.3

discusses how to recover feature code in degenerate families.

1.1.1
Degeneration of Program Families

The degeneration of program families can be caused for several reasons.

In most cases, degeneration is provoked by features that started to be changed

in inconsistent ways across the different members of the program family

(Parnas 1994). Let’s illustrate these inconsistent changes in the context of a

program family with members sharing a software framework. Inconsistencies

occur when the changes performed in both framework code and member code

are not managed in an appropriate manner. In particular, when the program

family code is partially or fully replicated and individually changed across

several evolving members. Figure 1.1 illustrates this problem by showing the

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 1. Introduction 14

version changes through a configuration management tool, e.g., Subversion

(Pilato 2004). As pointed out in this figure, there are versions associated with

both framework and family applications.

Figure 1.1: Evolution Strategy using SVN.

Figure 1.1 illustrates two cases of degradation symptoms (Parnas 1994).

A degeneration symptom occurs when a common feature is updated in the

framework code, but this modification is only performed in a specific framework

version used in the implementation of one family member. Even though the

change was intended to be reflected in all family members, it was only applied

to a particular member. Figure 1.1 illustrates two cases of this degradation

symptom. It is possible to observe that some framework versions (V1.1.1 and

V1.1.2) are released only to support the evolution of a family application (V2.1

and V2.2). This means that there is a possibility that other family applications

might not be compatible with the framework version V1.1.1 or the later ones.

In addition, a degeneration symptom can also be related to the unde-

sirable inclusion of a variable feature into the common framework code. The

inclusion of such a variable feature in the framework code means that it be-

comes now shared by all the family applications. This could be observed, for

example, when a merge is performed (Framework V1.1.3 in Figure 1.1) and

all the family applications are updated to work with this new version of the

framework. However, given the varying nature of this feature, it turns out that

this new feature is never used by several family members (Applications V2.3).

The aforementioned symptoms of family degeneration imply that main-

tenance and evolution of the family implementation become costly or even

impeditive. The family implementation is no longer maintainable or evolvable

without restructuring (Section 1). Then, developers will need to understand

how feature code has evolved across the family history in order to restructure

the family code. However, this is not a trivial goal to be achieved as it re-

quires two main steps. First, it requires to identify the code elements realizing

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 1. Introduction 15

each feature along each family member evolution. Second, it requires to un-

derstand the variability nature of the features’ code elements throughout the

program family history. These steps are essential to enable the restructuring of

the program family code, and consequently the elimination of its degradation

symptoms.

1.1.2
Examples of Degeneration Symptoms

This section describes concrete examples of the aforementioned degen-

eration symptoms. These examples have been observed and analysed in an

evolving industrial program family, so-called OC. The OC program family be-

longs to a Brazilian company and the main family members of the company

are for managing logistics of the oil industry. These family applications were

derived from a single framework. We have omitted the name of the program

family and its applications due to confidentiality agreement issues. The name

“Oil Control” (OC) will be used to refer to the program family including the

framework and three family members. The three family members are called

Application I, II and III. Further information about the OC program family

is presented in Section 3.1.1. Two features are used to illustrate the degen-

eration symptoms of this program family during its evolution: Scenario and

Export. The feature Scenario is for managing the exportation and importa-

tion of products. The feature Export is for generating reports in different file

formats.

1. The implementation of common features becomes inconsistent

across the evolving family members. In this first case, the problem

is that specific functionalities are updated in the framework code only for

one family member. In Figure 1.2, both Applications I and II derived

from the OC framework have the feature Export, which is a common

feature. Application I inherited the basic code elements of the feature

Export that belong to the OC framework and which are shared by all the

family applications. According to the figure, the clear grey box represents

one of these basic code elements in the OC framework and Application

I, the ExportDialog class. On the other hand, this same code element

(ExportDialog class) inherited by Application I was modified to work

with Application II. This was carried out to implement a change related

to the feature Export (lines 05-15) in framework code. For this reason,

the ExportDialog class is represented by a dark grey box in Application

II. As a result, a new version of the OC framework with this change was

released in order to work exclusively with Application II.

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 1. Introduction 16

01 public class ExportDialog {

02 public static void exportToXls(...) {

03 …

04 }

Export Feature
Export Feature

Application I Application II

05 class XLSFilter extends FileFilter {

06 public boolean accept(File file) {

07 String filename = file.getName();

08 if (file.isDirectory())

09 return true;

10 return filename.endsWith(".xls");

11 }

12 public String getDescription() {

13 return "*.xls";

14 }

15 }

16}

01 public class ExportDialog {

02 public static void exportToXls(...) {

03 …

04 }

05 }

OC framework

OC framework

New Version Released

Changed Module

Legend:

Module

Same Module

Figure 1.2: Modification of Framework Code Elements with Variable Code.

As a consequence, the OC framework has started to be evolved for

single family applications. Therefore, the changes included within the

ExportDialog class in the framework code for a specific application ver-

sion (Application II) caused the elimination of the common characteris-

tics of the program family. For example, we could notice the differences

of the ExportDialog class in Applications I and II. In Application II

code, the changes (lines 05-15) were performed within the ExportDialog

base class, which realizes a common feature. The main problem associ-

ated with this degeneration symptom is that the modified framework

code might not be compatible with the code of certain family members

anymore. As a consequence, the code maintenance tasks for both frame-

work and members become cumbersome. Inappropriate solutions might

be further applied, such as the creation of an unnecessary branch of the

framework version.

2. The implementation of member-specific code is intermingled

with core code. In this case of degradation, code elements that should

be in only one family member are placed into modules of the program

family core at some point. This degeneration symptom is illustrated

through the ScenarioServiceProxy class, which belongs to Application

I, and it is represented by a grey box in Figure 1.3. This class realizes

the feature Scenario, which is a variable feature. During the evolution

of the framework and family applications, the ScenarioServiceProxy

class was integrated into the program family core, also represented by a

dark grey box in the OC framework. This implies that this new version

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 1. Introduction 17

of the framework with this new feature was shared by all the versions of

the family applications.

OC framework

Scenario Feature

Application I

01 public class ScenarioServiceProxy

implements ScenarioServiceInterface {

02 …

03 public void saveScenario(Scenario)

04 throws RemoteException,

05 PrivilegedActionException {

06 theService.saveScenario(scena);

07}

08 public boolean existsScenario(…)

09 throws RemoteException,

10 PrivilegedActionException {

11 return theService.existsScenario(..);

12}

…

01 public class ScenarioServiceProxy

implements ScenarioServiceInterface {

03 …

04}

Version shared for all the family’s applications

Changed Module

Legend:

Module

Figure 1.3: The Implementation of Member-specific Code is Intermingled with
Core Code.

In addition, this class started being modified only in the OC framework

versions (lines 03-12). For example, new methods were included within

the ScenarioServiceProxy class in the OC framework, as illustrated in

Figure 1.3 (lines 03-12). However, the changes included in the framework

code should have only been performed in the application code (Applica-

tion I) since they are application-specific code (variable feature code).

All the applications of the program family have access to this specific

code, but there is actually only one application that uses it. The side

effect is that this code segment was replicated in the framework for all

the versions of the applications but was used by only one application.

1.1.3
How to Recover Feature Code in Degenerate Families?

Given the presence of degeneration symptoms in program families (Sec-

tion 1.1.2), it is important to observe that it is no longer possible to distinguish

what code elements are realizing each family feature over time. It is not pos-

sible either to classify the code elements contributing to the implementation

of common and variable features in the family implementation. Consequently,

developers do not have full knowledge about the realization and classification

of each feature’ implementation element (e.g. method, attribute). The impor-

tance of this knowledge becomes apparent in a wide range of maintenance and

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 1. Introduction 18

evolution tasks, such as: (i) understanding each feature implementation in a

family member before realizing a given change, and (ii) performing a partial

or complete reengineering of the family code.

In this context, a key step is to analyse which and how the code elements

of the program family’s features have been changed across the evolution

history of each family member. This analysis is critical to understand how

the variability nature of the features’ code elements evolved over time. We call

this process forward recovery of family features, which aims at: (i) analysing

the evolution from the first version to the last one of each family member, and

(ii) exploiting this forward analysis to identify and classify the implementation

elements (e.g. methods and attributes) according to their variability degree.

The forward recovery of the features’ code elements is the representation of

the program family obtained from the analysis of its source code.

However, as a consequence of the degradation symptoms (Section 1.1.1),

this recovery is far from trivial because of the following issues: (i) the imple-

mentation of common features evolves in different ways across the members

of the program family; (ii) the variability classification of features is no longer

consistent across all the family members; and finally (iii) it is common that

there is no proper and updated documentation about the program family, and

only its source code remains as the reference artefact.

1.2
The State of the Art on Design Recovery and Feature Mapping

This section discusses related work which could be used to circumvent

the problems related to the identification and classification of the features’ im-

plementation elements in degenerate program families. Previous contributions

in two key areas of research are relevant in this context: design recovery and

feature mapping. We discuss here related work in the broad spectrum of these

areas that could somehow contribute to the resolution of each of these prob-

lems. As they cannot be used to address those problems, their limitations are

made clear below.

According to Chikofsky and Cross (Chikofsky et al. 1990), design re-

covery is a reverse engineering activity in which domain main knowledge

and external information are added to the observations of the subject sys-

tem to identify meaningful high-level abstractions beyond those obtained

directly by examining the system itself. In particular, design recovery aims

to recreate the original design of a software system. Taking into consid-

eration this definition, some research work has explored the software de-

sign recovery at different levels (Arango 1998, Kramer and Prechelt 1996,

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 1. Introduction 19

Knodel 2005, Shi and Olsson 2006, Tsantalis et al. 2006, Krikhaar 2009,

Abi-Antoun and Aldrich 2009, Alnusair and Zhao 2010). Research work has

proposed different processes, methodologies and tools that extract informa-

tion from the source code of individual applications and reason about it for

recovering the original software architecture or specific design information

(e.g. design patterns).

Abi-Antoun and Aldrich (Abi-Antoun and Aldrich 2009) defined a tech-

nique called SCHOLIA to statically extract hierarchical runtime architec-

ture from object-oriented code using annotations. This technique follows

the extract-abstract-check strategy and it is used to extract and com-

pare an extracted architecture with the target architecture. Others such as

(Kramer and Prechelt 1996, Kazman and Carrière 1999, Shi and Olsson 2006,

Tsantalis et al. 2006, Alnusair and Zhao 2010) are interested in identifying de-

sign patterns by analysing the source code. Sartipi (Sartipi 2003) presented a

model for recovering the high level design of legacy software systems based on

user-defined architectural patterns and graph matching techniques.

Unfortunately, none of related work discussed above considers the con-

cept of features during the design recovery process. However, there are recently-

proposed approaches that try to cover this gap. There are also some studies

that reported reengineering processes of legacy systems into product assets

(Kang et al. 2005, Kang et al. 2006, Kästner et al. 2007, Tulio et al. 2012).

Basically, these studies reported the challenges and adopted methodologies

during the extraction process of product assets. They can be used to re-

cover relevant information about each feature. For instance, Tulio et al.

(Tulio et al. 2012) proposed a semi-automatic approach for extracting op-

tional features based on a set of feature seeds. Other studies explored

source code history to detect change dependencies related to crosscutting fea-

tures (Adams et al. 2010, Nguyen et al. 2011, Marin et al. 2007). For instance,

(Adams et al. 2010, Nguyen et al. 2011) proposed techniques for identifying

code elements realizing non-functional crosscutting features in evolving soft-

ware systems. However, these techniques do not support the evolution history

analysis of program families. The advantages and shortcomings of these tech-

niques are discussed in Section 2.4.

Moreover, there has been a growing range of techniques that as-

sist developers in the feature mapping activity (Wilde and Scully 1995,

Wong et al. 1999, Chen and Rajlich 2000, Eisenbarth et al. 2003,

Eisenberg and Volder 2005, Robillard and Murphy 2007, Marin et al. 2007,

Zhang et al. 2008). Feature mapping activity refers to the explicit iden-

tification of all code elements (e.g. methods) responsible for real-

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 1. Introduction 20

izing each feature (Eisenbarth et al. 2003, Eisenberg and Volder 2005,

Robillard and Murphy 2007). However, the feature mapping techniques were

not explicitly conceived to explore evolving members of a program family.

These techniques were designed to support feature mapping taking into

consideration only a single version of a single application.

Therefore, although there are many studies that explore the design

recovery at different artifact levels of a software system (e.g. architecture

and source code), all of them do not tame the aforementioned degeneration

symptoms in program families (Section 1.1). In particular, two main limitations

were identified in the related work. First, they are unable to explore historical

information of evolving program families. Second, they are unable to support

the forward recovery (Section 1.1.3) of the code elements realizing their

common and variable features even exploring individual application versions.

To sum up, developers are not equipped with any kind of method or tool

support for the forward recovery of features’ implementation elements in

degenerate program families.

1.3
Aims and Research Questions

The main goal of this thesis is to support forward recovery of program

family’s features. As mentioned in Section 1.1.3, the forward recovery is

intended to identify the feature elements and their variability degree according

to the full evolution history of the family members. The output of the forward

recovery process is twofold: (i) the list of code elements realizing each feature

within each family member version, the so-called feature mapping. There

is a feature mapping for each version of the family member; and (ii) the

classification of the code elements according to their variability degree. These

outputs can be useful to a wide range of family restructuring actions. For

instance, it can be used to support code refactoring activities across the

program family in order to tame family degradation symptoms (Section 1.1.1).

As a first step in our research, we study how much challenging is

to produce feature mappings made by developers. We perform a study to

categorize mistakes (or mismatches) when developers are identifying feature

elements in the source code. In the context of our work, this is particularly

important for two reasons: (i) to reduce the occurrences of false negatives and

false positives in the feature mappings generated for each version of the family

member; and (ii) to classify the variability degree of the code elements realizing

the family features.

Therefore, in order to achieve the aforementioned goal, we address the

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 1. Introduction 21

following four research questions (RQ) in this thesis:

RQ1. Which are the typical mismatches made by developers when mapping

features in the implementation?

RQ2. How to automatically generate feature mappings in evolving program

families?

RQ3. How to automatically classify the variability degree of each family

element?

RQ4. What is the accuracy of our forward recovery process?

The first research question is related to the mismatches that emerge

when identifying the features’ code elements. The aim is to analyse the

typical mapping mismatches made by developers. We classify and document a

set of recurring types of feature mapping mismatches. The second research

question aims at defining a set of heuristics to help developers generate

(or expand) feature mappings in evolving program families. The mapping

heuristics generate feature mappings for all the versions of the family members.

These heuristics are called mapping expansion heuristics as they involve the

automatic identification of feature elements in the code departing from an

initial mapping (seed). They also aim at reducing the number of mapping

mismatches, detected in the previous research question (RQ1), through the

feature evolution in the family code. The third research question aims at

defining a set of recovery heuristics to classify the code elements realizing the

family features. The recovery heuristics use as input information the expanded

feature mappings generated by the mapping expansion heuristics (RQ2). The

fourth research question evaluates the accuracy of our forward recovery process.

1.4
Thesis Contributions

This section briefly describes the contributions of this thesis, namely a

classification of mapping mismatches, heuristics for expanding feature map-

pings, heuristics for recovering the features’ implementation elements, the tool

support that we developed and a set of studies to evaluate the accuracy of

the two proposed suites of heuristics. These contributions are summarized in

scientific publications presented in Table 1.1. There are also some indirect pub-

lications that arose during the definition and conception of this thesis, which

are described in Table 1.2. All the contributions are briefly described as follows.

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 1. Introduction 22

1.4.1
A Catalogue of Recurring Feature Mapping Mismatches (RQ1)

Identifying feature mapping mismatches is an important step to be

performed before the maintenance and evolution tasks. This step is particularly

important as the existence of mapping mismatches may lead developers

to incorrectly understand and implement a change in a feature’s module.

Consequently, the lack of mismatches in feature mappings can help developers

implement systematically and successfully maintenance and evolution tasks.

In this sense, a set of recurring types of feature mapping mismatches were

empirically identified and characterized in our research. More importantly, the

identification and classification of mismatches was used as basic information for

the definition and formalization of our suite of mapping expansion heuristics

(Section 1.4.2). The mismatches are made either manually by developers or by

applying existing feature mapping techniques (Chapter 2). They are related

to our first research question (RQ1 in Section 1.3). The mismatches were

identified and categorized through the empirical analysis of evolving feature

mappings in program families. We also run two empirical evaluations in order

to observe the occurrences of such mismatches using two different software

systems. The catalogue of mapping mismatches is a concrete contribution of

this work as it serves as documentation and guidance to tool developers and

software engineers while correcting and extending their feature representation.

1.4.2
A Suite of Mapping Expansion Heuristics (RQ2)

Based on the identification and characterization of mapping mismatches

(Section 1.4.1), a set of heuristics to automatically expand feature mappings

in evolving program families was defined. The expansion refers to the action

of automatically generating the feature mappings for each family member ver-

sion by systematically considering its previous change history. These heuristics

improve the accuracy of those mappings by reducing the occurrence of mis-

matches given a set of evolving members of the same family. They are related

to our second research question (RQ2 in Section 1.3). First, we defined and

formalized the mapping expansion heuristics. Second, we defined a heuristic

method that takes into consideration the program family’s change history. Fi-

nally, we design and implement a tool, named MapHist, which supports the

use of the proposed mapping heuristics.

The MapHist tool was implemented as an Eclipse plug-in (Eclipse 2011).

This suite of heuristics is a novelty of this thesis as it explores the knowledge

and analysis of the program family’s change history, which are not addressed

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 1. Introduction 23

by existing research work. The mapping expansion heuristics were also useful

to foster advances on the visualization of evolving program families. This was

achieved through the integration of the mapping expansion heuristics with a

visualization tool named SourceMiner evolution (SME) (Novais et al. 2012).

This integration enables developers to visualize and analyse the feature evolu-

tion through multiple views provided by the SME tool.

1.4.3
Recovery Heuristics for the Classification of Feature Elements (RQ3)

A set of recovery heuristics for classifying the implementation elements

of each family feature was defined and formalized. These heuristics rely on

the analysis of the previously generated feature mappings by the mapping

expansion heuristics (Section 1.4.2). The goal of these recovery heuristics is

to reveal which implementation elements should be part of the common and

varying parts of the new recovered program family. The heuristics analyse, for

example, the amount of common implementation elements realizing a given

feature in the mappings when considering all the family members. This type

of information is relevant because if many family members, and consequently

their features, reference the same set of classes throughout their versions, it

can be a strong indicator that these classes should be present in the common

features of the recovered program family. We implemented the heuristics to

provide automatic support for the recovery of program family’s features.

1.4.4
Empirical Evaluation (RQ4)

We evaluated the accuracy of the two proposed suites of heuristics

through two industrial program families. The first suite that encompasses the

expansion of feature mappings (Section 1.4.2) was evaluated by analysing the

accuracy of the feature mappings generated by the MapHist tool with the

participation of the original developers of the analysed program families. The

second suite that encompasses the forward recovery heuristics (Section 1.4.3)

was evaluated comparing the obtained results by the recovery heuristics and

a manual approach. The manual approach consists of the original developers’

participation of both case studies with the goal of evaluating and validating

the results obtained by the recovery heuristics.

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 1. Introduction 24

Table 1.1: Publications related to this Thesis.

Direct Publications

Research

Ques-

tion(s)

Nunes, C., Garcia, A., Lucena, C. History-Sensitive Recovery of Product

Line Feature. In Proceedings of the International Conference on Software

Maintenance (ICSM) - Doctoral Symposium, Romania, 2010, pp. 1-2.

all

Nunes, C., Garcia, A., Figueiredo, E., Lucena, C. Revealing Mistakes

in Concern Mapping Tasks: An Experimental Evaluation. In Proceedings

of the European Conference on Software Maintenance and Reengineering

(CSMR), Germany, 2011, pp. 101-110.

RQ1

Nunes, C. On the Proactive Identification of Mistakes on Concern

Mapping Tasks. In Proceedings of the International Conference on Aspect-

Oriented Software Development (AOSD) - Student Research Competition,

2011 (1st Place - http://src.acm.org/winners.html), pp. 85-86.

RQ1, RQ2

Nunes, C. Heuristic Expansion of Feature Mappings in Evolving Pro-

gram Families. Candidate for the ACM Student Research Competition

Grand Finals, 2012 (http://src.acm.org/2012/CamilaNunes.pdf)

RQ2, RQ4

Nunes, C., Garcia, A., Lucena, C., Lee, J. Heuristic Expansion of Feature

Mappings in Evolving Program Families. Journal of Software Practice and

Experience, 2012 (submitted).

RQ2, RQ4

Novais, R., Nunes, C., Lima, C., Cirilo, E., Dantas, F., Garcia, A.,

Mendonça, M. On the Proactive and Interactive Visualization for Feature

Evolution Comprehension: An Industrial Investigation. In Proceedings of

the International Conference on Software Engineering (ICSE), Software

Engineering in Practice, Zurich, 2012, pp. 1044-1053.

RQ2, RQ4

Nunes, C., Garcia, A., Lucena, C., Lee, J. History-Sensitive Heuristics

for Recovery of Features in Code of Evolving Program Families. In Pro-

ceedings of the International Software Product Line Conference (SPLC),

Brazil, 2012, pp. 136-145.

RQ3, RQ4

Table 1.2: Indirect Publications.
Indirect Publications

Figueiredo, E., Garcia, A, Maia, M., Ferreira, G., Nunes, C., Whittle, J. On the

Impact of Crosscutting Concern Projection on Code Measurement. In Proceedings

of the International Conference on Aspect-Oriented Software Development (AOSD),

Porto de Galinhas, 2011, pp. 81-92.

Diniz, A., Nunes, C., Silva, V. T., Fonseca, B., Lucena, C. JAAF+T: A Framework

to Implement Self-Adaptive Agents that Apply Self-Test. In Proceedings of the ACM

Symposium on Applied Computing, Sierre, 2010, pp. 928-935.

Nunes, I., Choren, R., Nunes, C., Fabri, B. ; Carvalho, G., Lucena, C. Supporting

Prenatal Care in the Public Healthcare System in a Newly Industrialized Country. In

Proceedings of the International Conference on Autonomous Agents and Multiagent

Systems (AAMAS) - Industry Track, 2010, Toronto, 2010, pp. 1723-1730.

Dantas, F., Nunes, C., Garcia, A. ; Kulesza, U., Lucena, C. Stability of Software

Product Lines with Class-Aspect Interfaces: A Comparative Study. In 4th Workshop on

Assessment of Contemporary Modularization Techniques (ACOM), Jeju Island, 2010.

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 1. Introduction 25

1.5
Outline of the Thesis Structure

In the remainder of this thesis document, we present the catalogue of the

feature mapping mismatches. Based on these mismatches, we define a suite of

heuristics for expanding feature mappings, a heuristic method for the recovery

of features, a suite of recovery heuristics and the support tool. Finally, we

also present the assessment of our suites of heuristics through two industrial

program families. This document is structured as follows.

Chapter 2: Background and Related Work. This chapter presents the

main concepts approached in this thesis (Section 2.1) and an overview of the

current state of the art by contrasting the similarities and differences with

respect to our work. It explains the motivation of feature mapping activity

and its relevance to maintenance and evolution tasks (Section 2.2). It also

describes current feature mapping techniques by explaining the main concepts,

advantages and drawbacks. This chapter highlights the differences from our

work and others that proposed methods and reengineering methodologies for

the recovery of software system’s artifacts (Section 2.3). Finally, it also presents

some studies about code refactoring and history analysis (Section 2.4), and

code clone tools (Section 2.5).

Chapter 3: Mismatches in Feature Mappings. This chapter presents

the definition and classification of eight feature mapping mismatches. These

mismatches were observed and categorized in members’ versions of an evolving

program family (Section 3.1). The mapping mismatches were described in two

categories: feature characteristics and module characteristics (Section 3.2). It

also discusses the relationships among the mapping mismatches (Section 3.3).

Additionally, it empirically evaluates the occurrence of such mismatches in the

context of two software systems (Section 3.4). Finally, it also distinguishes the

contributions of the catalogue of mapping mismatches with respect to closest

related work regarding feature mapping studies and techniques (Section 3.5).

The results of this chapter have been reported in two papers (Nunes et al. 2010,

Nunes et al. 2011).

Chapter 4: Mapping Expansion Heuristics. This chapter presents the

heuristic method that takes into consideration the program family multi-

dimensional history to expand the feature mappings (Section 4.3). It defines

and formalizes a cohesive set of five mapping expansion heuristics (Section 4.4).

It also presents our tool, MapHist, which provides support to the application of

the proposed heuristics (Section 4.5). It evaluates the accuracy of the mapping

heuristics through two program families (Section 4.6). Finally, it also discusses

the integration of the mapping expansion heuristics with a visualization tool

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

Chapter 1. Introduction 26

in order to provide developers with different graphical representations to

visualize the differences and evolution of the feature mappings (Section 4.8).

The results of this chapter have been reported in three papers (Nunes 2011,

Nunes et al. 2012a, Novais et al. 2012).

Chapter 5: Recovery Heuristics of Feature Elements. This chapter

presents the suite of recovery heuristics. The first step was to extend the

methodology of the mapping expansion heuristics by including a new step

that supports the classification of features’ implementation elements (Sec-

tion 5.1). It defines and formalizes the recovery heuristics and their cate-

gories (Section 5.2). It also describes the algorithmic solution used to imple-

ment the recovery heuristics (Section 5.3). Finally, it evaluates the accuracy

of the recovery heuristics through two industrial program families (Sections

5.4 and 5.5). The results of this chapter have been reported in two papers

(Nunes et al. 2010, Nunes et al. 2012b).

Chapter 6: Final Remarks and Future Work. This chapter presents the

final remarks, a summary of our contributions and future work.

DBD
PUC-Rio - Certificação Digital Nº 0912903/CA

