
257

7
Conclusions

This thesis addresses several limitations of the current literature with respect

to empirical evaluation of model composition effort. An overall research question

has been formulated to specify the scope of this thesis: How can the composition

of design models be evaluated with respect to developers’ effort? This overall

question was further decomposed into four specific research questions (Section

1.3); the goal was to explicitly investigate specific dimensions of model

composition effort. Even though many contributions have been presented in the

previous chapters, overall conclusions need to be drawn and much work remains

to be done. Therefore, this chapter: (i) summarizes the main topics studied

(Section 7.1) to address our research questions, (ii) refines the contributions

previously discussed (Section 7.2), and (iii) gives directions for future work

(Section 7.3).

7.1.
Summary

Model composition plays a pivotal role in many software engineering

activities. Moreover, software modeling is increasingly becoming a collaborative

work. However, a clear understanding of the effort required for composing design

models is still a challenging task. Developers need to know how to quantify this

effort and grasp the possible factors that influence it. To address these issues, a

systematic evaluation approach for model composition effort and a range of

empirical studies are crucial.

Most existing work on model composition proposes new composition

techniques (Sarma et al., 2011; Epsilon, 2011; Whittle et al., 2009). In addition, as

far as the assessment of such techniques is concerned, nothing has been done so

that an evaluation framework for model composition can be proposed. Even

worse, there is no empirical study aimed at understanding how certain software

modeling factors affect model composition effort in practice. As a result,

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

258

developers are left without any evaluation framework and practical knowledge

about how to identify model composition problems and alleviate the developers’

effort.

We believe that without practical knowledge derived from empirical

investigations (rather than conflicting advice of evangelists (Norris & Letkeman,

2011)), it is not possible to realize well-informed improvements on techniques and

strategies for model composition. It would be not possible, for example, to tame

the side effects of the influential factors - such as the composition technique, the

design decomposition, and model stability - more effectively. With this in mind,

we investigate four research questions (Section 1.3) and confront the results

collected from them. Thus, developers can be aware of the overall cost of

composing design models and identify means to ameliorate this cost.

In this context, this thesis proposes a quality model (RQ1) derived from our

experience of conducting a series of empirical studies. This quality model

identifies three relevant factors: the model composition techniques, the design

decomposition technique, and model stability. More importantly, the quality

model identifies a series of quality notions, including semantic, syntactic, social,

and so on. This framework for evaluating model composition has guided all

empirical investigations performed in this thesis. We believe that this quality

model also serves as a guideline for other researchers to select procedures and

metrics while evaluating how the same or different influential factors affect the

model composition. Given the unifying terminology of our quality model, it also

enables to map, contrast, and bring together findings from different empirical

studies on model composition effort.

After defining the quality model (RQ1), we started investigating the effects

of specific model composition techniques on the developers’ effort (RQ2). More

specifically, we evaluate the effects of some specification-based and heuristic-

based composition techniques on the developers’ effort and the correctness of the

output composed models. This evaluation is performed based on a set of empirical

studies including one controlled experiment, five industrial case studies,

observational studies, and interviews. The combination of these studies allows to

build a body of knowledge about the effort that developers invest to compose

design models. The results, supported by statistical analyses, contradict the

intuition by disclosing that specification-based techniques neither reduce the

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

259

developers’ effort nor assure the correctness of the compositions when compared

to the heuristic-based techniques.

Following the studies of the four research questions, we investigate the

effects of alternative design decompositions (e.g., OOM and AOM) on the effort

to detect inconsistencies (RQ3). We performed one controlled experiment, five

industrial case studies, observational studies, and interviews to understand these

effects. This allowed us to study RQ3 from different perspectives. The results,

also supported by a complete statistical analysis, show that aspect-oriented

modeling neither increased the inconsistency detection rate nor improve the

interpretation of the models. However, developers invested less effort to detect

inconsistencies in AO models than in OO models.

Lastly, we investigate the effort that developers spend to resolve

inconsistencies (RQ4). For this, we study the influence of modeling languages and

model stability on the inconsistency rate and on the effort to resolve these

inconsistencies. From two quasi-experiments in the context of the evolution of

design models, the results revealed that aspect-oriented design models had a

higher inconsistency rate than non-AO ones. However, the inconsistency

resolution effort required by AO models was lower than the OO models. The

model stability has shown to be a good indicator of high density of inconsistency

and resolution effort. That is, unstable models tended to present a higher

inconsistency rate and require a higher effort to transform the output composed

model into an output intended model. All results were supported by statistical

tests.

7.2.
Contributions

We claim that evaluation of model composition must not only be based on

conventional design attributes. Model composition evaluation must be oriented by

the effort that developers should invest to produce an output intended model. This

research work defined an evaluation approach that promotes effort as an explicit

measurement unit, thereby filling the gap between experimental investigations and

the influential factors that affect the composition effort. Additionally, we applied

this new evaluation approach in a series of empirical studies in order to evaluate

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

260

the effects of the influential factors on: (i) the effort to apply composition

techniques, (ii) the effort to detect inconsistencies, and (iii) the effort to resolve

inconsistencies.

After investigating the four research questions in the previous Chapters,

we refine the contributions of this work stated in Chapter 1.

1. A quality model for model composition effort (RQ1). As previously

mentioned in Chapter 1, the central topic of this thesis is the empirical

evaluation of effort on composing design models. Therefore, we first define

quality notions for model composition effort to be applied in this thesis

(Section 3.5.2). We selected and extended existing quality models for

software modeling in the context of model composition. In total, seven

quality notions were introduced in the proposed quality model, namely

syntactic, semantic, social, effort, application, detection, and resolution. The

syntactic, semantic, and social quality notions were tailored from the

previous studies, while the effort, application, detection, and resolution

quality notions were proposed in this thesis. We believe that these quality

notions together are effective to comprise a basic quality model for model

composition effort. The quality model was defined in four levels following a

metamodeling approach. Its main practical contribution is to guide

researchers and developers in two main contexts: (i) the adoption of a

unifying terminology related to the evaluation of model composition effort –

this adoption enables the comparison of different studies and their findings,

and (ii) the selection of metrics for structuring empirical studies on model

composition (Section 3.5.3). In fact, this model has driven all studies in

Chapters 4, 5, and 6; we observed that this model was effective to support

our evaluation of different facets of model composition effort through the

empirical studies. For instance, the quality model was instantiated to select

metrics as well as structuring the procedures required to evaluate how the

influential factors affect model composition effort.

2. Practical knowledge on model composition effort (RQ2,3,4). To address

RQ2, RQ3, and RQ4, we apply the quality model to assess the effects of the

composition factors on the model composition effort. Empirical knowledge

was reported from a series of experimental studies including: two controlled

experiments, five industrial case studies, three quasi-experiments, more than

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

261

fifty interviews, and observational studies. The chief contributions were

practical knowledge about the impact of the influential factors on: (i) the

effort to apply model composition techniques (Chapter 4), (ii) the effort to

detect inconsistencies (Chapter 4 and 5), and (iii) the effort to resolve

inconsistencies (Chapters 4, 5, and 6). Moreover, practical knowledge about

how to: (i) evaluate the developers’ effort, (ii) reduce the likelihood of

emerging inconsistencies, and (iii) tame the side effects of the influential

factors are defined in the previous Chapters 4, 5, and 6. An overview of the

generated knowledge is emphasized as follows:

Model Composition Techniques

a) Developers tend to spend less effort by using the heuristic-based

techniques rather than the specification-based techniques. In fact, the

heuristic-based techniques required less effort to apply them, detect

inconsistencies, and resolve inconsistencies. Consequently, the

general composition effort invested by developers was lower. The

traditional algorithms required less effort than the IBM RSA, which

in turn required less than the Epsilon.

b) The specification-based technique did not reduce the inconsistence

rate whereas also got higher measures than the heuristic-based

techniques. Developers were not more effective to produce the

output intended model by using the specification-based composition

techniques. This finding did not confirm the claims reported in the

current literature that such techniques significantly reduce the

number of inconsistencies compared to the heuristic-based

composition techniques (Epsilon, 2011; Kolovos et al., 2011;

Kompose, 2011; Whittle et al., 2009). This finding indicates that

developers should more carefully use specification-based techniques.

c) The specification-based techniques added undesired difficulties to

specify the similarity between the input model elements. In

particular, it was challenging for developers to proactively write

down match and merge rules, which were able to produce an output

intended model. Severe compositions dominated by relations of the

type many-to-many (N:N) between the input model elements

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

262

characterized the most effort-consuming scenarios. In short, the

specification-based technique demonstrated to be a highly intensive

manual task and more prone to errors. This leads to the insight that

developers should be equipped with heuristics that, for instance,

automatically recommend relations between elements of the input

models.

d) The aforementioned results also lead to three lessons: (1) the model

composition techniques should be more flexible to express different

categories of changes; (2) the techniques should represent the

conflicts between the input models in more innovative views and

report them as soon as they arise; and (3) new composition

techniques could be a mixture of specification-based and heuristic-

based techniques.

a) Design Decomposition TechniquesThe technique used for design

decomposition, such as object-orientation and aspect-orientation,

definitely has a profound impact on model composition effort. For

instance, developers tend to detect more inconsistencies in OO

models than in their AO counterparts. Therefore, AO models

explicitly representing crosscutting modularity do not necessarily

imply on more effective inconsistency detection. This contradicts

somehow the intuition that the improved modularity of AO models

would help developers to localize inconsistencies. Therefore,

developers of AO designs should be more conscious that the

increased number of abstractions in AO models requires more

attention from them while revising the output composed models.

b) Developers tend to invest more effort to detect inconsistencies in OO

models than in AO models. In fact, developers tend to report more

often the presence of inconsistency in AO models (compared to OO

models) instead of trying to find any other solution. On the other

hand, by using OO models, developers try to provide more often the

corresponding implementation even observing the presence of

inconsistencies. That is, the superior modularity of AO models

accelerates inconsistency detection. Therefore, this implies that

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

263

although developers detect fewer inconsistencies in aspect-oriented

models, they spend less effort to localize them.

c) Developers localized more quickly inconsistencies in AO models

when the scope of aspect pointcuts is narrow, thereby confronting

structural and behavioral information about the crosscutting

relations. This faster localization happened because the similarity

between advices represented in structural and behavioral diagram

allowed an “easy transition” between the two diagrams. This leads to

the insight that developers should, whenever it is possible, avoid

wildcards in their pointcuts and break them down in more explicit

pointcut expressions. This strategy seems to improve the readability

and consistency detection in AO models.

d) AO models with inconsistencies tend to cause a higher number of

misinterpretations compared to the OO counterparts. The presence of

the inconsistencies cause a detrimental effect due to the nature of the

AO constructs. In fact, the need to scan all join points affected by the

aspects increased the likelihood of different interpretations by

developers. Therefore, we confirmed our initial expectation that by

using contradicting AO design models would lead to a higher

number of diverging interpretations of the participants. Therefore,

developers working on parallel on aspect-oriented design should be

more conscious about the increased likelihood of different design

interpretations by the team members.

e) Developers tend to consider the sequence diagrams as the basis for

the design implementation, as it is closer to the final implementation

of the method (or advice) bodies; hence, developers become

confident that the information present in the sequence diagram is the

correct one compared to the class diagram. That is, the lower level of

abstraction of this diagram leads the software developers to be more

confident into the behavioral diagrams than the structural ones.

Therefore, inconsistencies in behavioral diagrams tend to have a

superior detrimental effect than those in class diagrams.

Design Characteristics

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

264

a) A number of design characteristics, such as coupling and size, play a

role in the stability characteristic of an evolving design. We have

observed that the inconsistency rate and the inconsistency resolution

effort in stable design models are significantly lower than in unstable

design models. The model stability has demonstrated to be a good

indicator of inconsistency rate and inconsistency resolution effort.

This also leads to the insight that developers should also invest

upfront on applying well-known design principles to improve the

stability of each new delta model to be composed. This is going to

save cost involved in resolving critical inconsistencies later.

b) The location where the inconsistencies emerge is important. For

instance, inconsistencies are more harmful when they take place in

design model elements realizing mandatory features of software

product lines. Because inconsistency propagation is often higher in

model elements implementing mandatory features than in alternative

or optional features. When inconsistencies emerge in elements

realizing optional and alternative features they also tend to naturally

propagate to elements realizing mandatory features. Consequently,

the mandatory features end up being the target of inconsistency

propagation. This observation further confirms the importance of

structuring well key modules of a system in order to avoid instability

and critical inconsistencies later.

c) Developers must structure product-line architectures in such a way

that inconsistencies can keep precisely “confined” in the model

elements where they appear. Otherwise, the quality of the products

extracted from the SPL can be compromised; as the core elements of

the SPL can suffer from problems caused by incorrect feature

compositions. The higher the number of inconsistencies, the higher

the chance of them to continue in the same output model, even after

an inspection process performed by a designer. Consequently, the

extraction of certain products can become error-prone or even

prohibitive.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

265

7.3.
Future Works

This section categorizes the areas where future work is still required such as

composition technologies, additional quality notions and heuristics, formal

foundations, and additional empirical investigations. These areas are discussed

below.

Improvement of Model Composition Technologies

We can highlight two main areas in which supporting tools would be pivotal

to improve model composition in the context of real-world projects: support for

improved awareness in collaborative model composition activities; and automated

detection and resolution of inconsistencies.

First, it would be useful to investigate and develop model composition tools

that support developers with awareness about model composition activities being

performed in parallel. These tools should be able to make developers conscious

about relevant changes in the design model elements. This improvement is

important because developers should be able to identify conflicting changes

earlier than the model composition time. Therefore, future work in this area will

be focused on including support for “awareness” in model composition tools, such

as IBM RSA and Kompose (Kompose, 2011).

Second, the current software modeling tools should support the anticipation,

detection, and resolution of the most critical inconsistencies. Since, it is

particularly challenging for developers to detect and resolve severe

inconsistencies without any guidance (or recommendations) supported by tools.

Therefore, as a future work in this direction, the model composition tools might

incorporate, for instance, the use of model stability as an indicator of severe

inconsistencies emerging in the output composed models. After the detection of

inconsistencies, a recommendation system should assist the developers to resolve

the inconsistencies.

Additional Quality Notions

The proposed quality model for model composition effort was defined based

on the limitations of existing quality models and from empirical studies. A

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

266

possible direction for future research related to the quality model is to go further

in its application in different contexts. By doing so, new empirical studies might

be planned and carried out to evaluate the quality model considering the different

purposes of using model composition. In this thesis, the quality model was mainly

evaluated in the context of changing and reconciling of deign models (Section

3.5.3), but the model may be applied to support the analysis of overlapping design

models. In this context, quality notions such as social and effort quality should be

investigated.

Formal Foundations

The specification of the metrics and the quality model in this thesis is

informal. Therefore, we cannot state that their definitions are, for instance,

mathematically sound and fully free of ambiguities. We believe that a formal

foundation for the metrics and the quality model is a useful additional step in the

future. For example, the metrics could be formalized using set theory and

theoretically evaluated using systematically criteria from the measurement theory.

Additional Empirical Investigations

We can highlight at least two requirements for replications of the studies

performed in this thesis.

First, even though the results of the studies (RQ2,3,4) were statistically

significant, the studies were limited with respect to the types of design models and

inconsistencies analyzed. More types of inconsistencies and models should be

analyzed in replications of our studies. This would allow us to confront the

collected data with the new data. Another proper way to go is to investigate the

effects of inconsistency propagation on the inconsistency detection rate, detection

effort, and the degree of misinterpretation of the design model. In this study, we

have observed that inconsistencies in AO models led to a superior

misinterpretation compared to OO models. However, further studies should be

performed to evaluate, for example, whether the inconsistencies are in fact

converted into a higher number of implementation defects in AO programming

rather than OO programming. That is, we are going to investigate if

inconsistencies in design level are converted into defects in code. Moreover, it

would be great to investigate the effects of key properties in AO modeling such as

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

267

obliviousness and quantification on the inconsistency detection rate, detection

effort, and misinterpretation.

Second, although the results (RQ2) were also statistically significant, the

study considered small design models and a low number of subjects. Thus, the

results may have been threatened by the size of the design models or by level of

experience of the subjects. Therefore, future works might replicate the study by

considering more experienced subjects and more complex design models.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

