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6 
Effort on the Resolution of Inconsistency 

The goal of this Chapter is to evaluate the effects of model stability and 

design modeling language on the inconsistency resolution effort. For this, two 

studies are realized. The first study (Section 6.1) is an exploratory study that 

analyzes and reports the effects of model stability on the effort required to resolve 

inconsistencies, and its impact on the inconsistency rate. These inconsistencies 

emerged when three well-known composition algorithms (such as override, 

merge, and union) were applied in evolution scenarios of three software product 

lines. The results, supported by statistical tests, show that model stability was an 

effective indicator of severe inconsistencies and high resolution effort of 

inconsistency. 

The second exploratory study (Section 6.2) reports the impact of modeling 

language on the inconsistency rate and the resolution effort. More specifically, it 

investigates whether aspect-orientation reduces the resolution effort as improved 

modularization may help developers to better restructure the model. Similar to the 

previous study, it uses model composition to express the evolution of design 

models along six releases of a software product line. The composition algorithms 

(i.e., override, merge, and union algorithms) were also applied. The AO and non-

AO composed models produced were compared in terms of their inconsistency 

rate and effort to solve the identified inconsistencies. The findings reveal specific 

scenarios where aspect-orientation properties, such as obliviousness and 

quantification, result in a lower (or higher) resolution effort. 

 

6.1. 
Effect of Model Stability on Inconsistency Resolution 

As previously mentioned, the composition of design models can be defined 

as a set of activities that should be performed over two input models, MA and MB, 

in order to produce an output intended model, MAB. To put the model composition 

in practice, software developers usually make use of composition heuristics 

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA



185 
 

(Clarke, 2001) to produce MAB. These heuristics match the model elements of MA 

and MB by automatically “guessing” their semantics and then bring the similar 

elements together to create a “big picture” view of the overall design model.  

The problem is that, in practice, the output composed model (MCM) and the 

intended model (MAB) often do not match (i.e., MCM ≠ MAB). Since, MA and MB 

conflict with each other in some way, producing some syntactic and semantics 

inconsistencies in MCM. Consequently, software developers should be able to 

anticipate composed models that are likely to exhibit inconsistencies and 

transform them into MAB. In fact, it is well known that the derivation of MAB from 

MCM is considered an error-prone task (France & Rumpe, 2007). The developers 

do not even have practical information or guidance to plan this task. Their 

inability is due to two main problems. 

First, developers do not have any indicator pointing which MCM should be 

reviewed (or not), given a sequence of output composed models produced by the 

software development team. Hence, they have no means to identify or prioritize 

parts of design models that are likely to have a higher density of inconsistencies. 

They are often forced to go through all output models produced or assume an 

overoptimistic position i.e., all output composed models produced is a MAB. In 

both cases, the inadequate identification of an inconsistent MCM can even 

compromise the evolution of the existing design model (MA) as some composition 

inconsistencies can affect further model compositions.  

Second, model managers are unable to grasp how much effort the derivation 

of MAB from MCM can demand, given the problem at hand (Norris & Letkman, 

2011). Hence, they end up not designating the most qualified developers for 

resolving the most critical effort-consuming cases where severe semantic 

inconsistencies are commonly found. Instead, unqualified developers end up being 

allocated to deal with these cases. In short, model managers have no idea about 

which MCM will demand more effort to be transformed into a MAB. If the effort to 

resolve these inconsistencies is high, then the potential benefits of using 

composition heuristics (e.g., gains in productivity) may be compromised. 

The literature in software evolution highlights that software remaining 

stable over time tends to have a lower number of flaws and require less effort to 

be fixed than its counterpart (Kelly, 2006; Molesini et al., 2009). However, little is 

known whether the benefits of stability are also found in the context of the 
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evolution of design models supported by composition heuristics. This is by no 

means obvious for us because the software artifacts (code and models) have 

different level of abstraction and are characterized by alternative features. In fact, 

design model has a set of characteristics (defined in language metamodel 

expressing it) that are manipulated by composition heuristics and can assume 

values close to what it is expected (or not) i.e., MCM ≈ MAB. If the assigned value 

to a characteristic is close to one found in the intended model, then the composed 

model is considered stable concerning that characteristic. For example, if the 

difference between the coupling of the composed model and the intended model is 

small, then they can be considered stable considering coupling. 

Although researchers recognize software stability as a good indicator to 

address the two problems described above in the context of software evolution, 

most of the current research on model composition is focused on building new 

model composition heuristics (e.g., (Clarke & Walker, 2001; Kompose, 2010; 

Nejati et al., 2007). That is, little has been done to evaluate stability as an 

indicator of the presence of semantic inconsistencies and of the effort that, on 

average, developers should spend to derive MAB from MCM. Today, the 

identification of critical MCM and the effort estimation to produce MAB are based 

on the evangelists’ feedback that often diverge (Mens, 2002). 

This section, therefore, presents an initial exploratory study analyzing 

stability as an indicator of composition inconsistencies and resolution effort. More 

specifically, we are concerned with understanding the effects of the model 

stability on the inconsistency rate and inconsistency resolution effort. We study a 

particular facet of model composition: the use of model composition when adding 

new features to a set of models for three realistic software product lines. Software 

product lines (SPLs) commonly involve model composition activities (Jayaraman 

et al., 2007; Thaker et al., 2007; Apel et al., 2009) and, while we believe the kinds 

of model composition in SPLs are representative of the broader issues, we make 

no claims about the generality of our results beyond SPL model composition. 

Three well-established composition heuristics (Clarke & Walker, 2001), namely 

override, merge and union, were employed to evolve the SPL design models along 

eighteen releases. SPLs are chosen because designers need to maximize the 

modularization of features allowing the specification of the compositions. The use 

of composition is required to accommodate new variabilities and variants 
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(mandatory and optional features) that may be required when SPLs evolve. That 

is, in each new release, models for the new feature are composed with the models 

for the existing features. We analyze if stability is a good indicator of high 

inconsistency rate and resolution effort. 

Our findings are derived from 180 compositions performed to evolve design 

models of three software product lines. Our results, supported by statistical tests, 

show that stable models tend to manifest a lower inconsistency rate and require a 

lower resolution effort than their counterparts. In other words, this means that 

there is significant evidence that the higher the model stability, the lower the 

model composition effort.  

In addition, we discuss scenarios where the use of the composition 

heuristics became either costly or prohibitive. In these scenarios, developers need 

to invest some extra effort to derive MAB from MCM. Additionally, we discuss the 

main factors that contributed to the stable models outnumber the unstable one in 

terms of inconsistency rate and inconsistency resolution effort. For example, our 

findings show that the highest inconsistency rates are observed when severe 

evolution scenarios are implemented, and when inconsistency propagation 

happens from model elements implementing optional features to ones 

implementing mandatory features. We also notice that the higher instability in the 

model elements of the SPL design models realizing optional features, the higher 

the resolution effort. To the best of our knowledge, our results are the first to 

investigate the potential advantages of model stability in realistic scenarios of 

model composition. We therefore see this study as a first step in a more ambitious 

agenda to empirically assess model stability. 

The remainder of the chapter is organized as follows. Section 6.1.1 

describes the main concepts and knowledge that are going to be used and 

discussed throughout the Chapter. Section 6.1.2 presents the study methodology. 

Section 6.1.3 discusses the study results. Section 6.1.4 compares this work with 

others, presenting the main differences and commonalities. Section 6.1.5 

highlights some threats to validity. Finally, Section 6.1.6 presents some 

concluding remarks and future work. 
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6.1.1.   
Background 

This Section presents the fundamental concepts to a correct understanding 

of the contributions presented in this Chapter. To this end, the concepts of model 

stability, composition heuristics, and model inconsistency will be discussed. 

 

6.1.1.1. 
Model Stability 

According to (Kelly, 2006), a design characteristic of software is stable if, 

when compared to other, the differences in the metric associated with that 

characteristic are regarded small. In a similar way in the context of model 

composition, MCM can be considered stable if its design characteristics have a low 

variation concerning the characteristics of MAB. In (Kelly, 2006), Kelly studies 

stability from a retrospective view i.e., comparing the current version to previous 

ones. In our study, we compare the current model and the intended model. 

We define low variation as being equal to (or less than) 20 percent. This 

choice is based on previous empirical studies (Kelly, 2006 on software stability 

that has demonstrated the usefulness of this threshold. For example, if the measure 

of a particular characteristic (e.g., coupling and cohesion) of the MCM is equal to 

9, and the measure of the MAB is equal to 11. So MCM is considered stable 

concerning MAB (because 9 is 18% lower than 11) with respect to the measure 

under analysis. Following this stability threshold, we can systematically identify 

weather (or not) MCM keeps stable considering MAB, given an evolution scenario. 

Note that threshold is used more as a reference value rather than a final decision 

maker. The results of this study can regulate it, for example. The differences 

between the models are computed from the comparison of measures of each 

model characteristic calculated with a suite of metrics described in Chapter 3 and 

Table 27. 

We adopt the definition of stability from (Kelly, 2006) (and its threshold) due 

to some reasons. First, it defines and validates the quantification method of 

stability in practice. This method is used to examine software systems that have 

been actively maintained and used over a long term. Second, the quantification 
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Type Metric Description 

Size NClass The number of classes 

NAttr The number of attributes 

NOps The number of operations 

NInter The number of interfaces 

NOI The number of operations in each interface 

Inheritance DIT The depth of the class in the inheritance hierarchy. 

InhOps The number of operations inherited. 

InhAttr The number of attributes  inherited. 

Coupling DepOut The number of elements on which a class depends. 

DepIn The number of elements that depend on this class. 

 

Table 27: Metrics used 

 

method of stability has demonstrated to be effective to flag evolutions that have 

jeopardized the system design. 

Third, many releases of the system under study were considered. This is a 

fundamental requirement to test the usefulness of the method. As such, all these 

factors provided a solid foundation for our study. These metrics were used 

because previous works (Farias et al., 2008a; Medeiros et al., 2010; Guimarães et 

al., 2010; Kelly, 2006; Farias, 2011) have already observed the effectiveness of 

these indicators for the quantification of software stability. Knowing the stability 

in relation to the intended model it is possible to identify evolution scenarios, 

where composition heuristics are able to accommodate upcoming changes 

effectively and the effort spent to obtain the intended model. The stability 

quantification method is presented later in Section 6.1.2.4. 
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6.1.1.2. 
Composition Heuristics 

As previously mentioned in Section 2.4, composition heuristics rely on two 

key activities: matching and combining the input model elements (Farias et al., 

2010a; Farias et al., 2010b; Clarke, 2001, Reddy et al., 2006). Usually they are 

used to modify, remove, and add features to an existing design model. This work 

focuses on three state-of-practice composition heuristics: override, merge, and 

union (Clarke & Walker, 2001; Clarke & Walker, 2005). These heuristics were 

chosen because they have been applied to a wide range of model composition 

scenarios such as model evolution, ontology merge, and conceptual model 

composition. In addition, they have been recognized as effective heuristics in 

evolving product-line architectures e.g., (Farias et al., 2010a). In the following, we 

briefly define these three heuristics, and assume MA and MB as the input two 

models. The input model elements are corresponding if they can be identified as 

equivalent in a matching process. Matching can be achieved using any kind of 

standard heuristics, such as match-by-name (Oliveira et al., 2009a; Oliveira et al., 

2009b; Reddy et al., 2005).  

The design models used are typical UML class and component diagrams, 

which have been widely used to represent software architecture in mainstream 

software development (Ambler, 2005; Fowler, 2003; Dennis et al., 2007; Lüders 

et al., 2000). In Figure 17, for example, R2 diagram plays the role of the base 

model (MA) and Delta(R2,R3) diagram plays the role of the delta model (MB). The 

components R2.BaseController and Delta(R2,R3).BaseController are considered 

as equivalent. We defer further considerations about the design models used in our 

study in Section 6.1.2.3. The composition heuristics considered in our study were 

override, merge, and union. These heuristics were previously discussed in Section 

2.4.1. Figure 17 shows two input models and two composed models produced 

following the override and merge heuristics, respectively. Figure 18 shows the 

intended model and the composed model produced following the union heuristic.  
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Figure 17: Example of composition of the Mobile Media product line 

 

 

Figure 18: The intended and composed model produced following the union heuristic 
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6.1.1.3. 
Model Inconsistency 

Inconsistencies emerge in the composed model when its properties assume 

values other than those expected, as previously defined in Section 3. These values 

can affect the syntactic and semantic properties of the model elements. Usually 

the undesired values come from conflicting changes that were incorrectly realized 

(Samar et al., 2011). We can identify two broad categories of inconsistencies: (i) 

syntactic inconsistencies, which arise when the composed model elements do not 

conform to the modeling language’s metamodel; and (ii) semantic inconsistencies, 

which mean that static and behavioral semantics of the composed model elements 

do not match those of the intended model elements.  

In our study, we take into account syntactic inconsistencies that were 

identified by the IBM Rational Software Architecture’s model validation 

mechanism (IBM RSA, 2011). For example, this robust tool is able to detect the 

violation of well-formedness rules defined in the UML metamodel specification 

(OMG, 2011). In order to improve our inconsistency analysis, we also considered 

the types of inconsistencies shown in Table 28, which were checked by using the 

SDMetrics tool (Wust, 2011). In particular, these inconsistencies were used 

because their effectiveness has been demonstrated in previous works (Farias et al., 

2008a; Farias et al., 2010a; Farias et al., 2012d). In addition, both syntactic and 

semantic inconsistencies were manually identified as well. All these procedures 

were followed in order to improve our confidence that a representative set of 

inconsistencies were tackled by our study.  

Many instances of these inconsistency types (Table 28) were found in our 

study. For example, the static property of a model element, isAbstract, assumes 

the value true rather than false. The result is an abstract class where a concrete 

class was being expected. Another typical inconsistency considered in our study 

was when a model element provides (or requires) an unexpected functionality or 

even requires a functionality that does not exist. 

The absence of this functionality can affect other design model elements 

responsible for implementing other functionalities, thereby propagating an 

undesirable ripple effect in the resulting composed model. For example, the 

AlbumData does not provide the service “Update Image Information” because the 
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Metric Description 

NFCon The number of functionality inconsistencies. 

NCCon The number of model elements that are not compliance with the intended 

model. 

NDRCOn The number of dangling reference inconsistencies. 

NASCon The number of abstract syntax inconsistencies. 

NUMECon The number of non-meaningful model elements 

NBFCon The number of behavioral feature inconsistencies. 

 

Table 28: The inconsistencies used in our case study 

method updateImageInfo():void is not present in the ManagePhotoInfoInterface. 

Hence, the PhotoSorting component is unable to provide the service 

“SortingPhotos.” This means that the feature “SortingPhoto” (feature ‘F’ in 

Figure 17) – a critical feature of the software product line – is not correctly 

realized. On the other hand, this problem is not present in Figure 17 (merge), in 

which the AlbumData implement two features (C, model management, and E, edit 

photo’s label). We defer further discussion about the examples and the 

quantification of these types of inconsistencies to Section 6.1.2.4.  

 

6.1.2. 
Study Methodology 

This section presents the main decisions underlying the experimental design 

of our exploratory study. To begin with, the objective and research questions are 

presented (Section 6.1.2.1). Next, the study hypotheses are systematically stated 

from these research questions (Section 6.1.2.2). The product lines used in our 

studies are also discussed in detail as well as their evolutionary changes (Section 

6.1.2.3). Then, the variables and quantification methods considered are precisely 

described (Section 6.1.2.4). Finally, the method used to produce the releases of the 

target architectures is carefully discussed (Section 6.1.2.5). All these 

methodological steps were based on practical guidelines of empirical studies 

(Wohlin et al., 2000; Basili, 2007; Kitchenham et al., 2008; Kitchenham, 2006; 

Shadish et al., 2006). 
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6.1.2.1. 
Objective and Research Questions 

This study essentially attempts to evaluate the effects of model stability on 

two variables: the inconsistency rate and inconsistency resolution effort. These 

effects are investigated from concrete scenarios involving design model 

compositions so that practical knowledge can be generated. In addition, some 

influential factors are also considered into precisely revealing how they can affect 

these variables. With this in mind, the objective of this study is stated based on the 

GQM template (Basili, 1994) as follows: 

analyze the stability of design models 

for the purpose of investigating its effect 

with respect to inconsistency rate and resolution effort 

from the perspective of developers 

in the context of evolving design models with composition heuristics 

 In particular, this study aims at revealing the stability effects while 

evolving composed design models on inconsistency rate and the inconsistency 

resolution effort. Therefore, we address research question RQ4, as stated in 

Section 1.3: 

• RQ4: What is the impact of design characteristics on the inconsistency rate 

and inconsistency resolution effort? 

Considering the quality notions defined in Chapter 3, we study whether the 

syntactic and semantic quality notions of a model affects the effort and resolution 

quality notions. We refine the research question into two research questions. Thus, 

we focus on the following two research questions: 

• RQ4.1: What is the effect of stability on the inconsistency rate? 

• RQ4.2: What is the effect of stability on the developers’ effort? 

 

6.1.2.2. 
Hypothesis Formulation  

First Hypotheses: Effect of Stability on Inconsistency Rate (RQ5.1). In the 

first hypothesis, we speculate that a high variation of the design characteristics of 

the design models may lead to a higher incidence of inconsistencies; since, it 

increases the chance for an incorrect manipulation of the design characteristic by 
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the composition heuristics. In fact, modifications from severe evolutions may lead 

the composition heuristics to be ineffective or even prohibitive. In addition, these 

inconsistencies may also propagate. As a higher incidence of changes is found in 

unstable models, we hypothesize that unstable models tend to have a higher (or 

equal to) inconsistency rate than stable models. The first hypothesis evaluates 

whether the inconsistency rate in unstable models is significantly higher (or equal 

to) than in stable models. Thus, our hypotheses are summarized as follows: 

Null Hypothesis 1, H1-0:  

Stable design models have similar or higher inconsistency rate than 

unstable design models.   

H1-0: Rate(stable design models) ≥ Rate(unstable design models).  

Alternative Hypothesis 1, H1-1:  

Stable design models have a lower inconsistency rate than unstable 

design models. 

H1-1: Rate(stable design models) < Rate(unstable design models) 

By testing the first hypothesis, we evaluate if stability is a good indicator to 

identify the most critical MCM in term of inconsistency rate from a sequence of 

MCM produced from multiple software development teams. Hence, developers can 

then review the design models having a higher density of composition 

inconsistencies. We believe that this strategy is a more effective one than going 

through all MCM produced or assuming an overoptimistic position where all MCM 

produced is a MAB.  

Second Hypothesis: Effect of Stability on Developer Effort (RQ5.2). As 

previously mentioned, developers tend to invest different quantity of effort to 

derive MAB from MCM. Today, model managers are unable to grasp how much 

effort this transformation can demand. This variation is because developers need 

to resolve different types of problems in a composed model, from a simple 

renaming of elements to complex modifications in the structure of the composed 

model. In fact, the structure of the composed models may be affected in different 

ways during the composition e.g., creating unexpected interdependences between 

the model elements. Even worse, these modifications in the structure of the model 

may cause ripple effects i.e., inconsistency propagation between the model 

elements. The introduction of one inconsistency can often lead to multiple other 
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inconsistencies because of a “knock-on” effect. An example would be the 

inconsistency whereby a client component is missing an important operation in 

the interface of a server component. This semantic inconsistency leads to a 

“knock-on” syntactic inconsistency if another component requires the operation. 

In the worst case, there may be long chains of inconsistencies all derived from a 

single inconsistency. Given a composed model at hand, developers need to know 

if they will invest little or too much effort to transform MCM into MAB, given the 

problem at hand. Based on this knowledge, they will be able to prioritize the 

review of the output composed models and to better comprehend the effort to be 

invested e.g., reviewing the models that require higher effort first and those 

requiring less effort after. With this in mind, we are interested in understanding 

the possible difference of effort to resolve inconsistencies in stable and unstable 

design models. The expectation is that stable models require a lower developers’ 

effort to produce the output intended model. This expectation is based on the 

speculation that unstable models may demand more restructuring modifications 

than stable models; hence, requiring more effort. This leads to the second null and 

alternative hypotheses as follows:     

Null Hypothesis 2, H2-0:  

Stable models require similar or higher effort to resolve 

inconsistencies than unstable models. 

H2-0: Effort(stable models) ≥ Effort(unstable models).  

Alternative Hypothesis 2, H2-1:  

Stable models tend to require a lower inconsistency resolution effort 

than unstable ones. 

H2-1: Effort(stable models) < Effort(unstable models). 

By testing the first hypothesis, we evaluate if stability is a useful indicator to 

identify the most critical effort-consuming cases in which severe semantic 

inconsistencies in architectural components are more often. This knowledge helps 

model mangers to allocate qualified developers to overcome the composition 

inconsistencies in MCM. 
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6.1.2.3. 
Target Cases: Evolving Product-Line Design Models 

Model Composition for Expressing SPL Evolution. We have applied the 

composition heuristics to evolve design models of three realistic SPLs for a set of 

evolution scenarios (Table 29). That is, the compositions are defined to generate 

the new releases of the SPL design models. These three SPLs are described below 

and soon after the evolution scenarios are presented. The first target case is a 

product-line called MobileMedia, whose purpose is to support the manipulation of 

photos, music, and videos on mobile devices. The last release of its design model 

consists of a UML component diagram with more than 50 component elements. 

Figure 17 and Figure 18 show a practical example of the use of composition to 

evolve this SPL. 

The second SPL, called Shogi Game, is a board game, whose purpose is to 

allow users to move, customize pieces, save, and load game. All the movements 

of the pieces are governed by a set of well-defined rules. The last SPL, called 

Checkers Game, is a board game played on an eight by eight-squared board with 

twelve pieces on each side. The purpose of Checkers is to essentially move and 

capture diagonally forwards.  

The reason for selecting these SPLs in our evaluation is manifold. Firstly, 

the models are well designed. Next, 12 releases of Mobile Media’s architectural 

models were produced by independent developers using the model composition 

heuristics. These releases are produced from five evolution scenarios. Note that an 

evolution is the production of a release from another one e.g., from R1 to R2 

(Table 28). In addition, 12 releases of Shogi’s and Checkers’ architectural models 

were available as well. In both cases, six releases were produced from five 

evolution scenarios. Together the 36 releases provide a wide range of SPL 

evolution scenarios to enable us to investigate our hypotheses properly. These 36 

releases were produced from the evolution scenarios described in Table 29. 

Secondly, these releases were available for our investigation and had a 

considerable quantity of structural changes in the evolution scenarios.  

Another reason to choose these SPLs is that the original developers are 

available to help us to validate the identified list of syntactic and semantic 

inconsistencies. In total, eight developers worked during the development of the 
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 Release Description 

M
o

b
il

e 
M

e
d

ia
 

R1 MobilePhoto core (Figueiredo et al, 2008) 

R2 Exception handling included 

 

R3 

New feature added to count the number of times a photo has been 

viewed and sorting photos by highest viewing frequency. 

 New feature added to edit the photo’s label 

 

R4 
New feature added to allow users to specify and view their 

favorite photos 

 
R5 New feature to keep multiple copies of photos 

 
R6 New feature to send photo to other users by SMS 

 

C
h

ec
k

er
s 

G
a

m
e
 

R1 Checkers Game core 

R2 New feature to indicate the movable pieces  

 

R3 New feature to indicate possible movements 

 

R4 New feature to save and load the game 

 

R5 New feature added to customize the pieces 

 

R6 New feature added to log the game 

 

S
h

o
g

i 
G

a
m

e 

R1 Shogi Game core 

 

R2 New feature to customize pictures 

 

R3 New feature to customize pieces 

 

R4 New feature to indicate the piece movement 

 

R5 New feature to indicate the movable pieces 

 

R6 New feature to allow the users to save and load the game 

 
 

 
  

 

Table 29: Descriptions of the evolution scenarios 

  

SPLs used in our study being three developers from the Lancaster University 

(UK), two from the Pontifical Catholic University of Rio de Janeiro (Brazil), two 

from University of São Paulo (Brazil), one from Federal University of 

Pernambuco (Brazil). These are fundamental requirements to test our hypotheses 

in a reliable fashion. Moreover, each SPL has more than one hundred modules and 

their architecture models are the main artifact to reason about change requests and 

derive new products. The SPL designs were produced by the original developers 

without any of the model composition heuristics under assessment in mind. It 

helped to avoid any bias and entailed natural software development scenarios. . In 

total, eight developers worked during the development of the SPLs used in our 
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study being three developers from the Lancaster University (UK), two from the 

Pontifical Catholic University of Rio de Janeiro (Brazil), two from University of 

São Paulo (Brazil), and one from Federal University of Pernambuco (Brazil).  

Finally, these SPLs have a number of other relevant characteristics for our 

study, such as: (i) proper documentation of the driving requirements; and (ii) 

different types of changes were realized in each release, including refinements 

over time of the architecture style employed. After describing the SPLs employed 

in our empirical studies, the evolution scenarios suffered by them are explained in 

Table 29.  

 

6.1.2.4. 
Measured Variables and Quantification Method 

First Dependent Variable. The dependent variable of hypothesis 1 is the 

inconsistency rate. It quantifies the amount of composition inconsistencies divided 

by the total number of elements in the composed model. That is, it allows 

computing the density of composition inconsistencies in the output composed 

models. This metric makes it possible to assess the difference between the 

inconsistency rate of stable models and unstable models (H1). It is important to 

point out that inconsistency rate is defined from multiple inconsistency metrics 

(Oliveira, 2008a). 

Second Dependent Variable. The dependent variable of the hypothesis 2 is 

the inconsistency resolution effort, g(MCM)—that is, the number of operations 

(creations, removals, and updates) required to transform the composed model into 

the intended model. We compute these operations because they represent the main 

operations performed by developer to evolve software in real-world settings 

(Mens, 2002). Thus, this computation represents an estimation of the 

inconsistency resolution effort. The collected measures of inconsistency rate are 

used to assess if the composed model has inconsistencies after the composition 

heuristic is applied (diff(MCM,MAB) > 0). Then, a set of removals, updates, and 

creations were performed to resolve the inconsistencies. As a result, the intended 

model is produced and the inconsistency resolution effort is computed. 

 Independent Variable. The independent variable of the hypotheses 1 and 2 

is the Stability (S) of the output composed model (MCM) with respect to  the 
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(1) 

����������	, �� = 	 � 1, ��	0	 ≤ ���������	, �� 	≤ 0.2
0, ��	���������	, �� > 0.2														� 

(2) 

Distance�$%&, $'(� =
|*+�����$,-� − *+�����$'(�|

*+�����$'(� = |8 − 10|
10 = 0.2 

Where: 

Metric are the indicators defined in Table 1 

X is the output composed model, MCM 

Y is the output intended model, MAB 

Distance�x, y� = |$��2���	� − $��2�����|
$��2�����  

output intended model (MAB). The Stability is defined in terms of the Distance (D) 

between the measures of the design characteristics of MCM and MAB. 

Table 27 defines the metrics used to quantify the design characteristics of 

the models, while Formula 1 shows how the Distance is computed. The Stability 

can assume two possible values: 1, indicating that MCM and MAB are stable, and 0, 

indicating that MCM and MAB are unstable. MCM is stable concerning MAB if the 

distance between MCM and MAB (considering a particular design characteristic) 

assumes a value equal (or lower than) to 0.2. That is, if 0 ≤ Distance(MCM,MAB) ≤ 

0.2), then Stability(MCM,MAB) = 0. On the other hand, MCM is unstable if the 

distance between MCM and MAB (regarding a specific design characteristic) 

assumes a value higher than 0.2. That is, if Distance(MCM,MAB) > 0.2), then 

Stability(MCM,MAB) = 0. We use this threshold to point out the most severe 

unstable models. For example, we check if architectural problems happen even in 

cases where the output composed models are considered stable. In addition, we 

also analyze the models that are closer to the threshold. Formula 2 shows how the 

measure Stability is computed. 

For example, MCM and MAB have the number of classes equals to 8 and 10, 

respectively (i.e., NClass = 8 and NClass = 10). To check the stability of MCM 

regarding this metric, we calculate the distance between MCM and MAB 

considering the metric NClass as described below. 
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Distance�$%&,$'(� =
|��345��$,-� − ��345��$'(�|

��345��$'(� = |12 − 14|
14 = 0.14 

Distance�$%&,$'(� =
|*7��2�$,-� − *7��2�$'(�|

*7��2�$'(� = |7 − 9|
9 = 0.22 

Distance�$%&,$'(� =
|*:���2�$,-� − *:���2�$'(�|

*:���2�$'(� = |15 − 17|
17 = 0.11 

Distance�$%&, $'(� =
|DIT�$,-� − DIT�$'(�|

DIT�$'(� = |11 − 13|
13 = 0.15 

As the Distance(MCM,MAB) is equal to 0.2, then we can consider that MCM is 

equal to 1. Therefore, MCM is stable considering MAB in terms of the number of 

classes. Elaborating on the previous example, we can now consider two design 

characteristics: the number of classes (NClass), the afferent coupling (DepOut), 

and the number of attributes (NAttr). Assuming DepOut(MCM) = 12, 

DepOut(MAB) = 14, NAttr(MCM) = 6, and NAttr(MAB) = 7, the Distance is 

calculated as follows. 

 

 

Therefore, MCM is stable concerning MAB in terms of NClass and DepOut. 

However, MCM is unstable in terms of NAttr. In this example, we evaluate the 

stability of MCM considering three design characteristics, which was stable in two 

cases. As developers can consider various design characteristics to determine the 

stability of the MCM, we define the Formula 3 that calculates the overall stability 

of MCM with respect to MAB. Refining the previous example, we evaluate the 

stability of MCM considering two additional design characteristics: the number of 

interfaces (NInter) and the depth of the class in the inheritance hierarchy (DIT). 

Supposing that NInter(MCM) = 15, NInter(MAB) = 17, DIT(MCM) = 11, and 

DIT(MAB) = 13, the Distance is calculated as follows.  
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(3) 
Legend: 

j: number of metrics used (e.g., 10 metrics in case of Table 1)    

����������	, ��?@ABCDD = 1 −	∑ ����������F�GHI
FJK

L  

 = 0.2 + 0.14 + 0.22 + 0.11 + 0.11                                  (applying the Formula 2) 

= 1 + 1 + 0 + 1 + 1 = 4  

Then, 

 

����������	, ��?@ABCDD = 1 −M �����������	, ���N
FJK

5  

OP����������	, ��Q
N

FJK
= |*+�����$,-� − *+�����$'(�|

*+�����$'(�  

+ |��345��$,-� − ��345��$'(�|
��345��$'(� +	 |*7��2�$,-� − *7��2�$'(�|

*7��2�$'(�  

+ |*:���2�$+$� − *:���2�$7S�|
*:���2�$7S� 	+	 |�:T�$+$� − �:T�$7S�|

�:T�$7S� 	 

����������	, ��?@ABCDD = 1 − 4
5	 = 1 − 0.8 = 0.2 

In both cases, MCM is stable as 0.11 and 0.15 are ≥ 0 and ≤ 0.2.Investigating 

this overall stability, we are able to understand how far the measures of the design 

characteristics of MCM in relation to MAB are. The overall stability of MCM in terms 

of NClass, DepOut, NAttr, NInter, and DIT is calculated as follows. As the 

overall stability is equal to 0.2, we can consider that MCM is stable considering 

MAB. 

 

 

6.1.2.5. 
Evaluation Procedures 

a. Target Model Versions and Releases   

To test the study hypotheses, we have used the releases described in Table 

29. Our key concern is to investigate these hypotheses considering a larger 

number of realistic SPL releases as possible in order to avoid bias of specific 

evolution scenarios.  
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Deriving SPL Model Releases. For each release of the three product-line 

architectures, we have applied each of the composition heuristics (override, 

merge, and union) to compose two input models in order to produce a new release 

model. That is, each release was produced using the three algorithms. Similar 

compositions were performed using the override, merge, and union heuristics to 

help us to identify scenarios where the SPL design models succumb (or not). For 

example, to produce the release 3 (R3) of the Mobile Media, the developers 

combine R3 with a delta model that represents the model elements that should be 

inserted into R3 in order to transform it into R4. For this, the developers use the 

composition heuristics described previously. A practical example about how these 

models are produced can be seen in Figure 17 and Figure 18. 

Model Releases and Composition Specification. The releases in Table 29 

were in particular selected because visible and structural modifications in the 

architectural design were carried out to add new features. For each new release, 

the previous release was changed in order to accommodate the new features. To 

implement a new evolution scenario, a composition heuristic can remove, add, or 

update the entities present in the previous model release. During the design of all 

releases, a main concern was to maximize good modeling practices in addition to 

the design-for-change principles. For example, assume that the mean of the 

coupling measure of MCM and MAB is equal to 9 and 11, respectively. So MCM is 

stable regarding MAB (because 9 is 18% lower than 11). Following this stability 

threshold, we can systematically identify if the MCM keeps stable over the 

evolution scenarios.  

b. Execution and Analysis Phases   

Model Definition Stage. This step is a pivotal activity to define the input 

models and to express the model evolution as a model composition. The evolution 

has two models: the base model, MA, the current release, and the delta model, MB, 

which represents the changes that should be inserted into MA to transform it into 

MCM, as previously discussed. Considering the product-line design models used in 

the case studies, MB represents the new design elements realizing the new feature. 

Then, a composition relationship is specified between MA and MB so that the 

composed model can be produced, MCM. 
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Composition and Measurement Stage. In total, 180 compositions were 

performed, being 60 in the Mobile Media, 60 in the Shogi Game and 60 in the 

Checkers Game. The compositions were performed manually using the IBM RSA 

(IBM RSA, 2011; Norris & Letkeman, 2011). The result of this phase was a 

document of composition descriptions, including the gathered data from the 

application of our metrics suite and all design models created. We used a well-

validated suite of inconsistency metrics applied in previous work (Oliveira et al., 

2008; Farias et al., 2010a; Farias et al., 2010b; Medeiros et al., 2010; Guimaraes 

et al., 2010; Farias, 2011a, Farias et al., 2011b) focused on quantifying syntactic 

and semantic inconsistencies. The syntactic inconsistencies were quantified using 

the IBM RSA’s model validation mechanism. The semantic inconsistencies were 

quantified using the SDMetrics tool (Wust, 2011). In addition, we also check both 

syntactic and semantic inconsistencies manually because some metrics e.g., “the 

number of non-meaningful model elements” depend on the meaning of the model 

elements and the current modeling tools are unable to compute this metric.  

The identification of the inconsistencies was performed in three review cycles 

in order to avoid false positives and false negatives. We also consulted the 

developers as needed, such as checking and confirming specific cases of semantic 

inconsistencies. On the other hand, the well-formedness (syntactic and semantic) 

rules defined in the UML metamodel were automatically checked by the IBM 

RAS’s model validation mechanism. 

 Effort Assessment Stage. The goal of the third phase was to assess the effort 

to resolve the inconsistencies using the quantification method described in Section 

6.1.2.4. The composition heuristics were used to generate the evolved models, so 

that we could evaluate the effect of stability on the model composition effort. In 

order to support a detailed data analysis, the assessment phase was further 

decomposed in two main stages. The first stage is concerned with pinpointing the 

inconsistency rates produced by the compositions (H1). The second stage aims at 

assessing the effort to resolve a set of previously identified inconsistencies (H2). 

All measurement results and the raw data are available in Appendix A. 

 

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA



205 
 

6.1.3.  
Results 

This section reports and analyzes the data set obtained from the 

experimental procedures described in the previous section. The findings of this 

work are derived from both the numerical processing of this data set and the 

graphical representation of interesting aspects of the gathered results. Then, 

Section 7.1.3.1 elaborates on the gathered data in order to test the first hypothesis 

(H1). Lastly, Section 7.1.3.2 discusses the collected data related to the second 

hypothesis (H2).  

 

6.1.3.1. 
H1: Stability and Inconsistency Rate 

c. Descriptive Statistics 

This section describes aspects of the collected data with respect to the 

impact of stability on the inconsistency rate. For this, descriptive statistics are 

carefully computed and discussed. The understanding of these statistics is a key 

step to know the data distribution and grasp the main trends. To go about this 

direction, not only the main trend was calculated using the two most used 

statistics to discover trends (mean and median); the dispersion of the data around 

them was also computed mainly making use of the standard deviation. Note that 

these statistics are calculated from 180 composition scenarios i.e., with 60 

compositions applied to the evolution of MobileMedia SPL, 60 compositions 

applied to the Shogi SPL, and 60 compositions applied to the Checkers SPL. 

From this bunch of evolution scenarios, we are confident that the collected data 

are representative to be analyzed using descriptive statistics. 

Table 30 shows descriptive statistics about the collected data regarding 

inconsistency rate. Figure 19 depicts the box-plot of the collected data. By having 

carried out a thorough analysis of this statistic, we can observe the positive effects 

of high level of stability on the inconsistency rate. In fact, we observed only 

harmful effects in the absence of stability. The main outstanding finding is that 

inconsistency rate in stable design model is lower than in unstable design model. 

This result is supported by some observations described as follows 
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Variables Groups N Min 25th Median 75th Max St. Dev. 

Inconsistency 

Rate 

Stable 78 0 0.11 0.31 0.78 3.86 0.84 

Unstable 102 0.17 1.64 3.86 6.88 9.21 2.63 

N: number of composed models, St. Dev.: Standard Deviation 

 

Table 30: Descriptive statistics of the inconsistency rate 

 
First, the median of inconsistency rate in stable models is considerably 

lower than in unstable models. That is, a mean of 0.31 in relation to the intended 

model instead of 3.86 presented by unstable models. This means, for example, 

that stable SPL models present no inconsistencies in some cases. On the other 

hand, unstable models probably hold a higher inconsistency rate than that 

presented by stable models. This comprises normally 3.86 inconsistencies in 

relation to the intended model. This implies, for example, that if the output 

composed model is unstable, then there is a high probability of having 

inconsistencies in these models. 

Stable models have a favorable impact on the inconsistency rate. More 

importantly, its absence has harmful consequences for the number of 

inconsistencies. These negative effects are evidenced by the significant difference 

between the number of inconsistencies in stable and unstable models. If, for 

example, one SPL developer has to work with an unstable model, then he or she 

will certainly have to handle 91.9 percent more inconsistencies, compared the 

medians 0.31 (stable) and 3.86 (unstable). In fact, stable models tend to have just 

8.1 percent of the inconsistencies that are found in unstable models, compared the 

medians 0.31 (stable) and 3.86 (unstable). One of the main reasons is because 

inconsistency propagations are found in unstable models more frequently. This 

means that developers must check all model elements so that they can identify and 

manipulate the composed model so that the intended model can be obtained. 

Another interesting finding is that the inconsistencies tend to be quite close 

to the central tendency in stable models, with a standard deviation equals to 0.84. 

On the other hand, in unstable models these inconsistencies tend to spread out 

over a large range of values. This is represented by a high value of the standard 

deviation that is equal to 2.63. It is important to point out that to draw out valid 
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Figure 19: Box-plot of inconsistencies 

conclusions from the collected data it is necessary to analyze and possibly remove 

outliers from the data.  

Outliers are extreme values assumed by the inconsistency measures that 

may influence the study’s conclusions. To analyze the threat of these outliers to 

the collected data, we made use of box-plots. According to (Wohlin et al., 2000; 

Basili, 2007), it is necessary to verify whether the outliers are caused by an 

extraordinary exception (unlikely to happen again), or whether the cause of the 

outlier can be expected to happen again. Considering the first case, the outliers 

must be removed, and in the latter, they should not be removed. In our study, 

some outliers were identified; however, they were not extraordinary exceptions 

since they could happen again. Consequently, they were left in the collected data 

set as they do not affect the results. 

d. Hypothesis Testing 

We performed a statistical test to evaluate whether in fact the difference 

between the inconsistency rates of stable and unstable models are statistically 

significant. As we hypothesize that stable models tend to exert a lower 

inconsistency rate than unstable models, the test of the mean difference between 

stable and unstable groups will be performed as one-tailed test. In the analyses, we 
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Variable Groups N Mean Rank Rank Sum SC t-value* p 

Resolution 

effort 

Stable 78 46,99 3665 
- 0,698      - 13 < 0.001 

Unstable 102 123,77 12625 

*with 178 degree of freedom, SC: Spearman’s Correlation 

 

Table 31: Mann-whitney test and Spearman’s correlation analysis 

considered significance level at 0.05 level (p ≤ 0.05) to indicate a true 

significance.  

Mann-whitney test. As the collected data violated the assumption of 

normality, the non-parametric Mann-Whitney test was used as the main statistical 

test. The results produced are U' = 7.21, U = 744, z = 9.33 and p < 0.001. The p-

value is lower than z and 0.05. Therefore, the null hypothesis of no difference 

between the rates of inconsistency in stable and unstable models (H1-0) can be 

rejected. That is, there is sufficient evidence to say that the difference between the 

inconsistency rates of stable and unstable models are statically significant.  

Table 31 depicts that the mean rank of inconsistency rate for unstable models   are 

higher than that of stable models. As Mann-Whitney test (Wohlin, 2000) relies on 

ranking scores from lowest to highest, the group with the lowest mean rank is the 

one that contains the largest amount of lower inconsistency rate. Likewise, the 

group with the highest mean rank is the group that contains the largest amount of 

higher inconsistency rate. Hence, the collected data confirm that unstable models 

tend to have a higher inconsistency rate than the stable design models. 

Correlation. To examine the strength of the relationship (the correlation 

coefficient) between stability and inconsistency rate, the Spearman's correlation 

(SC) test was applied (see Table 31). Pearson’s correlation is not used because the 

data sets are not normally distributed. Note that this statistic test assumes that both 

variables are independent; i.e., is neither dependent on, causes nor influences the 

other. The correlation coefficient takes on values between -1 and 1. Values close 

to 1 or -1 indicate a strong relationship between the stability and inconsistency 

rate. A value close to zero indicates a weak or non-existent relationship.  

As can be seen in Table 31, the t-test of significance of the relationship has a 

low p-value, indicating that the correlation is significantly different from zero. 

Spearman’s correlation analysis resulted in a negative and significant correlation 

(SC = - 0.71). The negative value indicates an inverse relationship. That is, as one 
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variable increases, the other decreases. Hence, composition inconsistencies tend to 

manifest more often in unstable models than stable models. The above correlation 

suggests that whereas the stability of product-line architectures decreases the 

inconsistency rate in their models increases.  

Therefore, the results suggest that, on average, stable models have 

significantly lower inconsistency rate than unstable design models. Therefore, we 

are confident that the results confirm a strong indication of correlation between 

stability and inconsistency rate. Consequently, the null hypothesis (H1-0) can be 

rejected and the alternative hypothesis (H1-1) confirmed.  

e. Discussion 

The Effect of Severe Evolution Categories. After discussing how the dataset 

is grouped, grasping the main trends, and studying the relevance of the outliers, 

the main conclusion is that stable models tend to present a lower inconsistency 

rate than unstable models. This finding can be seen as the first step to overcome 

the lack of practical knowledge about the effects of the model stability on the 

inconsistency rate in realistic scenarios of model evolution supported by 

composition heuristics. Some previous studies e.g., (Kelly, 2006; Kemerer & 

Slaughter, 1999; Eman et al., 2002; Perry, 1998; Berzins, 1994, Yang et al., 1992) 

also check similar insights on the code level. These studies report a positive 

association between low variation of coupling and size with stability. 

We have noticed that although the input design models (MA and MB) are well 

structured, they are the target of widely scoped inconsistencies in certain model 

composition scenarios. These widely scoped inconsistencies are motivated by 

unexpected modifications in specific design characteristics of the design models 

such as coupling and cohesion. These scenarios occurred mainly when 

composition heuristics accommodate unanticipated, severe changes from MA to 

MB. The most complicate changes observed are those related to the refinement of 

the MVC (Model-View-Controller) architecture design of the SPLs used in this 

study.  

Another observation is that the composition heuristics (override, merge, and 

union) are not effective to accommodate these changes from MA to MB. The main 

reason is that the heuristics are unable to “restructure” the design models in such 

way that these changes do not harm static or behavioral aspects of the design 
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models. These harmful changes usually emerge from a set of ever-present 

evolving change categories, such as modification of the model properties and 

derivation of new model elements (e.g., components or classes) from other 

existing ones.  

In the first category, modification, model elements have some properties 

affected. This is typically the case when a new operation conflicts with an 

operation previously defined. In Figure 17 and Figure 18, for example, the 

operation getImage() in the interface R2.HandleException had its return type, 

String[], conflicting with the return type, ImageData[] of the interface 

Delta(R2,R3). HandleException. Another example is the component 

ManageAlbum that had its name modified to ManageLabel to express semantic 

alterations in the concepts used to realize the error handling feature. Only one of 

the names and return types can be accepted, but the two modifications cannot be 

combined. Both cases are scenarios in which the heuristics are unable to correctly 

pick out what element must be renamed and what return type must be considered. 

The problem is that detection and decision of these inconsistencies demand a 

thorough understanding of: (i) what the design model elements actually mean as 

well as the domain terms “Album” and “Label”; and (ii) the expected semantics of 

the modified method. In addition, semantic information is typically not included 

in any formal way so that the heuristics can infer the most appropriated choice. 

Consequently, the new model elements responsible for implementing the added 

features are presented with overlapping semantic values and unexpected 

behaviors. Interestingly, this has been the case where existing optional as well as 

alternative features are involved in the change.  

In the second category, derivation, the changes are a little more severe. 

Architectural elements are refined and/or moved in the model to accommodate the 

new changes. Differently from the previous category, the affected architectural 

elements are usually mandatory features because this kind of evolution in software 

product lines is mainly required to facilitate the additions of new variabilities or 

variants later in the project. Unfortunately, in this context of more widely scoped 

changes, the heuristic-based composition heuristics have demonstrated to be 

ineffective.  

A concrete example of this inability in our target cases was the refinement 

of the MVC architecture style of the MobileMedia SPL in the third evolution 
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scenario. In practical terms, the central architectural component, BaseController, 

was broken into other controllers such as PhotoListController, AudioController, 

VideoController and LabelController to support a better manipulation of the 

upcoming media like photo, audio, video and the label attached to them. This 

design rigidness to accommodate four new specific controllers (by refining the 

previous general one) contributed significantly to the instability of the output 

composed model. This is partially due to the name-based model comparison 

policy in the heuristics, which are unable to recognize more intricate equivalence 

relationships between the model elements. Indeed, this comparison strategy is 

very restrictive whenever there is a correspondence relationship 1:N between 

elements in the two input models. That is, it is unable to match the upcoming four 

controllers with the previous one, BaseController.  

A practical example of this category of relationship (1:N) encompassed the 

required interface ControlPhoto (release 3) of the AlbumListScreen component. 

This interface was decomposed into two new required interfaces ControlAlbum 

and ControlPhotoList (release 4), thereby characterizing a relationship 1:2. For 

this particular case, the name-based model comparison should be able to 

“recognize” that ControlAlbum and ControlPhotoList are equivalent to 

ControlPhoto. However, in the output model (release 4), the AlbumListScreen 

component provides duplicate services to the environment giving rise to a severe 

inconsistency.  

Inconsistency Propagation. After addressing the hypotheses and knowing 

that instabilities have a detrimental effect on the density of inconsistencies, we 

analyze whether the local where they arise (i.e., architectural elements realizing 

mandatory, alternative or optional features) can cause some unknown side effects. 

Some interesting findings were found, which is properly discussed as follows.  

To begin with, instability problems are more harmful when they take place 

in design model elements realizing mandatory features. This can be explained by 

some reasons. First, the inconsistency propagation is often higher in the model 

elements implementing mandatory features than in alternative or optional features. 

When inconsistencies arise in elements realizing optional and alternative features 

they also tend to naturally cascade to elements realizing mandatory features. 

Consequently, the mandatory features end up being the target of inconsistency 

propagation. Based on the knowledge that mandatory features tend to be more 
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vulnerable to ripple effects of inconsistencies, developers must structure product-

line architectures in such a way that inconsistencies can keep precisely “confined” 

in the model elements where they appear. Otherwise, the quality of the products 

extracted from the SPL can be compromised as the core elements of the SPL can 

suffer from problems caused by incorrect feature compositions. The higher the 

number of inconsistencies, the higher the chance of them to continue in the same 

output model, even after an inspection process performed by a designer. 

Consequently, the extraction of certain products can become error-prone or even 

prohibitive.  

The second interesting insight is that the higher the instability in alternative 

and optional features, the higher the inconsistency propagation to mandatory 

features. However, the propagation in the inverse order (i.e., from alternative and 

optional to mandatory features) seems to be less common.  In Figure 17 

(override), a practical example can be seen. The instability in mandatory features, 

Album and Photo Management, compromises the optional feature, Edit Photo’s 

Label. The NewLabelScreen component (optional feature) has its two services i.e., 

getLabelName() and getFormType() (specified in the interface ManageLabel) 

compromised. The reason is that the required service editLabel() cannot be 

provided by the BaseController (mandatory feature). Thus, the “edit photo’ label” 

feature can no longer be provided due to problems in the mandatory feature 

“album and photo management.” 

For example, in the fourth evolution scenario of the Checkers Game, the 

optional feature, Customize Pieces, is correctly glued to the R4 using the override 

heuristic so that the new release, R5, can be generated. The problem is that the 

inconsistencies emerging in the architectural component, Command, are 

propagated to the architectural elements CustomizePieces and GameManager. 

Thus, the mandatory feature “piece management” implemented by the Command 

is affecting the optional feature “customize pieces” implemented by the 

components CustomizePieces and GameManager. Although the optional feature, 

Customize Pieces, has been correctly attached to the base architecture, the 

composed models will not have the expected functionality related to the 

customization of pieces.  
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Variables Groups N Min 25th Median 75th Max St. Dev. 

Resolution effort Stable 78 0 3,50 6 13 46 10.29 

Unstable 102 4 27 111 229.25 368 106.7 

N: number of composed models, St. Dev.: Standard Deviation 

 

Table 32: Descriptive statistics of the resolution effort 

6.1.3.2. 
H2: Stability and Resolution Effort  

a.  Descriptive Statistics  

This section discusses interesting aspects of the collected data concerning 

the impact of stability on the developers’ effort. The knowledge derived from 

them helps to understand the effects of model stability on the inconsistency 

resolution effort. In a similar way to the previous section, we calculate the main 

trend and the data dispersion. Table 32 provides the descriptive statistics of 

sampled inconsistency resolution effort in stable and unstable model groups. 

Figure 20 graphically depicts the collected data by using box-plot. To begin with 

our discussion, we first compare the median values of the inconsistency resolution 

effort of the both stable and unstable groups. We can observe that the median of 

the stable models (equals to 6) is much lower than that one of unstable models 

(equals to 111). 

This superiority of the unstable models is also observed in the mean and 

standard deviation, which represent the main trend and dispersion measures, 

respectively. The gathered results, therefore, indicate that stable models claim less 

resolution effort than unstable models. This means that developers tend to perform 

a lower amount of tasks (creations, removals, and modifications) to transform the 

composed model into the intended model. Although we have observed some 

outliers e.g., the maximum value (368) registered in unstable models, they are not 

an extraordinary exception as they could happen again. Consequently, they were 

left in the collected data set, as they do not tamper the results. 
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Figure 20: Box-plot of resolution effort in relation to the intended model 

 

b. Hypothesis Testing 

Given the difference between the mean and median described in the 

descriptive statistical analysis, statistical tests are applied to assess whether in fact 

the difference in effort to fix unstable model and stable model is statistically 

significant. We conjecture that stable models tend to require a lower inconsistency 

resolution effort than unstable models. Hence, a one-tailed test is performed to test 

the significance of the mean difference between stable and unstable groups. 

Again, in the analyses we considered significance level at 0.05 level (p ≤ 0.05) to 

indicate a true significance. 

Mann-Whitney test. As the dataset does not respect the assumption of 

normality, we use the non-parametric Mann-Whitney test was used as the main 

statistical test as well as it was done in the first hypothesis. However, the Mann-

Whitney test was only applied to the effort measures needed to transform the 

composed model into the intended model. The results of the Mann-Whitney test 

produced are U' = 7.372, U = 584, z = 9.79 and p < 0.001. The p-value is lower 

than z and 0.05, therefore, the null hypothesis can be rejected. In other words, 

there exists a difference between the efforts required to resolve inconsistencies in 
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Variable Groups N Mean Rank 
Rank 

Sum 
SC t-value* p 

Resolution effort 
Stable 78 46,99 3665 

- 0,698      - 13 < 0.001 
Unstable 102 123,77 12625 

*with 178 degree of freedom 

 

Table 33: Mann-whitney test and Spearman’s correlation analysis 

 

stable and unstable model groups. In fact, there is substantial evidence pointing 

out the difference between the median measures of the two groups.  

Table 33 shows that the difference between the mean ranks is significant. 

The mean of rank in stable models consists of about 38 of the mean rank in 

unstable models. As the Mann-Whitney test relies on ranking scores from lowest 

to highest, the group with the lowest mean rank is the one that requires the highest 

incidence of lowest effort. Likewise, the group with the highest mean rank is the 

group that contains the largest occurrence of higher effort needed. Hence, the 

collected data show that unstable models that are not stable tend to have higher 

effort than the stable models. 

Correlation Analysis. As the gathered data do not follow a normal 

distribution, we cannot apply the Pearson’s correlation analysis. An alternative 

way was to apply the Spearman's correlation (SC) test to measure the strength of 

the linear relationship (the correlation coefficient) between stability and 

inconsistency resolution effort. Table 33 provides the results of the Spearman’s 

correlation test. The low p-value < 0.001 indicates that the correlation 

significantly departs from zero. Remember that Spearman's correlation value close 

to 1 or -1 indicates a strong relationship between the stability and effort. On the 

other hand, a value close to 0 indicates a weak or non-existent relationship. The 

results (SC = - 0.698) suggest that there is a negative and significant correlation 

between the two variables. This implies that whereas the stability increases the 

effort to resolve inconsistency decreases. 

Hence, stable models required much lesser effort to be transformed into the 

intended model than unstable models. Based on such results, we can reject the null 

hypothesis (H2-0), and accept the alternative hypothesis (H2-1): stable models tend 

to require lower effort to resolve composition inconsistency than unstable models. 
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c. Discussion 

The Effect of Instability on Resolution Effort. We have observed that the 

higher instability in optional and alternative features, the higher the resolution 

effort. This increased effort is due to instabilities in optional features cause 

inconsistencies in model elements implementing mandatory features. In practice, 

inconsistencies in architectural elements realizing optional features tend to affect 

the structure of model elements realizing mandatory features. The reason is that 

some relationships are (or not) introduced between architectural elements 

realizing mandatory and optional features during the composition. These 

undesired dependences favor the inconsistency propagation. Consequently, 

developers must invest some additional effort to resolve the inconsistencies. The 

effort is to restructure the composed model. That is, instability in optional features 

tends to jeopardize some properties of the architectural elements realizing the 

mandatory features, which requires some unexpected effort. That is, it is required 

to resolve a cascading chain of inconsistencies, and usually this process should be 

applied recursively until all inconsistencies have been resolved. This is typically 

the case scenario when inconsistencies of operations with earlier operation, the 

heuristic can therefore remove the earlier operation and add the new one, or vice-

versa.  

We have identified that this higher effort to resolve inconsistencies is due to 

the syntax-based composition heuristics being unable to deal with occurring 

semantic conflicts between the model elements of mandatory and optional 

features. As a result, inconsistencies are formed. In Figure 17, for example, the 

component BaseController requires services from a component NewALbumScreen 

that provides just one mandatory feature “create album” rather than from a 

component that provides two features: “create album” and “edit photo’s label.” 

This is because releases R2 and R3 use different component names 

(R2.NewAlbumScreen and R3.NewLabelScreen) for the same purpose. That is, 

they implement the mandatory feature Create Album in components with 

contracting names. 

A syntax-based composition is unable to foresee these kinds of semantic 

inconsistencies, or even indicate any problem in BaseController as the component 

remains syntactically correct. From R2 to R3, the domain term Album was 
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replaced by Label. However, the purely syntactical, match-by-name mechanism is 

unable to catch and incorporate this simple semantic change into the composition 

heuristic. To overcome this, a semantic-based approach would be required to 

allow, for example, a systematic semantic alignment between these two domain 

terms. Consequently, the heuristics would be able to properly match 

R2.NewAlbumScreen and R3.NewLabelScreen. 

Still in Figure 17, the architectural model R3, which was produced 

following merge heuristic, contains a second facet of semantic problem: 

behavioral inconsistency. The component ExceptionHandling provides two 

services with the same purpose, getImage():String[] and getImage():ImageData[]. 

However, they have different semantic values. This contrasting characteristic is 

emphasized by the different return types, String[] and ImageData[]. However, in 

this case, the inconsistency got confined in the optional feature rather than 

propagating to model elements implementing mandatory features. To resolve the 

problem, the method getImage():String[] should be removed. In total, only one 

operation is performed. Thus, these inconsistencies can be only pinpointed by 

resorting to sophisticated semantics-based composition, which relies on the action 

semantics of the model elements. According to (Mens, 2002), the current 

detection of behavioral inconsistency is just based on complex mathematical, 

program slicing, and program dependence graphs. Unfortunately, none of them is 

able to systematically compare behavioral aspects of components neither realizing 

two features nor even composing them properly. Even worse, the composition 

techniques would be unable to match, for example, ManageAlbum and 

ManageLabel interface 

The Effect of Multiple Concerns on Resolution Effort. Another finding is 

that the higher the number of features implemented by a model element, the 

higher the resolution effort. We have observed that model elements realizing 

multiple features tend to require more inconsistency resolution effort than those 

realizing just one feature. The reason is that the models elements realizing 

multiple features tend to receive a higher number of upcoming changes to-be 

accommodated by the composition heuristics than ones realizing a single feature. 

These model elements become more vulnerable to the unpredictable effects of the 

severe evolution categories. This means that developers tend to invest more effort 

to resolve all possible inconsistencies. 
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In fact, a higher number of inconsistencies has been observed in ‘multiple-

featured’ components rather than in ‘single-featured’ components. As developers 

cannot foresee or even precisely identify all ripple effects of these inconsistencies 

through other model elements, the absence of stability can be used as a good 

indicator of inconsistency. Let us consider the BaseController, the central 

controller in MobileMedia architecture that implements two features (see Figure 

17). The collected data show that the BaseController was modified in almost all 

evolution scenarios because it is a pivotal architectural component in the model-

view-control architectural style of the SPL MobileMedia. Unfortunately, the 

changes cannot be properly realized in all cases. In addition, we observe that 

BaseController’s inconsistencies affect other four components, namely 

NewLabelScreen, AlbumListScreen, PhotoListScreen, PhotoViewScreen, and 

AddPhotoToAlbumScreen. All these affected components require the provided 

services by the BaseController.  

Moreover, we notice that the BaseController had a higher likelihood to 

receive inconsistencies from other model elements than any other components. 

The reason is that it also depends on many other components to provide the 

services of the multiple features. For example, BaseController can be harmed by 

inconsistencies arising from the components ManageAlbum, ManagePhotoInfo, 

and ControlPhoto. This means that, at some point, BaseController can no longer 

provide its services because it was probably affected by inconsistencies located in 

these components.  

It is interesting to note that NewAlbumScreen is also affected by an 

inconsistency that emerged from AlbumData, as it requires the service 

(viewPhoto) provided by the BaseController in the interface, ControlPhoto that 

cannot be accessed. The main reason is that the service, resetImageData(), 

specified in the interface ManagePhotoInfo can no longer be provided by the 

component AlbumData, compromising the serviced offered in the interface 

ControlPhoto. Since BaseController is not able to correctly provide all services 

defined in the provided interface ControlPhoto, it is also re-affected by an 

inconsistency that previously arose from it. This happens because 

NewAlbumScreen does not provide the services described in the interface 

ManageAlbum. This phenomenon represents cyclic inconsistency propagation. 

Understanding this type of phenomenon, designer can examine upfront and more 
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precisely the design models in order to localize undetected cyclic dependence 

between the model elements. 

Another striking observation is that optional features are also harmed by this 

propagation on the mandatory features. For example, the PhotoSorting component 

(realizing optional feature “sorting photos”) is unable to provide the service, 

sortCommand(), specified in the interface SoftPhoto. This is due to the absence of 

the required service, resetImageData() from the ManagePhotoInfo interface, 

which the mandatory feature “album management.” In practical terms, it indicates 

that undesired effects in features can be due to some unexpected instabilities in the 

mandatory features. In collaborative software development, for example, this is a 

typical problem because the model elements implementing different features are 

developed in parallel, but they rarely prepared upfront to-be composed. Hence, 

developers should invest some considerable effort to properly promote the 

composition. 

d. Some Additional Considerations 

Quantification Method. We are aware that there are pros and cons in 

studying either an overall indicator or a single metric of design stability. In (Kelly, 

2006), she defines a single metric of design stability and then uses this method as 

an indicator of good practices of design. This study is performed in retrospective 

i.e., analyzing software artifacts that evolved over a long term. On the other hand, 

this thesis has a different goal that is to evaluate whether the “most severe 

instabilities” may be related to model composition effort. We conjecture that the 

most severe instability can be identified considering a greater number of design 

characteristics. This will be also analyzed during the empirical studies. 

If we consider only one single design characteristic, we will have at least 

two problems: (i) first, we will potentially ignore severe instabilities that affected 

other design characteristics, and (ii) second, we will end up artificially concluding 

those variations of a single characteristic (e.g., high number of methods or high 

number of attributes) always represents severe design instabilities. Then, we opted 

for following a strategy, commonly adopted nowadays e.g., (Marinescu, 2004; 

Lanza & Marinescu, 2006), to detect significant design problems through a 

combination of multiple measures rather than a single metric.  
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Effectiveness of the Threshold. As previously mentioned in Chapter 2, we 

have also analyzed whether the threshold defined in (Kelly, 2006) is also valid in 

the context of this study. To this end, we analyze whether the threshold (0.2) 

jeopardizes the results (or not). More specifically, we study whether small 

differences around a threshold of 0.2 can produce different results. After a careful 

analysis of the collected data, we conclude that our conjecture stated in Section 

2.6.1 is confirmed. That is, the threshold of 0.2 was effective for the purpose of 

this study. The main reason is that the threshold did not harm the identification of 

severe cases of inconsistency rate and resolution effort. This can be confirmed by 

analyzing, for instance, the data in Table 30: the inconsistency rates of the stable 

group and instable group are significantly different considering the median (0.31 

against 3.86); the same pattern of significant difference applies to the other cases 

(25th and 75th columns). Again, the same pattern is observed in Table 32 for 

resolution effort. This means that the threshold considered (0.2) can clearly 

separate the composed models into groups of stable and unstable models; since, 

their measures concentrate in the opposite extremes. This confirms that we are 

able to consistently implement our strategy of studying the impact of models with 

the most severe instabilities (i.e., ones where more than 20% of the design 

characteristics varied considerably) rather than analyzing the different degrees of 

instabilities.  

 

6.1.4. 
Limitations of Related Work 

To the best of our knowledge, our results are the first to empirically 

investigate the relation between quality notions and model composition effort in a 

broader context. In (Farias et al., 2011b), we initially investigated the research 

questions addressed in this Chapter, but they were evaluated in a smaller scope. 

This work, therefore, represents an extension of the results obtained previously. 

The main extensions can be described as follows: (1) two more case studies were 

performed i.e., the evolution studies with the Shogi and Checkers SPLs. This 

implies that the number of composition jumped from 60 to 180; (2) new lessons 

learned were obtained from a broader study; and (3) the size of the sample data 
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was higher than the previously found; hence, the hypotheses might be better 

tested.  

We have observed not only a wide variety of model composition techniques 

Nejati et al., 2007; Clarke, 2001; Reddy, et al., 2005; Lange & Chaudron, 2006a; 

OMG, 2011; Kompose, 2011; Norris & Letkeman, 2011; Whittle & Jayaraman, 

2010; France et al., 2007; Fleury et al., 2007) have been created, but also some 

previous works (Farias et al., 2011b; Nagappan et al., 2010) have demonstrated 

that stability is a good predictor of defects (Nagappan et al., 2010) and the 

presence of good designs (Kelly, 2006). However, none of them has directly 

investigated the impact of stability on model composition effort. 

The lack of empirical evidence hinders the understanding of the side effects 

peculiar to stability on developers’ effort. Consequently, developers in industrial 

projects have to rely solely on feedback from experts to determine “the goodness” 

of the input models and their compositions. In fact, according to several recent 

observations the state of the practice in model quality assessment indicates that 

modeling is still in the craftsmanship era and this problem is even more 

accentuated in the context of model composition (France & Rumpe, 2007; Dingel 

et al., 2008; Farias et al., 2008; Molesini et al., 2009; Mens, 2002; Berzins, 1994; 

France et al., 2006; Dzidek et al., 2008). 

The current model composition literature does not provide any support to 

perform empirical studies in model composition effort (France & Rumpe, 2007; 

Farias et al. 2010a), or even to evaluate the effects of model stability on 

composition effort. In (France & Rumpe, 2007), the authors highlight the need 

empirical studies in model composition to provide insights about how deal with 

ever-present problems such as conflicts and inconsistencies in real world settings. 

In (Mens, 2002), Mens also reveals the need of more “experimental researches on 

the validation and scalability of syntactic and semantic merge approaches, not 

only regarding conflict detection, but also regarding the amount of time and effort 

required to resolve the conflicts.” Without empirical studies, researchers and 

developers are left without any insight about how to evaluate model composition 

in practice. For example, there is no metric, indicator, or criterion available to 

assess the UML models that are merged through, for instance, the UML built-in 

composition mechanism (i.e., package merge) (Dingel et al., 2008; OMG, 2011). 
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There are some specific metrics available in the literature for supporting the 

evaluation of model composition specifications. For instance, Chitchyan and 

colleagues (Chitchyan et al., 2009) have defined some metrics, such as scaffolding 

and mobility, to quantify quality attributes of compositions between two or more 

requirements artifacts. However, their metrics are targeted at evaluating the 

reusability and stability of explicit descriptions of model composition 

specifications. In other words, their work is not targeted at evaluating model 

composition heuristics. Boucke and colleagues (Boucke et al., 2006) also propose 

a number of metrics for evaluating the complexity and reuse of explicitly defined 

compositions of architectural models. Their work is not focused on heuristic-

based model composition as well. Instead, we have focused on analyzing the 

impact of stability on the effort to resolve emerging inconsistencies in output 

models. Therefore, existing metrics (such as those described in (Lange & 

Chaudron, 2006a; Lange & Chaudron, 2006b; Nugroho et al., 2008)) cannot be 

directly applied to our context. 

Although we have proposed a metric suite for quantifying inconsistencies in 

UML class diagrams (Farias et al., 2008a) and then applied these metrics to 

evaluate the composition of aspect-oriented models and UML class diagrams 

(Farias et al., 2010a), nothing has been done to understand the effects of model 

stability on the developers’ effort. We therefore see this study as a first step in a 

more ambitious agenda to support empirically the assessment of model 

composition techniques in general.  

Finally, some previous works investigate the effect of using UML diagrams 

and its profiles with different purposes. In (Briand et al., 2005), Briand looked 

into the formality of UML models and its relation with model quality and 

comprehensibility. In particular, Briand and colleagues investigated the impact of 

using OCL (Object Constraint Language (OMG, 2011)) on defect detection, 

comprehension, and impact analysis of changes in UML models. In (Ricca et al., 

2010), Ricca carried out a series of four experiments to assess how developer´s 

experience and ability influence Web application comprehension tasks supported 

by UML stereotypes. Although they have found that the use of UML models 

provide real benefits for typical software engineering activities, none has 

investigated the peculiarities of UML models in the context of model 

composition.  
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6.1.5. 
Threats to Validity 

Our exploratory study has obviously a number of threats to validity that 

range from internal, construct, statistical conclusion validity threats to external 

threats. This section discusses how these threats were minimized and offers 

suggestions for improvements in future study. 

 

6.1.5.1. 
Internal Validity 

Inferences between our independent variable (stability) and the dependent 

variables (inconsistency rate and composition effort) are internally valid if a 

causal relation involving these two variables is demonstrated (Brewer, 2000; 

Shadish et al., 2002). Our study met the internal validity because: (1) the temporal 

precedence criterion was met, i.e., the instability of design models preceded the 

inconsistencies and composition effort; (2) the covariation was observed, i.e., 

instability of design models varied accordingly to both inconsistencies and 

composition effort; and (3) there is no clear extra cause for the detected 

covariation. Our study satisfied all these three requirements for internal validity.  

The internal validity can be also supported by other means. First, the detailed 

analysis of concrete examples demonstrating how the instabilities were constantly 

the main drivers of inconsistencies presented in this study. Second, our concerns 

throughout the study to make sure that the observed values in the inconsistency 

rates and composition effort were confidently caused by the stability of the design 

models. However, some threats were also identified, which are explicitly 

discussed below.  

First, due to the exploratory nature of our study, we cannot state that the 

internal validity of our findings is comparable to the more explicit manipulation of 

independent variables in controlled experiments. This exceeding control employed 

to deal with some factors (i.e., with random selection, experimental groups, and 

safeguards against confounding factors) was not used because it would 

significantly jeopardize the external validity of the findings.  
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Second, another threat to the internal validity is related to the imperfections 

governing the measurements of inconsistency rate and resolution effort. As the 

measures were partially calculated in a manual fashion, there was the risk that 

collected data would not be always reliable. Hence, this could lead to inconsistent 

results. However, we have mitigated this risk by establishing measurement 

guidelines, two-round data reviews with the actual developers of the SPL design 

models, and by engaging them in discussions in cases of doubts related to, for 

instance, the semantic inconsistencies.  

Next, usually the confounding variable is seen as the major threat to the 

internal validity (Shadish et al., 2002). That is, rather than just the independent 

variable, an unknown third variable unexpectedly affects the dependent variable. 

To avoid confounding variables in our study, a pilot study was carried out to make 

sure that the inconsistency rate and composition effort were not affected by any 

existing variable other than stability. During this pilot study, we tried to identify 

which other variables could affect the inconsistency rate and resolution effort such 

as the size of the models. 

Another concern was to deal with the experimenter bias. That is, the 

experimenters inadvertently affect the results by unconsciously realizing 

experimental tasks differently that would be expected. To minimize the possibility 

of experimenter bias, the evaluation tasks were performed by developers, which 

that know neither the purpose of the study nor the variables involved. For 

example, developers created the input design models of the SPLs without being 

aware of the experimental purpose of the study. In addition, the composition 

heuristics are automatically applied and are algorithms explicitly and 

independently defined by others. Consequently, the study results can be more 

confidently applied to realistic development settings without suffering influences 

from experimenters. 

Finally, the randomization of the subjects was not performed because it 

would require simple task simple software engineering task. Hence, this would 

undermine the objective of this study. 
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6.1.5.2. 
Statistical Conclusion Validity 

We evaluated the statistical conclusion validity checking if the independent 

and dependent variables (Section 6.1.2.4) were submitted to suitable statistical 

methods. These methods are useful to analyze whether (or not) the research 

variables covary (Cook et al., 1979; Shadish et al., 2006). The evaluation is 

concerned on two related statistical inferences: (1) whether the presumed cause 

and effect covary, and (2) how strongly they covary (Cook et al., 1979; Shadish et 

al., 2006). Considering the first inferences, we may improperly conclude that there 

is a causal relation between the variables when, in fact, they do not. We may also 

incorrectly state that the causal relation does not exist when, in fact, it exists. With 

respect to the second inference, we may incorrectly define the magnitude of 

covariation and the degree of confidence that the estimate warrants (Shadish et al., 

2006).  

Covariance of cause and effect. We eliminated the threats to the causal 

relation between the research variables studying the normal distribution of the 

collected sample. Thus, it was possible to verify if parametric or non-parametric 

statistical methods could be used (or not). For this purpose, we used the 

Kolmogorov-Smirnov test to determine how likely the collected sample was 

normally distributed. As the dataset did not assume a normal distribution, 

nonparametric statistics were used (Section 6.1.2.1 and Section 6.1.2.2.). Hence, 

we are confident that the test statistics were applied correctly; as the assumptions 

of the test statistics were not violated.  

Statistical significance. Based on the significance level at 0.05 level (p ≤ 

0.05), Mann-Whitney test was used to evaluate our formulated hypotheses. The 

results collected from this test indicated p < 0.001. This shows sufficient evidence 

to say that the difference between the inconsistency rates (and composition effort) 

of stable and unstable models are statically significant. The correlation between 

the independent and dependent variables is also evaluated. For this, Spearman’s 

correlation test was used. The low collected p-value (< 0.001) indicated that there 

is a significant correlation between the inconsistency rate and stability as well as 

composition effort and stability. In addition, we followed some general guidelines 

to improve conclusion validity (Wohlin et al., 2000). First, a high number of 
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compositions were performed to increase the sample size, hence improving the 

statistical power. Second, experienced developers used more realistic design 

models of SPLs, state-of-practice composition heuristics, and robust software 

modeling tool. These improvements reduced "errors" that could obscure the causal 

relationship between the variable under study. Consequently, it brought a better 

reliability for our results. 

 

6.1.5.3. 
Constructs Validity 

Construct validity concerns the degree to which inferences are warranted 

from the observed cause and effect operations included in our study to the 

constructs that these instances might represent. That is, it answers the question: 

"Are we actually measuring what we think we are measuring?" With this in mind, 

we evaluated (1) whether the quantification method is correct, (2) whether the 

quantification was accurately done, and (3) whether the manual composition 

threats the validity.  

Quantification method. All variables of this study were quantified using a 

suite of metrics, which was previously defined and independently validated 

(Farias et al. 2010a; Kelly, 2006; Medeiros et al., 2010; Guimaraes et al.; 2010). 

Moreover, the concept of stability used in our study is well known in the literature 

(Kelly, 2006) and its quantification method was reused from previous work. The 

inconsistencies were quantified automatically using the IBM RSA’s model 

validation mechanisms and manually by the developers through several cycles of 

measurements and reviews. In practice, the developers’ effort is computed by 

“time spent.” However, the “time spent” is a reliable metric when used in 

controlled experiments. Unfortunately, controlled experiments require that the 

software engineering tasks are simple; hence, it harms the objective of our 

investigation (Section 6.1.2.1) and hypotheses (Section 6.1.2.2). Moreover, 

we have observed in the examples of recovering models that, in fact, the 

“time spent” is actually greater for unstable models than stable models, 

independently of the type of inconsistencies. In addition, the number of syntactic 

and semantic inconsistencies was always higher in unstable models than stable 

models. 
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Correctness of the Quantification. Developers worked together to assure that 

the study does not suffer from construct validity problems with respect to the 

correctness of the compositions and application of the suite of metrics. We 

checked if the collected data were in line with the objective and hypotheses of our 

study. It is important to emphasize that just one facet of composition effort was 

studied: the effort to evolve well-structured design models using composition 

heuristics. The quantification procedures were carefully planned and followed 

well-known quantification guidelines (Wohlin et al., 2000; Basili et al., 1999; 

Kitchenham et al., 2008; Kitchenham et al., 2006). 

Execution of the Compositions. Another threat that we have controlled is if by 

using manual composition threats validity since we might unintentionally avoids 

conflicts. We have observed that the manual composition helps to minimize 

problems that are directly related to model composition tools. There are some 

tools to compose design models, such as IBM Rational Software Architect. 

However, the use of these tools to compose the models was not included in our 

study for several reasons. First, the nature of the compositions would require that 

developers understood the resources/details of the tools. Second, even though the 

use of these tools might intentionally reduce (or exacerbate) the generation of 

specific categories of inconsistencies in the output composed models, it was not 

our goal to evaluate particular tools. Therefore, we believe that by using a model 

composition tool would impose more severe threats to the validity of our 

experimental results. Finally, and more importantly, we don’t think the manual 

composition would be a noticeable problem to the study for many reasons, 

including: (i) even if the conflicts were unconsciously avoided, we deeply believe 

that the heuristics should be used as “rules of thumb” (guidelines) even if tool 

support is somehow available, and (ii) we have reviewed the produced models, at 

least, three times in order to ensure that conflicts were injected accordingly; in the 

case they still made their way to the models used in our analysis, they should be 

minimal. 
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6.1.5.4. 
External Validity 

External validity refers to the validity of the obtained results in other 

broader contexts (Mitchell & Jolley, 2001). That is, to what extent the results of 

this study can be generalized to other realities, for instance, with different UML 

design models, with different developers and using different composition 

heuristics. Thus, we analyzed whether the causal relationships investigated in this 

study could be held over variations in people, treatments, and other settings. 

As this study was not replicated it in a large variety of places, with different 

people, and at different times, we made use of the theory of proximal similarity 

(proposed by Donald T. Campbell (Campbell & Russo, 1998)) to identify the 

degree of generalization of the results. The goal is to define criteria that can be 

used to identify similar contexts where the results of this study can be applied. 

Two criteria are shown as follows. First, developers should be able to make use of 

composition heuristics (Section 7.1.1.2) to evolve UML design models such as 

UML class and component diagrams. Second, developers should also be able to 

apply the inconsistency metrics described previously and use some robust 

software modeling tool e.g., IBM RSA (Norris & Letkeman, 2011; IBM RSA, 

2011).  

Given that these criteria can be seen as ever-present characteristics in 

mainstream software development, we conclude that the results of our study can 

be generalized to other people, places, or times that are more similar to these 

requirements. Some characteristics of this study contributed strongly to its 

external validity as follows. First, the reported exploratory study is realistic and, 

in particular, when compared to previously reported case studies and controlled 

experiments on composing design models (Dingle et al., 2008; Chitchyan et al., 

2009; Farias et al., 2010a; Whittle & Jayaraman, 2010; Briand et al., 2005; Clarke 

& Walker, 2001; Norris & Letkeman, 2011). Second, experienced developers 

used: (1) state-of-practice composition heuristics to evolve three realistic design 

models of software product lines; (2) industrial software modeling tool (i.e., IBM 

RSA) to create and validate the design models; and (3) metrics that were validated 

in previous works (Farias et al., 2010b). Finally, this work investigates only one 
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facet of model composition: the use of model composition heuristics in adding 

new features to a set of design models for three realistic software product lines.  

 

6.1.6. 
Concluding Remarks 

Model composition plays a pivotal role in many software engineering activities 

e.g., evolving SPL design models to add new features. Hence, software designers 

are naturally concerned with the quality of the composed models. Our study, 

therefore, represents a first exploratory study to empirically evaluate the impact of 

stability on model composition effort. More specifically, the focus was on 

investigating whether the presence of stable models reduces (or not) the 

inconsistency rate and composition effort. In our study, model composition was 

exclusively used to express the evolution of design models along eighteen releases 

of three SPL design models. Three state-of-practice composition heuristics have 

been applied, and all were discussed in detail throughout this chapter. 

The main finding was that the model stability is a good indicator of 

composition inconsistencies and resolution effort. More specifically, we found 

that stable models tend to minimize the inconsistency rate and alleviate the model 

composition effort. This observation was derived from statistical analysis of the 

collected empirical data that have shown a significant correlation between the 

independent variable (stability) and the dependent variables (inconsistency rate 

and effort). Moreover, our results also revealed that instability in design models 

would be caused by a set of factors as follows. First, SPL design models are not 

able to support all upcoming changes, mainly unanticipated incremental changes. 

Next, the state-of-practice composition heuristics are unable to semantically 

match simple changes in the input model elements, mainly when changes take 

place in crosscutting requirements. Finally, design models implementing 

crosscutting requirements tend to cause a higher number of inconsistencies than 

the ones modularizing their requirements more effectively. The main consequence 

is that the evolution of the design models using composition heuristics can even 

become prohibitive given the effort required to produce the intended model. 

As future work, we will replicate the study in other contexts (e.g., evolution 

of statecharts) to check whether (or not) our findings can be extended to different 

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA



230 
 

evolution scenarios of design models supported by composition heuristics. We 

also consider exploring varieties of our stability metrics. We also wish to improve 

understanding if design models with superior stability have some gain (or not): (i) 

when produced from other composition heuristics, and (ii) on the effort localizing 

the inconsistencies. It would be useful if, for example, intelligent recommendation 

systems could help the developers to indicate the best heuristic to-be applied to a 

given evolution scenario or even recommending how the input model should be 

restructured to prevent inconsistencies. Finally, we hope that the issues outlined 

throughout the evaluation encourage other researchers to replicate our study in the 

future under different circumstances and that this work represents a first step in a 

more ambitious agenda on better supporting model composition tasks.  

 

6.2. 
Impact of Design Language on Inconsistency Resolution Effort 

 This section aims at evaluating the impact of design modeling languages 

such as AO and non-AO modeling on the inconsistency resolution effort. The 

hypothesis investigated is that aspect-orientation may alleviate the effort of 

inconsistency resolution to some extent. Aspect-orientation provides an improved 

modularity and that more effective modularization may help developers to deal 

with the inconsistencies, thus minimizing the resolution effort. However, it is by 

no means obvious that this hypothesis holds. It may be, for instance, that 

inconsistencies in aspect-oriented models have a detrimental effect on the 

resolution effort because inconsistencies aspectual elements may require the 

developers to examine all points in the model crosscut by the aspects.  

With this in mind, the goal of this section is to report on an exploratory 

empirical study that aimed at providing evidence to support or refute this 

hypothesis. To this end, we again make use of model composition to add new 

features to a set of models in a software product line, called Mobile Media.  

We investigate this hypothesis in the context of SPLs evolution because 

they commonly involve model composition activities (Jayaraman et al., 2007; 

Thaker et al., 2007) and, while we believe the kinds of model composition in 

SPLs are representative of the broader issues, we make no claims about the 

generality of our results beyond SPL model composition. We show the results for 
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model compositions of six releases of an SPL. In each release, models for the new 

feature are composed with the models for existing features. For each release, we 

analyze both the quantity and nature of the composition inconsistencies. 

Furthermore, we compare two versions of the SPL models — one which uses 

aspect-oriented modeling and one which does not.  

The results show that higher inconsistency rates were observed in the 

presence of aspects when they had a higher degree of quantification. On the other 

hand, this problem did not entail more effort on inconsistency resolution. We also 

found that higher degree of obliviousness tended to yield compositions of AO 

composed models that are closer to the intended compositions. To the best of our 

knowledge, our results are the first to empirically investigate the potential 

advantages of aspects during modeling phase. Despite a wide variety of technical 

approaches to AOM e.g., MATA (Whittle & Jayaraman, 2010) and Kompose 

(Kompose, 2011), to-date there has been almost no empirical evaluation of AOM. 

We therefore see this study as a first step in a more ambitious agenda to 

empirically assess aspect-oriented modeling.  

The remainder of the study is organized as follows. Section 6.2.1 introduces 

the main concepts and knowledge that are going to be used and discussed 

throughout this section. Section 6.2.2 we present the methodology. Section 6.2.3 

discusses the composition analysis effort. Section 6.2.4 contrasts this work with 

others, highlighting the commonalities and differences. Section 6.2.5 analyzes the 

threats to validity. Finally, Section 6.2.6 presents some concluding remarks and 

future work. 

 

6.2.1. 
Aspect-Oriented Modeling for Architectural Models 

Model composition applies both to development with and without aspect-

oriented modeling (Clarke & Walker, 2005). This study compares the 

inconsistency resolution effort in both cases. AOM languages aim at improving 

separation of concerns by supporting the modular representation of concerns that 

cut across multiple software modules. Crosscutting concerns are represented by a 

new model element, called aspect. The goal of AOM is, therefore, to provide 

software developers with the means to express aspects and crosscutting 
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Figure 21: AOM language for architectural models 

 

crosscutting roles

<<component>>

<<aspectual connector>>

base roles

around
crosscutting
relationship 

<<component>>

before
after

relationships in their models. There are AOM languages for modeling aspects at 

many levels of abstraction, ranging from use cases and architectural design to 

detailed designs. As far as the solution space is concerned, aspects are usually first 

expressed in architectural models.  

Figure 21 is an illustrative example of the architectural AOM language 

(Garcia et al., 2009) used in this study (Section 6.2.3). We chose this AOM 

language because: (i) we selected architectural models as our focus due to the 

availability of existing industrial models; (ii) the AOM language has been widely 

used in other contexts (such as modularization of crosscutting concerns 

(Sant’Anna, 2008)) and is therefore mature (Garcia et al., 2009). 

The notation supports the visual symmetric representation of aspect-oriented 

software architectures. The target modeling approach consists of an extension of 

the UML’s component diagram (OMG, 2011). In order to put the composition in 

practice, we should consider the properties of model elements defined in the UML 

metamodel specification in this diagram. Thus, the properties of the model 

elements considered were component (name, provided interface, and required 

interface), interface (name, operation, and attribute), operation (name, return type, 

and parameters), attribute (name and type), relationship (source and target), 

crosscutting relationship, and join-points. Therefore, the composition algorithms 

are fine-grained due to take into account these properties in each composition. 

The notation provides explicit elements for expressing different forms of 

component-aspect collaborations, which are represented by aspectual connectors. 

Aspectual connectors are illustrated by rectangles in Figure 21. They define which 

components, interfaces or specific operations are affected by a component 

modularizing a crosscutting concern. Aspectual connectors are associated with 
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crosscutting relationships represented by dashed arrows. The notation also 

supports the visual modeling of specific pointcut designators (e.g., advising all the 

provided interfaces) and sequencing operators (after, before, and around). For the 

sake of simplicity in this study, only aspectual connectors and crosscutting 

relationships will be represented in the models of our case study; all the other 

visual details have been omitted from here on. 

 

 

6.2.2. 
Study Methodology 

This section describes the study definition, the target application, the 

evaluation method used for computing model composition effort, and the other 

study procedures in our exploratory study. 

 

6.2.2.1.  
Objective and Research Questions 

This study attempts to evaluate the impacts of aspect-oriented modeling on 

two variables: the inconsistency rate and inconsistency propagation. These effects 

are evaluated from evolution scenarios considering compositions of architectural 

models. Additionally, some scenarios are described in which the influence of AO 

models on effort is precisely described. With this in mind, the objective of this 

study is stated based on the GQM template (Basili et al., 1994) as follows: 

Analyze design modeling techniques 

for the purpose of investigating their effects 

with respect to inconsistency rate and inconsistency propagation 

from the perspective of developers 

in the context of evolution of architectural models 

 Specially, this study aims at discovering the inconsistency rate, resolution 

effort, and revealing scenarios where these inconsistencies propagate, affecting 

multiple model elements. Therefore, we address research question RQ3, as stated 

in Chapter 1: 

• RQ3: What is the effect of design decomposition techniques in particular 

with respect to misinterpretation, inconsistency rate, inconsistency detection 

effort, and inconsistency resolution effort? 
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Regarding the quality notions defined in Chapter 3, we study whether the 

syntactic and semantic quality of a design model affects the effort and resolution 

quality notions. We refine RQ4 into two more research questions. Thus, we focus 

on the following research questions: 

• RQ3.4: Does the composition of AO models produce a higher 

inconsistency rate than non-AO models?  

• RQ3.5: What is the impact of AO modeling on the way inconsistencies 

propagate in the output model?  

These research questions were investigated considering the inconsistencies 

described in Section 5.1.2 and Section 6.1.1.3. 

 

6.2.2.2.  
Hypotheses Formulation  

Aspect-oriented modeling has been a topic of research for at least ten years 

(Clarke & Walker, 2005; Clarke & Banaissad, 2005). However, there is currently 

very limited knowledge as to how aspects, when incorporated in input models, 

affect the model composition effort. In particular, there is no understanding if the 

composition of aspect-oriented models affects the emergence of inconsistencies in 

the output composed models.  

First Hypothesis: Impact of Aspect on Inconsistency Rate. Our first null 

hypothesis assumes that the inconsistency rate in output AO composed models is 

equal or higher than in output non-AO composed models. As aspect orientation 

tends to improve the modularization of design models, the alternative hypothesis 

states that the inconsistency rate in AO models is lower than in non-AO models. 

This would lead to the following null and alternative hypotheses:  

Null Hypothesis 1, H1-0: The inconsistency rate (Rate) in AO models 

is equal or higher than in non-AO models. 

H1-0: Rate(AO) ≥ Rate(non-AO).  

Alternative Hypothesis 1, H1-1: The inconsistency rate (Rate) in AO 

models is lower than in non-AO models. 

H1-1: Rate(AO) < Rate(non-AO). 

Given that inconsistency tends to propagate in a composed model (Farias et 

al., 2010a). That is, the introduction of one inconsistency can often lead to 
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multiple other inconsistencies because of a “knock-on” effect. An example would 

be the inconsistency whereby a composed component is missing an important 

operation. This semantic inconsistency leads to a “knock-on” syntactic 

inconsistency if another component requires the operation. In the worst case, there 

may be long chains of inconsistencies all derived from a single inconsistency. 

Studying such propagation effects is important because propagation directly 

affects the effort in resolving inconsistencies e.g., a propagation chain of length n 

may be actually fixed by resolving a single inconsistency rather than the expected 

n inconsistencies. Thus, we are interested in understanding the possible 

inconsistency propagation patterns in AO and non-AO models (RQ4.5). Similar to 

the previous hypothesis, it is assumed that inconsistency equally spread through 

output (non-)AO models. This leads to the second null and alternative hypotheses 

as follows:  

Null Hypothesis 2, H2-0: The inconsistency propagation in AO 

models is equal or higher than in non-AO models.  

H2-0: Prop(AO) ≥ Prop(non-AO).  

Alternative Hypothesis 2, H2-1: The inconsistency propagation in AO 

models is lower than in non-AO models.  

H2-1: Prop(AO) < Prop(non-AO).  

To test the hypotheses, metrics were used to quantify inconsistency rate, the 

propagation, and the effort to resolve the inconsistencies when they spread 

through model elements. Aforementioned, these metrics are presented in Chapter 

3. The metrics were applied to both non-AO and AO models of an evolving 

software product line described in the next section. 

 

6.2.2.3.  
Case Study: Evolving an SPL  

Model composition can be applied in different contexts and with different 

purposes. We have selected a particular scenario to test our study hypotheses: the 

use of model composition to express the evolution of software product line (SPL) 

architecture.  

Model Composition for Expressing SPL Evolution. Model compositions 

were defined to generate the new releases of the SPL architecture model. That is, 
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the composition algorithms (override, merge, and union) were used to define how 

each architecture model (MA) of an SPL release and the new model increments 

(MB) were going to be combined to generate the new architecture SPL release 

(MAB). The first input model (MA) represents the current architecture of an SPL 

release, while the second input model (MB) represents the delta capturing the 

modifications to the base model (MA). The output model (MAB) generated by the 

application of the composition algorithm represents the next SPL release.  

MobileMedia: the Target SPL. A product line, called Mobile Media 

(Figueiredo et al., 2008), of 6 kLOC was selected to be the target case of the 

evaluation. The purpose of the MobileMedia SPL is to manipulate photos, music, 

and videos on mobile devices. In (Figueiredo et al., 2008), it is possible to find a 

fine-grained description about its characteristics and how its evolution happened. 

The reasons for selecting this system in the evaluation are described as follows. 

First, the developers of the MobileMedia SPL are the responsible for creating its 

architecture design models. Second, two versions of the same product line and the 

respective architectural models were available for our investigation: an AO 

version and a non-AO version. This is a fundamental requirement to test the 

hypotheses (Section 6.2.2.2). Third, the last release of the architectural design has 

more than one hundred modules, and its architectural models are the main artifact 

to reason about change requests and derive new products. Fourth, the architectural 

models were produced by the original developers, which do not have any of the 

model composition algorithms under assessment in mind, thereby avoiding any 

bias and entailing a more natural software development scenario. Fifth, the 

architectural models (MA) and the increment models (MB) were conceived with 

the modularity and changeability as key drivers. Sixth, we had available seven 

fully documented evolution scenarios, which could be expressed with model 

compositions (examples are given later).  

Finally, Mobile Media met a number of other equally-important 

requirements, such as: (1) proper documentation of the driving requirements; (2) 

the system evolved for more than three years, and the more recent releases have 

more than 100 modules; (3) different types of change were realized in each 

release, including refinements of the architecture style employed, (4) the system 

has been successfully used in other studies involving empirical evaluation of OO 

and AO implementations (Figueiredo et al., 2008), and (5) the original developers 
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were available to help us with the production and analysis of the composed 

models and the intended models. As such, all these factors provided a solid 

foundation for our study.  

 

6.2.2.4.  
Quantifying Inconsistency Rate and Resolution Effort 

The goal is to quantify: (i) the number of inconsistencies, and (ii) the 

activities required to transform the output composed model into an output 

intended model. The analysis of the results relies on an inconsistency measure, 

called inconsistency rate (Rate), to quantify the amount of composition 

inconsistencies divided by the total number of elements in the output model. That 

is, inconsistency rate allows computing the density of composition inconsistencies 

in the output composed models. Using this metric, we may quantify the 

inconsistency rate in AO and non-AO models, and analyze the differences 

between them (H1). Note that the inconsistency rate is defined from multiple 

inconsistencies, which can be found in Section 6.1.1.3. 

The resolution effort consists of the number of operations that should be 

performed to transform an output composed model into an output intended model. 

We compute the number of creations, removals, and modifications needed to 

realize this transformation. That is, this computation represents an estimation of 

the resolution effort (g(MCM)). After we collect the g(MCM) measure, we 

performed an inspection of the output model to check if there was any occurrence 

of inconsistency propagation. This enabled us to check if the presence of aspects 

in the input models had any impact on the way composition inconsistencies were 

propagated (H2). In order to come up with a suitable characterization of the 

measures of the compositions and the MobileMedia SPL releases, we defined a 

basic formalism for the metric space of composition effort as follows. 

A metric space is a set M equipped with a real-valued function CE(w,s) 

defined for all w, s ϵ M. Let M = {Ri,x,y, i = 1,…,n; x = override, merge; y = left, 

right}, where: 

• n is a finite natural number representing the model release; 

• left and right represent the direction of the composition relationship in the 

override algorithm. 
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For example, R3,merge,right represents the Release 3 that was produced by 

merging: Release 2 +merge Delta(Release 2, Release 3) � Release 3. Delta(Release 

2, Release 3) represents the model elements that should be merged with Release 2 

to transform it into Release 3, as previously discussed. In practical terms, the 

Delta represents the evolution to be inserted into the previous release. On the 

other hand, R3,merge,left would be Delta(Release 2,Release3) +merge Release 2 � 

Release 3 (the inverse order can also be represented with an asterisk). Therefore, 

the reader should note that the order of override-based composition might produce 

different output composite models (Dingel et al., 2008). Each model of a Ri,x,y can 

be characterized by observing its syntactic and semantic properties. If we have a 

high inconsistency rate in an evolution scenario, then this implies a higher effort 

to resolve inconsistencies. 

 

6.2.2.5. 
Evaluation Procedures  

Once the case study was selected (Section 6.2.2.3) and the inconsistency 

resolution metrics were defined (Section 6.2.2.4), we needed to undergo a number 

of specific evaluation procedures. They are discussed in the following.  

a. Target Model Versions and Releases  

We have used both non-AO and AO versions of the Mobile Media models 

in order to test the study hypotheses (Section 6.2.2.2). These two model versions 

of the same system enabled us to identify if the presence of aspects in the input 

models had positive or negative effects on the quality of the output model.  

Deriving AO and non-AO Model Releases. For each release of Mobile 

Media, we have applied each of the composition algorithms described in Section 

2.3. That is, we have used the merge algorithm to compose two input AO models 

in order to produce a new AO release model; similarly, we applied the merge 

strategy to compose two input non-AO models in order to produce the next non-

AO release model. We performed similar compositions with override and union 

algorithms. The goal was to identify if the outcomes, in terms of inconsistency 

rate and propagation (hypotheses), were the same or different. All the releases of 

the non-AO and AO versions realized exactly the same SPL features and 
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Figure 22: The input models: the AO base and AO delta model
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because they were the ones where the changes implied visible modifications in the 

architectural design. For each new release, the previous release was modified in 

order to accommodate the features to be modified, inserted, or removed. To 

implement a new evolution scenario, a model composition specification can 

remove, add, derive, or modify the entities present in the previous release. During 

the design of all releases, a main concern was to follow best practices of 

modeling.  

b. Execution and Assessment Phases  

The execution and assessment of the study were structured in three main 

steps, which are described in the following.  

Model Refactoring Phase. The model refactoring is a pivotal activity to 

define the input models and, hence, to express the model evolution as an explicit 

model composition relationship. To this end, MobileMedia’s architectural models 

were initially refactored to specify the delta itself and to represent the change 

scenarios as composition relationships. To create the delta model it is necessary to 

identify the differences between the releases models and then gather them into the 

input model. To go about this, we took into account an evolution description 

created by the original modelers involved in a previous study (Figueiredo et al., 

2008). These descriptions specify in-depth the modifications needed to realize 

each evolution scenario (from one release to another). They allowed us to identify 

how the model elements were changed. For example, in the second evolution 

description, the Delta(R2,R3) were based on the description such as: the interface 

ControlPhoto — realized by BaseController — had the method edilLabel(): void 

added (see Figure 22). Another example would be the change concerning the 

name of the interface ManageLabel to ManageAlbum. Thus, all model elements of 

the Delta(R2,R3) are derived from one evolution description, which ensures that 

the input model specification is free of bias.  

Composition and Measurement Phase. From one release to another, 6 

compositions were produced: 3 compositions following override, merge, and 

union from the current release to delta, and 3 compositions in the inverse 

direction. We considered 5 evolution scenarios for the non-AO version as well as 

the AO version of the Mobile Media, totaling 60 compositions. The result of this 

phase was a document of composition descriptions, including the gathered data 
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Figure 23: Output AO models produced by override and merge algorithms 

from the application of our metrics suite. Figure 22 presents partial input models 

being used in one of the releases, while Figure 23 and Figure 24 represent 

examples of composition based on merge, override, and union, respectively. 

Figure 24 is the intended result of the composition (or intended model). As 

well-validated metrics for model composition are not available yet, we used a set 

of inconsistency metrics defined in our previous work (Farias et al., 2008a). The 

inconsistencies (and their effects) were identified manually using such 

inconsistency metrics. The identification of the inconsistencies was performed in 

5 review cycles in order to avoid false positives/negatives. We also consulted the 

Mobile Media developers when needed, such as checking and confirming specific 

cases of semantic inconsistencies. 
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Figure 22: AO intended model (from Figure 22) and AO output model produced 

following the union heuristic 

Effort Assessment Phase. The goal of the third phase was to assess the effort 

to resolve the inconsistencies using the metrics described previously. The 

composition algorithms were used to generate the evolved models, so that we 

could assess the impact of aspects on the model composition effort. In order to 

support a detailed data analysis, the assessment phase was further decomposed in 

two main stages. The first stage (Section 6.2.3.1) is concerned with pinpointing 

the inconsistency rates produced by composition of either non-AO or AO (H1). 

The second stage (Section 6.2.3.2) aims at assessing the effort to resolve a set of 

previously identified inconsistencies and whether (or not) the use of aspect has a 

higher impact on the way composition inconsistencies are propagated (H2). We 
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analyzed how inconsistency rate differs across the releases in order to detect 

potential benefits and drawbacks of using AOM in the input models. We have 

decided to focus the discussions on the merge and override algorithms, because 

the union algorithm did not present any additional interesting insight. However, 

all measurement results were considered during the study analysis. 

 

6.2.3.  
Composition Effort Analysis  

This section presents the results collected during the investigation of the 

RQ3.4 and RQ3.5 to both the AO and non-AO output models realizing each SPL 

release. Histograms are used to provide an overview of the data gathered in the 

measurement process. These histograms allow us to analyze the impact of aspects 

on study variables: inconsistency rate, inconsistency propagation, and 

inconsistency resolution effort. Each histogram focuses on the application of a 

particular composition algorithm. The Y-axis presents the values gathered for a 

particular metric. The X-axis specifies the evolution scenarios.  

Note that each pair of bars is attached to a pair of values, with the first 

capturing the performance of the AO version and the second capturing the non-

AO one. The lower the value, the better is the performance of the modeling 

approach used. It is important to highlight that the results shown in the histograms 

were gathered with respect to the entire model. Based on the inconsistencies 

identified by the inconsistency rate metric, Section 6.2.3.1 discusses the findings 

related to the first hypothesis (H1). Section 6.2.3.2 relies on the metric for 

quantifying model recovery effort in order to support the analysis of the second 

hypothesis (H2).  

 

6.2.3.1. 
H1: Aspects and Inconsistency Rate  

Figure 25 illustrates the results for the inconsistency rate obtained following 

the override algorithm. Figure 26 shows the results of the same metric for the 

merge algorithm. The first observation allows us to conclude that the 

inconsistency rate measures have favored aspect-orientation in both merge and 

override cases and for most of the evolution scenarios. This implies that the tally 
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Figure 23: Inconsistency rate produced by the override algorithm 

of inconsistencies to some extent is decreased whenever aspects are present in the 

models to-be-composed. The presence of aspects in the input models produced 

lower inconsistency rate than aspect-free models when the override algorithm is 

applied in both directions (right and left (represented by the *-columns)). For 

example, the inconsistency rate decreases from 1.72 (non-AO version) to 1.33 

(AO version) in Scenario 2, which represents a reduction of 22.6% in favor of 

aspect-orientation. Similarly, the inconsistency rate decreases from 0.59 to 0.41 

when the composition is performed in the left direction, which represents a 

reduction of 30%. 

Moreover, it is well known that the higher the number of model elements 

that take part in compositions, the higher the likelihood of inconsistencies being 

generated. Nevertheless, the AO versions still had lower absolute measures of 

inconsistencies. For example, the absolute measure decrease from 38 (non-AO 

version) to 36 (AO version) in Scenario 2, which represents a reduction of 5.2% in 

favor of aspect-orientation. Similarly, the inconsistency rate decreases from 13 to 

11 in the inverse order, which represents a reduction of 15.3%. The only case 

where aspect-free models led to a close inconsistency was the application of the 

merge algorithm in the second release; this special case is discussed in the 

following section.  

The main reason for the superiority of the AO models is that changes, 

reified by the delta model, tend to be confined in fewer modules due to the 

superior modularization of crosscutting features in AO models. The confinement 

of modifications to aspects, in turn, leads to a better localization of both syntactic 

and semantic inconsistencies, thereby making them easier to detect and address in 
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Figure 24: Inconsistency rate produced by the merge algorithm 

the output models. Therefore, we refute the null hypothesis H1-0 and confirm the 

alternative hypothesis H1-1.  

We have noticed that the decrease of inconsistencies observed in the AO 

models is potentially influenced by two factors: (i) quantification, the higher the 

quantification of aspects in input models, the higher the inconsistency rate 

measures, and (ii) obliviousness, the higher the degree of obliviousness, the lower 

the inconsistency rate measures in the output models. Another predominant factor 

in the emergence of high inconsistency rates was the nature of the change. 

Independently of the degree of obliviousness and quantification in AO models, the 

nature of the change directly affected the inconsistency rate observed in the output 

models. In the following, we elaborate these issues further and discuss examples 

that support each of these findings. 

a. Obliviousness and Quantification  

We have observed that quantification (Filman & Friedman, 2000) 

influenced the inconsistency rate measures. The presence of aspects with lower 

quantification (in the input models) led to fewer syntactic and semantic 

inconsistencies in the output models. When aspects were being used, for example, 

to encapsulate domain–specific features, a lower inconsistency rate manifested in 

the output models. On the other hand, we also observed that when a conflict arises 

in aspects with higher quantification (in the input models), higher rates of 

syntactic and semantic inconsistencies occurred in the output models. Therefore, 
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the quantification mechanism may (or may not) improve inconsistency rate 

results.  

This category of aspects is the case where the aspects work as glue between 

a few elements in the base model and the changes realized by the delta model. 

Aspects with a higher degree of quantification, such as exception handling (Figure 

22, Figure 23, and Figure 24), affect the input base model in many places (join 

points). This was exactly the case in Scenario 2, where the non-AO version (Rate 

= 0.82) has a measure close to the AO version (Rate = 0.78) (Figure 22). Higher 

quantification increases the aspect scope and, therefore, the likelihood of aspects 

interfering with each other. When the merge algorithm was applied, the exception 

handling aspect (Figure 23) led to undesired superimpositions with other aspectual 

behaviors advising the same join points.  

The overall inconsistency rate (Rate measure) has been usually lower in the 

AO version because most of the aspects were not affecting more than three 

elements. By overall rate, we mean the average of inconsistencies considering all 

the model elements. However, a careful analysis of the number of inconsistencies 

in individual model elements (e.g., a particular component) reveals some 

interesting information. The composition output of AO models consistently 

caused an increase on the number of inconsistencies for some specific model 

elements. For example, this can be observed in Scenario 4, when the highest 

number of inconsistencies emerged in both non-AO and AO versions. Despite the 

significant Rate difference favoring the AO version, the component 

BaseController presented an increase (Rate = 38) in relation to BaseController 

of the non-AO version (Rate = 24). We noted that this problem occurred in 

situations where the components were affected by two aspects or more in the delta 

model. In other words, when a base component had a high density of join points 

shared by multiple aspects; it generated a higher number of inconsistencies.  

An additional interesting finding was that the composition of AO models 

tended to manifest fewer inconsistencies when the obliviousness degree of the 

base elements was higher. We have noted that the creation of new aspects (via the 

delta model) for encapsulating new features implies that the modules in the input 

base model are more oblivious to the modification being implemented in the 

release. This observation holds for both mandatory and varying(optional or 
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alternative) features. Consequently, the combination of the AO modules tended to 

ripple fewer inconsistencies in the output models.  

This finding implies that the presence of obliviousness is a good indicator 

that the model composition at hand will better adhere to the Open-Closed 

principle (Meyer, 1988). This principle states “software should be open for 

extensions, but closed for modification.” AO modeling conformed more closely to 

this principle in scenarios where the behavior in the new aspect (part of the Delta 

model) is more independent of the affected elements in the base model. Release 3 

illustrates this finding. For instance, the AlbumData component demanded 

modifications in the non-AO version of Release 3 in order to include the feature 

of sorting photos by highest viewing frequency. On the other hand, the AO 

counterpart required no modification in this component. The reason was that new 

components and the PhotoSorting aspect in the delta model modularly 

implemented the feature. 

The open-closed principle was more closely adhered by the composition of 

AO models than non-AO models. However, this observation did not occur in all 

the cases. In general, this principle was fully achieved only when the delta model 

was adding new elements to the base models. The other types of changes realized 

by the delta model exerted more specific implications in the rate of 

inconsistencies detected in the output models. This issue is discussed in the 

following section. 

 

b.  The Effect of the Change Category  

A careful analysis of the results has pointed out that the inconsistency rate is 

strictly affected by the category of changes to be applied to the base model. We 

identified four types of changes throughout our target SPL study:  

• Addition: new model elements are inserted into base model; for instance, the 

new method getFormType() is inserted into the provided interface, named 

ManageLabel, of the component NewLabelScreen (Figure 23).  

• Removal: a model element in the base model is removed; for example, the 

required interface ControlPhoto of the component AlbumListScreen is 

removed in the fourth Mobile Media release;  
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• Modification: a model element has some properties modified; for instance, 

the component NewAlbumScreen (Release 1) has its name modified to 

NewLabelScreen in Release 2.   

• Derivation: model elements are refined and/or move to accommodate the 

changes; for example, the provided interface ControlPhoto (with 14 

methods) of the component BaseController (Release 3) has some methods 

moved to the provided interface ControlPhoto of the component 

PhotoController (Release 4).  

Additions. As previously discussed in the previous section, the use of 

aspects has contributed to produce an output model with much lower 

inconsistency rate when the evolution scenarios were dominated by additions. 

This finding is supported by the low inconsistency rate in Scenarios 3 and 5. The 

main reason is that the created aspects (in the delta model) modularize the changes 

and insert them into the target model elements, without requiring their 

modifications. In these cases, we also observed that lower Rate measures were 

observed in the AO models when the override algorithm is used and performed in 

the left direction. For all the other compositions, the inconsistency rate of the AO 

releases was equal or lower than the non-AO releases.  

A concrete example of the superiority of the AO version was the decrease of 

the inconsistency rate from 3.8 to 2.24 in Scenario 1. This was due to the 

aspectual component, included in this release (via the delta model), which advises 

9 methods: (i) three of them in the interface ManagePhotoInfo of the component 

AlbumData; and (ii) 6 of them in the interface PersistPhoto of the 

ImageAcessor. This led to a Rate decrease in the interface PersistPhoto from 11 

(non-AO version) to 4 (AO version). In the same way, the ManagePhotoInfo had 

its inconsistency rate decreased from 9 to 6.  

Modifications, Removals and Derivations. We could not find a recurring  

Rate pattern (in favor of AO or non-AO versions) when modification was being 

realized. The AO version performed better in certain cases, while the non-AO 

version was better in others. On the other hand, the inconsistency rate was slightly 

higher in non-AO models when removals and derivations were applied. We also 

observed that a very high inconsistency rate occurred simultaneously in both AO 

and non-AO models when the change scenario was complex. This was the case 
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when the change scenario involved a blend of modifications, removals, and 

derivations. More specifically, this occurred in Scenario 4, when there is a 

significant architectural change: a single controller was restructured as a set of 

specialized controllers, for example.  

Therefore, the heuristic composition algorithms were inefficient in widely 

scoped architecture evolution, such as the refinement of the MVC (Model-View-

Controller) architecture style of Mobile Media. This is also due in part to the 

name-based model comparison, which is not able to recognize more intricate 

equivalence relationships between the model elements. This comparison strategy 

is very restrictive whenever there is a 1:N correspondence relationship between 

elements in the two input models. An example of the 1:N relationship category 

encompassed the required interface ControlPhoto (Release 3) of the 

AlbumListScreen component. This interface was decomposed into two new 

required interfaces ControlAlbum and ControlPhotoList (Release 4), thereby 

characterizing a 1:2 relationship. In this particular case, the name-based model 

comparison should be able to “recognize” that ControlAlbum and 

ControlPhotoList are equivalent to ControlPhoto. However, in the output model 

(Release 4), the AlbumListScreen component provides duplicated services to the 

environment giving rise to an inconsistency. However, even in these cases the 

aspect orientation presented a lower inconsistency rate (e.g., see Scenario 4 in 

Figure 27 and Figure 28).  

It is known that a higher number of model elements may lead to a higher 

inconsistency rate when the composition is put in practice. However, this was not 

the case with aspect-orientation. For instance, let us consider the fourth scenario. 

Although fewer composed elements (25) were observed in the non-AO version, 

the latter presents a higher Rate measure (2.59). On the other hand, the AO 

version has a higher number of compositions (27), but the inconsistency rate is 

lower (Rate = 1.97). A real example would be the PhotoViewScreen component, 

which decreased the number of inconsistencies from 3 (non-AO version) to 1 (AO 

version). 
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Figure 25: Inconsistency resolution effort to recover the output model produced by 

override algorithm 

6.2.3.2. 
H2: Aspects and Inconsistency Propagation  

We focus our discussion about inconsistency propagation on the analysis of 

model recovery effort, the resolution effort (g(MCM)) measure (Section 6.2.2.4). 

This g(MCM) measure is a useful indicator to support the analysis of the presence 

(or absence) of inconsistency propagation (H2) in both AO and non-AO models. 

The higher the effort of recovering the output model (towards the intended 

composed model), the higher the chance of inconsistency propagation being 

observed in the output model. Figure 27 depicts the recovery effort measures to 

transform the output model produced by the override algorithm in the intended 

model. Similarly, Figure 28 shows the results of the same metric for the merge 

algorithm. The structure of the histograms follows those in the previous section.  

We have concluded that aspects indeed affect the manner of the 

inconsistencies spread over the output models. We identified a number of 

recurring inconsistencies in the AO models, which did not occur in the non-AO 

models. In general, some inconsistencies specific to aspect orientation were 

caused by a conflict (or several) arising at a single aspect and spreading through 

all the affected elements in the base model. Therefore, we have found that there is 

a sensible difference on the way composition inconsistencies are propagated in 

non-AO and AO models. Therefore, we refute the null hypothesis H2-0 and 

confirm the alternative hypothesis H2-1. 
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Figure 26: Effort to recover the output model produced by merge algorithm 

a. Quantification and Model Recovery Effort  

According to previous discussion, aspects with higher quantification 

contribute to higher inconsistency rates in AO models. An inspection of the output 

models, however, pointed out that this problem occurred because these aspects led 

to higher inconsistency propagation manifesting during the model composition 

process. Surprisingly, increase the inconsistency rates in AO models does not 

imply in more effort to transform the output composed into the intended 

composed model. In other words, the finding is that a high degree of 

quantification does not lead to more effort to recover the output model. The 

g(MCM) measure often tends to be similar in AO and non-AO models.  

This phenomenon can be illustrated, for example, in Scenario 2 (Figure 28), 

where the AO version presents an inconsistency rate closer to (Rate = 0.78) than 

the non-AO version (Rate = 0.82). However, the model resolution effort is equal 

to 9 for both AO and non-AO versions (Figure 28). This was the case of 

inconsistencies arising in a reusable exception handling aspect (modified by the 

delta model). When inconsistencies arose in such an aspect, they spread over all 

the model elements directly advised by the aspect. During the model recovery 

process, there was a need to fix only the inconsistency in the specification of the 

exception handling aspect. 

Therefore, although AO and non-AO versions present different 

inconsistency rates in certain evolution scenarios (e.g., Scenario 1 in Figure 28), 

the effort to recover the output model from the inconsistencies in both versions is 
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similar. The effort directly depends on how instances of inconsistencies are 

interrelated. Propagation channels of inconsistencies were more common in AO 

models as discussed above. For example, despite aspect orientation exhibiting an 

inconsistency rate close to the non-AO inconsistency rate in Scenario 2 (Figure 27 

and Figure 28), the inconsistency resolution effort is similar to non-AO models. 

Thus, when the inconsistency that is responsible for propagation is identified and 

resolved, all inconsistencies are indirectly resolved as well. 

b. Shared Join Points and Cyclic Propagation  

We have noticed that when an inconsistency emerged in a highly coupled 

base module (e.g., a controller in Mobile Media), it led to a higher degree of 

inconsistency propagation in the AO versions than the non-AO versions. This 

problem was particularly observed when the highly coupled base module was the 

source of join point shadows shared by multiple aspects. For instance, we have 

analyzed the inconsistency channels triggered by an inconsistency arising in the 

BaseController, a central model element in the Mobile Media architecture. We 

observed that the inconsistency propagation affected four components in the non-

AO version, namely AlbumListScreen, PhotoListScreen, PhotoView Screen, and 

AddPhotoToAlbumScreen. However, the propagation affected three additional 

modules (aspects) in the AO version.  

The HandleExceptions interface had a method signature modified from 

String[] getImages(String record-Name) to ImageData[] getImages(String 

record-Name). However, the R1.HandleExceptions incorrectly overrides 

Delta(R1,R2).HandleExceptions. As a result, this method was incorrectly present 

into the output model, which gives rise to some functionality inconsistencies. This 

propagation was spread through the component AlbumData, because the aspect is 

no longer able to introduce the expected method ImageData[] getImages(String 

record Name) into the provided interface ManagePhotoInfo of AlbumData. 

Consequently, AlbumData does not provide any expected service to the 

environment. Hence, inconsistencies are propagated through the component 

BaseController and ImageAcessor.  

It is interesting to note that ImageAcessor is also affected by an 

inconsistency that emerged from AlbumData. As ImageAcessor requires the 
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service (ImageData[] getImages(…)) provided by the interface 

ManagePhotoInterface, it is not able to correctly provide the all services defined 

in the provided interface PersistPhoto. Hence, the AlbumData is also re-affected 

by an inconsistency that previously arose from it. This phenomenon represents the 

cyclic conflict propagation. On the other hand, this propagation is solved in the 

composition R2,overide,left due to the Delta(R1,R2).HandleExceptions override the 

R1.HandleExceptions, decreasing the inconsistency rate from 1.3 in 

R2,overide,right to 0.41 in R2,overide,left. 

 

6.2.4. 
Limitations of Related Work 

Model composition is a very active research field in many domains, 

including database integration (Bernstein & Melnik, 2007), composition of web 

services (Milanovic & Malek, 2004), merging of statecharts (Nejati et al., 2007) , 

model composition in product lines (Jayaraman et al., 2007), composition of UML 

models (Dingel et al., 2008; Clarke & Walker, 2005; Farias et al., 2010), aspect-

oriented modeling (Whittle et al., 2009; Klein et al., 2006), and AO composition 

of models (Reddy et al., 2006; Cottenier et al., 2007). However, there is little 

related work focusing on the quantitative and qualitative assessment of AOM. In 

general, most of the research on the interplay of AOM and model composition rest 

on subjective assessment criteria. Even worse, they lead to dependence on experts 

who have built up an arsenal of mentally held indicators to evaluate the growing 

complexity of models in general (France & Rumpe, 2007; Lange et al., 2006a, 

Lange et al., 2006b). Consequently, the truth is that modelers ultimately rely on 

feedback from experts to determine “how well” the input models and their 

compositions can be. According to (Figueiredo et al., 2008), the state of the 

practice in assessing model quality provides evidence that modeling is still in the 

craftsmanship era and when we assess model composition this problem is 

accentuated. 

More specifically, to the best of our knowledge, researchers have neglected 

the assessment of how aspects affect model composition effort. The need for 

assessing models during a model composition process has neither been pointed 

out nor proposed by current model composition techniques (Cottenier et al., 2008; 
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Nejati et al., 2007; Reddy et al., 2006; Apel et al., 2011; IBM RSA, 2011). For 

example, the UML built-in composition mechanism, namely package merge 

(OMG, 2011; Dingel et al., 2008), does not define metrics or criteria to assess the 

merged UML models. Moreover, it has been found to be incomplete, ambiguous, 

and inconsistent (OMG, 2011). 

The lack of quantitative and qualitative indicators for model compositions 

hinder the understanding of side effects peculiar to certain model composition 

strategies (in the presence of aspects or not). Many different types of metrics have 

been developed during the past few decades for different UML models. These 

metrics have certainly helped designers analyze their UML models to an extent. 

However, as researchers’ focus has shifted to the activities related to model 

management (such as model composition, evolution, and transformation), the 

shortcomings, and limitation of UML model metrics have become more apparent. 

Some authors (Fenton & Pfleeger, 1996; Lorenz & Kidd, 1994; Chidamber & 

Kemerer, 1994) have proposed a set of metrics that can be applied to measure 

UML models’ properties. These works have shown that their measures satisfy 

some properties expected for good measures of design models. However, these 

metrics cannot be employed to assess problems that may arise in a model 

composition process such as semantic inconsistencies. 

There are some specific metrics available in the literature for supporting the 

evaluation of model composition specifications. For instance, Chitchyan and 

colleagues (Chitchyan et al., 2009) have defined some metrics to quantify the 

effort to specific compositions between two or more requirements models, such as 

scaffolding and mobility. However, their metrics are targeted at evaluating the 

reusability and stability of explicit model composition specifications. Boucké and 

colleagues (Bouke et al., 2006) propose a number of metrics for evaluating the 

complexity and reuse of architectural model compositions. However, in this study, 

we have focused on the evaluation of heuristic composition algorithms, such as 

merge and override, where explicit model compositions are not provided up front. 

In addition, we have focused on analyzing the impact of aspects on the effort to 

resolve emerging inconsistencies in output models. Therefore, existing metrics 

(such as those described in (Chitchyan et al., 2009; Bouke et al., 2006)) cannot be 

directly applied to our context. 
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6.2.5. 
Threats to Validity  

The exploratory study obviously has a number of threats to validity that 

range from (Wohlin et al., 2000): (i) the use of single target application and a 

single AOM language, to (ii) the use of specific metrics to compute the conflict 

resolution effort. Obviously, more investigations involving other case studies with 

compositions of larger UML models are required. We observed that the number of 

properties and details (i.e., granularity) of the model elements taken into 

consideration throughout the compositions affect directly the composition results. 

Consequently, it is necessary to observe that, to generalize our findings, other 

types of model with different levels of abstraction are needed to make further 

investigation. 

Further empirical evaluations are indeed fundamental to confirm or refute 

our findings in other real-world design settings involving UML model 

compositions. However, it was never our goal to conduct a controlled study. Our 

investigation represents a first stepping-stone, where a number of initial findings 

can be used to drive the experimental designs of more controlled studies in the 

future. 

 

6.2.6.  
Conclusions and Future Work  

Model composition is one of the pillars of AOM, and it is an operation 

intended to be used in many software development activities. Hence, software 

designers naturally become concerned about the quality of the composed models. 

This study represents a first exploratory study to assess the potential advantage of 

aspect-orientation in reducing conflict resolution effort. In our study, model 

composition was used to express the evolution of architectural models along six 

releases of a software product line. Three canonical algorithms for heuristic model 

composition have been applied, and two of them were discussed in detail in this 

study. As expected, we found that the presence of aspects in input models 

improved modularization and, therefore, tended to better localize inconsistencies.  

We have also observed: (i) a higher degree of obliviousness between base 

models and aspects led to a significant decrease of inconsistencies when compared 
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to the non-AO model counterparts, and (ii) aspects with higher quantification 

were the cause of higher inconsistency rates in AO models. Another interesting 

finding was that, even in scenarios where the inconsistency rate of AO models 

was close to (or higher than) the inconsistency rate of non-AO models, conflict 

resolution effort was similar in AO and non-AO models. This means that the time 

spent in recovering output AO models from emerging inconsistencies is, at least, 

similar to non-AO models. All these findings were independent of the specific 

composition algorithms being assessed. These results provide some initial 

indication that aspect-orientation may alleviate conflict resolution effort. 

We should point out that assessing the benefit of AOM in model 

composition is in its initial stage and there is little experience that can be used to 

determine the feasibility of current approaches. This study represents a first 

exploratory study that investigates the impact of aspects on conflict resolution 

effort. However, further empirical studies are still required to evaluate the impact 

of AO modeling on model composition in real-world settings. We also need to 

better understand if aspect orientation provides some gain or not: (i) when applied 

to other composition algorithms, and (ii) with respect to the time spent to identify 

the inconsistencies rather than the effort to resolving them. We hope that the 

issues outlined throughout the study encourage researchers to replicate our study 

in the future under different circumstances. 

 

 

 

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA




