PUC-RIo - Certificacdo Digital N° 0821407/CA

184

6
Effort on the Resolution of Inconsistency

The goal of this Chapter is to evaluate the effects of model stability and
design modeling language on the inconsistency resolution effort. For this, two
studies are realized. The first study (Section 6.1) is an exploratory study that
analyzes and reports the effects of model stability on the effort required to resolve
inconsistencies, and its impact on the inconsistency rate. These inconsistencies
emerged when three well-known composition algorithms (such as override,
merge, and union) were applied in evolution scenarios of three software product
lines. The results, supported by statistical tests, show that model stability was an
effective indicator of severe inconsistencies and high resolution effort of
inconsistency.

The second exploratory study (Section 6.2) reports the impact of modeling
language on the inconsistency rate and the resolution effort. More specifically, it
investigates whether aspect-orientation reduces the resolution effort as improved
modularization may help developers to better restructure the model. Similar to the
previous study, it uses model composition to express the evolution of design
models along six releases of a software product line. The composition algorithms
(i.e., override, merge, and union algorithms) were also applied. The AO and non-
AO composed models produced were compared in terms of their inconsistency
rate and effort to solve the identified inconsistencies. The findings reveal specific
scenarios where aspect-orientation properties, such as obliviousness and

quantification, result in a lower (or higher) resolution effort.

6.1.
Effect of Model Stability on Inconsistency Resolution

As previously mentioned, the composition of design models can be defined
as a set of activities that should be performed over two input models, M and Mg,
in order to produce an output intended model, Mag. To put the model composition

in practice, software developers usually make use of composition heuristics

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

PUC-RIo - Certificacdo Digital N° 0821407/CA

185

(Clarke, 2001) to produce Mag. These heuristics match the model elements of My
and Mg by automatically “guessing” their semantics and then bring the similar
elements together to create a “big picture” view of the overall design model.

The problem is that, in practice, the output composed model (Mcym) and the
intended model (Mg) often do not match (i.e., Mcm # Mag). Since, M, and MB
conflict with each other in some way, producing some syntactic and semantics
inconsistencies in Mcy. Consequently, software developers should be able to
anticipate composed models that are likely to exhibit inconsistencies and
transform them into Mg. In fact, it is well known that the derivation of Mg from
Mcwm is considered an error-prone task (France & Rumpe, 2007). The developers
do not even have practical information or guidance to plan this task. Their
inability is due to two main problems.

First, developers do not have any indicator pointing which Mcy should be
reviewed (or not), given a sequence of output composed models produced by the
software development team. Hence, they have no means to identify or prioritize
parts of design models that are likely to have a higher density of inconsistencies.
They are often forced to go through all output models produced or assume an
overoptimistic position i.e., all output composed models produced is a Mug. In
both cases, the inadequate identification of an inconsistent Mcy can even
compromise the evolution of the existing design model (M,) as some composition
inconsistencies can affect further model compositions.

Second, model managers are unable to grasp how much effort the derivation
of Mg from Mcy can demand, given the problem at hand (Norris & Letkman,
2011). Hence, they end up not designating the most qualified developers for
resolving the most critical effort-consuming cases where severe semantic
inconsistencies are commonly found. Instead, unqualified developers end up being
allocated to deal with these cases. In short, model managers have no idea about
which My will demand more effort to be transformed into a Mag. If the effort to
resolve these inconsistencies is high, then the potential benefits of using
composition heuristics (e.g., gains in productivity) may be compromised.

The literature in software evolution highlights that software remaining
stable over time tends to have a lower number of flaws and require less effort to
be fixed than its counterpart (Kelly, 2006; Molesini et al., 2009). However, little is

known whether the benefits of stability are also found in the context of the

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

PUC-RIo - Certificacdo Digital N° 0821407/CA

186

evolution of design models supported by composition heuristics. This is by no
means obvious for us because the software artifacts (code and models) have
different level of abstraction and are characterized by alternative features. In fact,
design model has a set of characteristics (defined in language metamodel
expressing it) that are manipulated by composition heuristics and can assume
values close to what it is expected (or not) i.e., Mcy = Mag. If the assigned value
to a characteristic is close to one found in the intended model, then the composed
model is considered stable concerning that characteristic. For example, if the
difference between the coupling of the composed model and the intended model is
small, then they can be considered stable considering coupling.

Although researchers recognize software stability as a good indicator to
address the two problems described above in the context of software evolution,
most of the current research on model composition is focused on building new
model composition heuristics (e.g., (Clarke & Walker, 2001; Kompose, 2010;
Nejati et al., 2007). That is, little has been done to evaluate stability as an
indicator of the presence of semantic inconsistencies and of the effort that, on
average, developers should spend to derive Muap from Mcy. Today, the
identification of critical Mcy and the effort estimation to produce Mg are based
on the evangelists’ feedback that often diverge (Mens, 2002).

This section, therefore, presents an initial exploratory study analyzing
stability as an indicator of composition inconsistencies and resolution effort. More
specifically, we are concerned with understanding the effects of the model
stability on the inconsistency rate and inconsistency resolution effort. We study a
particular facet of model composition: the use of model composition when adding
new features to a set of models for three realistic software product lines. Software
product lines (SPLs) commonly involve model composition activities (Jayaraman
et al., 2007; Thaker et al., 2007; Apel et al., 2009) and, while we believe the kinds
of model composition in SPLs are representative of the broader issues, we make
no claims about the generality of our results beyond SPL model composition.
Three well-established composition heuristics (Clarke & Walker, 2001), namely
override, merge and union, were employed to evolve the SPL design models along
eighteen releases. SPLs are chosen because designers need to maximize the
modularization of features allowing the specification of the compositions. The use

of composition is required to accommodate new variabilities and variants

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

PUC-RIo - Certificacdo Digital N° 0821407/CA

187

(mandatory and optional features) that may be required when SPLs evolve. That
is, in each new release, models for the new feature are composed with the models
for the existing features. We analyze if stability is a good indicator of high
inconsistency rate and resolution effort.

Our findings are derived from 180 compositions performed to evolve design
models of three software product lines. Our results, supported by statistical tests,
show that stable models tend to manifest a lower inconsistency rate and require a
lower resolution effort than their counterparts. In other words, this means that
there is significant evidence that the higher the model stability, the lower the
model composition effort.

In addition, we discuss scenarios where the use of the composition
heuristics became either costly or prohibitive. In these scenarios, developers need
to invest some extra effort to derive Mg from Mcy. Additionally, we discuss the
main factors that contributed to the stable models outnumber the unstable one in
terms of inconsistency rate and inconsistency resolution effort. For example, our
findings show that the highest inconsistency rates are observed when severe
evolution scenarios are implemented, and when inconsistency propagation
happens from model elements implementing optional features to ones
implementing mandatory features. We also notice that the higher instability in the
model elements of the SPL design models realizing optional features, the higher
the resolution effort. To the best of our knowledge, our results are the first to
investigate the potential advantages of model stability in realistic scenarios of
model composition. We therefore see this study as a first step in a more ambitious
agenda to empirically assess model stability.

The remainder of the chapter is organized as follows. Section 6.1.1
describes the main concepts and knowledge that are going to be used and
discussed throughout the Chapter. Section 6.1.2 presents the study methodology.
Section 6.1.3 discusses the study results. Section 6.1.4 compares this work with
others, presenting the main differences and commonalities. Section 6.1.5
highlights some threats to validity. Finally, Section 6.1.6 presents some

concluding remarks and future work.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

PUC-RIo - Certificacdo Digital N° 0821407/CA

188

6.1.1.
Background

This Section presents the fundamental concepts to a correct understanding
of the contributions presented in this Chapter. To this end, the concepts of model

stability, composition heuristics, and model inconsistency will be discussed.

6.1.1.1.
Model Stability

According to (Kelly, 2006), a design characteristic of software is stable if,
when compared to other, the differences in the metric associated with that
characteristic are regarded small. In a similar way in the context of model
composition, Mcy can be considered stable if its design characteristics have a low
variation concerning the characteristics of Mag. In (Kelly, 2006), Kelly studies
stability from a retrospective view i.e., comparing the current version to previous
ones. In our study, we compare the current model and the intended model.

We define low variation as being equal to (or less than) 20 percent. This
choice is based on previous empirical studies (Kelly, 2006 on software stability
that has demonstrated the usefulness of this threshold. For example, if the measure
of a particular characteristic (e.g., coupling and cohesion) of the Mcy is equal to
9, and the measure of the Map is equal to 11. So Mcm is considered stable
concerning Magp (because 9 is 18% lower than 11) with respect to the measure
under analysis. Following this stability threshold, we can systematically identify
weather (or not) Mcy keeps stable considering Mg, given an evolution scenario.
Note that threshold is used more as a reference value rather than a final decision
maker. The results of this study can regulate it, for example. The differences
between the models are computed from the comparison of measures of each
model characteristic calculated with a suite of metrics described in Chapter 3 and
Table 27.

We adopt the definition of stability from (Kelly, 2006) (and its threshold) due
to some reasons. First, it defines and validates the quantification method of
stability in practice. This method is used to examine software systems that have

been actively maintained and used over a long term. Second, the quantification

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

PUC-RIo - Certificacdo Digital N° 0821407/CA

189

method of stability has demonstrated to be effective to flag evolutions that have
jeopardized the system design.

Third, many releases of the system under study were considered. This is a
fundamental requirement to test the usefulness of the method. As such, all these
factors provided a solid foundation for our study. These metrics were used
because previous works (Farias et al., 2008a; Medeiros et al., 2010; Guimaraes et
al., 2010; Kelly, 2006; Farias, 2011) have already observed the effectiveness of
these indicators for the quantification of software stability. Knowing the stability
in relation to the intended model it is possible to identify evolution scenarios,
where composition heuristics are able to accommodate upcoming changes
effectively and the effort spent to obtain the intended model. The stability

quantification method is presented later in Section 6.1.2.4.

Type Metric Description
Size NClass The number of classes
NAttr The number of attributes
NOps The number of operations
Ninter The number of interfaces
NOI The number of operations in each interface
Inheritance DIT The depth of the class in the inheritance hierarchy.
InhOps The number of operations inherited.
InhAttr The number of attributes inherited.
Coupling DepOut The number of elements on which a class depends.
Depln The number of elements that depend on this class.

Table 27: Metrics used

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

PUC-RIo - Certificacdo Digital N° 0821407/CA

190

6.1.1.2.
Composition Heuristics

As previously mentioned in Section 2.4, composition heuristics rely on two
key activities: matching and combining the input model elements (Farias et al.,
2010a; Farias et al., 2010b; Clarke, 2001, Reddy et al., 2006). Usually they are
used to modify, remove, and add features to an existing design model. This work
focuses on three state-of-practice composition heuristics: override, merge, and
union (Clarke & Walker, 2001; Clarke & Walker, 2005). These heuristics were
chosen because they have been applied to a wide range of model composition
scenarios such as model evolution, ontology merge, and conceptual model
composition. In addition, they have been recognized as effective heuristics in
evolving product-line architectures e.g., (Farias et al., 2010a). In the following, we
briefly define these three heuristics, and assume M and Mg as the input two
models. The input model elements are corresponding if they can be identified as
equivalent in a matching process. Matching can be achieved using any kind of
standard heuristics, such as match-by-name (Oliveira et al., 2009a; Oliveira et al.,
2009b; Reddy et al., 2005).

The design models used are typical UML class and component diagrams,
which have been widely used to represent software architecture in mainstream
software development (Ambler, 2005; Fowler, 2003; Dennis et al., 2007; Liiders
et al., 2000). In Figure 17, for example, R2 diagram plays the role of the base
model (M,) and Delta(R2,R3) diagram plays the role of the delta model (Mg). The
components R2.BaseController and Delta(R2,R3).BaseController are considered
as equivalent. We defer further considerations about the design models used in our
study in Section 6.1.2.3. The composition heuristics considered in our study were
override, merge, and union. These heuristics were previously discussed in Section
2.4.1. Figure 17 shows two input models and two composed models produced
following the override and merge heuristics, respectively. Figure 18 shows the

intended model and the composed model produced following the union heuristic.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

PUC-RIo - Certificacdo Digital N° 0821407/CA

191

R2 R3 Override

<<mandatory>> <<mandator <<mandatory>> <<optional>>
yv>> I
® controlPhoto O e - -- ~| NewAlbumeareen ControlPhoto O | __ <mancaoy [Newl abelScreen [
+ viewPhoto(): void T + viewPhoto(): void NewAlbumScreen H

yay v N ' \v4

V (§) <coptional>>
<<mandatory>> ManageLabel
<<mandatory>> % s ManageAlbum
BaseController

. ® <<mandatory>>
<<mandatory>> I} o ® ManageAlbum

BaseController + getAlbumName(): String

+ getLabelName(): String
+ getAlbumName(): String | | + getFormType(): Integer

:((] <<optional>> 8 <<man;tory>> <<optional>>
<<mandatory>> HandleExceptions <<optional>> 3

ManagePhotolnfo A i ManagePhotolnfo Ole__. PhotZSorting I% __D SortPhoto a

+loadAlbums(): void " o
+ resetimageData(): void + getimage(): (S)tring[] +resetimageData():void | _____ ______________ B + sortCommand(): void
Y '
,A ! 4 ,A) <<optional>> R el 4
' Lommmmmmmems ' ' HandleExceptions a

H | H L - @) <<optional> %
<<mandatory>> %‘ ‘@ Ex <<optional> %‘ | <AT;S::§;: I}| + loadAlbums(): void 4—— ExceptionHandling

AlbumData ceptionHandling + getlmage(): String[]

Delta(R2,R3) R3 Merge

@ <<optional>>

<<optional>>

0 <<optional>> <<mandatory>> | _ _ _ _ o _____ <<optional>>

® it])_nt;ollPho(od _____ New e en @ ControlPhoto O = © et abeisereen [
+ editLabel(): voi H

() T + viewPhoto(): void [===~ NewAIbumScreen@ !

A vl + editLabel(): void T v

! A v <<optional>>
<<optional>>
P 0 T ManageLabel

<<mandatory>> % NN ManageLabel Y A
BaseController ManageAlbum + getLabelName(): String
+ getFormType(): Integer

+ getLabelName(): String
! + getFormType(): Integer

+ getAlbumName(): String

O arspprdons © T = o ©
<< >>
= PhotoSorting () ManagePhotolnfo O |e - - PhotoSorting B} -- SortPhoto
+ updatelmagelnfo(): void - c 40 void
! + resetimageData(): void _ +sortCommand(): voi
A v + updatelmagelnfo(): void
<<optional>> i

A -
! T

H <<optional>> i R
H <<mandatory>> E SortPhoto 0 % @ HandleExceptions A) IS 9
'

'

AlbumData !
N + loadAlbums(): void <<optional>
i p—— , L sortCommand(): void <smancalory> [y +getimage():Stingll [-~ {® ExceptionHandiing
—optiona> ! © umbata + getimage(): ImageData[]
) HandleExceptions a L

<+ 3 ()] S<optional> % Elements: Relationships: Features:

- __ ' : X :

+ getimage(): ImageData[] ExceptionHandling >) _ _
% component ---[> provided services hoto management (D) exception handling

(\ interface - --> required services create album (E) edit photo’s label
album management (F) sorting photos

Figure 17: Example of composition of the Mobile Media product line

R3 Intended Model R3 Union

<<optional>> <<optional>> Zmandalony=>
<o Py — N“TTW” E} ® controlPhoto O je---- N (B (@ R3.controPhoto O Zr
ewl 2 - - - |
Controehala . +viewPhoto(): void H T ediLabel() void New.abasaeen [
+ viewPhoto(): void : T
+ editLabel(): void Vv Ja v A I
' <<mandatory>> : v
I B v || @ o Bl & Vemgetin © | B
o H ManageLabel BaseController +getAlbumName(); String | |(€) R3.BaseController="|- - - > B ManageLabel O
E;::”Efr"‘;x’”e B+ geitabe”;lame{)‘. String i i + getLabelName(): String
+ getFormType(): Integer Y Y + getFormType(): Integer
' <<mandatory>> y L e 2
4 ManagePhotolnfo (1 [R3 managePhotolnfo ©
T <<mandatory>> : - —e ﬁ P
(@ ManagePhotolnfo O s :)ntzg;:i’n}g @ + resetimageData(): void [+ updatelmagelnfo(): void PhotoSorting @
+ resetimageData() void 7 e 5 i
+ updatelmagelnfo): void v v
Iy A P P A <<optional>> <<optional>>
i ' SPhon O D HandieErcoptons — 1 |@RraHandeexceptions® | | B soehote O
— ; <<optional>
' <<mandatory=> = () void [DR3 ExceptionHandiing |-~ + getimage(): imageDataf] | [+ sortCommand() void
U@ “Abumbats | [+ socommand)y void N \-Stringl) Except 9
'
....................... 5
<<optional>> Elements: Relationships: Features.
6] HandleExceptions a __m E component ---[> provided services (&) photomanagement (D) exception handling
+ loadAlbums(). void Exceptononding () interface - --» requiredservices (8] create album it photo's label
+getimage() ImageData] bum management (F] sorting photos

Figure 18: The intended and composed model produced following the union heuristic

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

PUC-RIo - Certificacdo Digital N° 0821407/CA

192

6.1.1.3.
Model Inconsistency

Inconsistencies emerge in the composed model when its properties assume
values other than those expected, as previously defined in Section 3. These values
can affect the syntactic and semantic properties of the model elements. Usually
the undesired values come from conflicting changes that were incorrectly realized
(Samar et al., 2011). We can identify two broad categories of inconsistencies: (i)
syntactic inconsistencies, which arise when the composed model elements do not
conform to the modeling language’s metamodel; and (ii) semantic inconsistencies,
which mean that static and behavioral semantics of the composed model elements
do not match those of the intended model elements.

In our study, we take into account syntactic inconsistencies that were
identified by the IBM Rational Software Architecture’s model validation
mechanism (IBM RSA, 2011). For example, this robust tool is able to detect the
violation of well-formedness rules defined in the UML metamodel specification
(OMG, 2011). In order to improve our inconsistency analysis, we also considered
the types of inconsistencies shown in Table 28, which were checked by using the
SDMetrics tool (Wust, 2011). In particular, these inconsistencies were used
because their effectiveness has been demonstrated in previous works (Farias et al.,
2008a; Farias et al., 2010a; Farias et al., 2012d). In addition, both syntactic and
semantic inconsistencies were manually identified as well. All these procedures
were followed in order to improve our confidence that a representative set of
inconsistencies were tackled by our study.

Many instances of these inconsistency types (Table 28) were found in our
study. For example, the static property of a model element, isAbstract, assumes
the value frue rather than false. The result is an abstract class where a concrete
class was being expected. Another typical inconsistency considered in our study
was when a model element provides (or requires) an unexpected functionality or
even requires a functionality that does not exist.

The absence of this functionality can affect other design model elements
responsible for implementing other functionalities, thereby propagating an
undesirable ripple effect in the resulting composed model. For example, the

AlbumData does not provide the service “Update Image Information” because the

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

PUC-RIo - Certificacdo Digital N° 0821407/CA

193

method updatelmagelnfo():void is not present in the ManagePhotolnfolnterface.
Hence, the PhotoSorting component is wunable to provide the service
“SortingPhotos.” This means that the feature “SortingPhoto” (feature ‘F’ in
Figure 17) — a critical feature of the software product line — is not correctly
realized. On the other hand, this problem is not present in Figure 17 (merge), in
which the AlbumData implement two features (C, model management, and E, edit
photo’s label). We defer further discussion about the examples and the

quantification of these types of inconsistencies to Section 6.1.2.4.

Metric Description
NFCon The number of functionality inconsistencies.
NCCon The number of model elements that are not compliance with the intended
model.
NDRCOn The number of dangling reference inconsistencies.
NASCon The number of abstract syntax inconsistencies.
NUMECon The number of non-meaningful model elements
NBFCon The number of behavioral feature inconsistencies.

Table 28: The inconsistencies used in our case study

6.1.2.
Study Methodology

This section presents the main decisions underlying the experimental design
of our exploratory study. To begin with, the objective and research questions are
presented (Section 6.1.2.1). Next, the study hypotheses are systematically stated
from these research questions (Section 6.1.2.2). The product lines used in our
studies are also discussed in detail as well as their evolutionary changes (Section
6.1.2.3). Then, the variables and quantification methods considered are precisely
described (Section 6.1.2.4). Finally, the method used to produce the releases of the
target architectures 1is carefully discussed (Section 6.1.2.5). All these
methodological steps were based on practical guidelines of empirical studies
(Wohlin et al., 2000; Basili, 2007; Kitchenham et al., 2008; Kitchenham, 2006;
Shadish et al., 2006).

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

PUC-RIo - Certificacdo Digital N° 0821407/CA

194

6.1.2.1.
Objective and Research Questions

This study essentially attempts to evaluate the effects of model stability on
two variables: the inconsistency rate and inconsistency resolution effort. These
effects are investigated from concrete scenarios involving design model
compositions so that practical knowledge can be generated. In addition, some
influential factors are also considered into precisely revealing how they can affect
these variables. With this in mind, the objective of this study is stated based on the
GQM template (Basili, 1994) as follows:

analyze the stability of design models
for the purpose of investigating its effect
with respect to inconsistency rate and resolution effort
from the perspective of developers
in the context of evolving design models with composition heuristics

In particular, this study aims at revealing the stability effects while

evolving composed design models on inconsistency rate and the inconsistency

resolution effort. Therefore, we address research question RQ4, as stated in
Section 1.3:

e RQ4: What is the impact of design characteristics on the inconsistency rate

and inconsistency resolution effort?

Considering the quality notions defined in Chapter 3, we study whether the
syntactic and semantic quality notions of a model affects the effort and resolution
quality notions. We refine the research question into two research questions. Thus,
we focus on the following two research questions:

¢ RQ4.1: What is the effect of stability on the inconsistency rate?

¢ RQ4.2: What is the effect of stability on the developers’ effort?

6.1.2.2.
Hypothesis Formulation

First Hypotheses: Effect of Stability on Inconsistency Rate (RQ5.1). In the
first hypothesis, we speculate that a high variation of the design characteristics of
the design models may lead to a higher incidence of inconsistencies; since, it

increases the chance for an incorrect manipulation of the design characteristic by

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

PUC-RIo - Certificacdo Digital N° 0821407/CA

195

the composition heuristics. In fact, modifications from severe evolutions may lead
the composition heuristics to be ineffective or even prohibitive. In addition, these
inconsistencies may also propagate. As a higher incidence of changes is found in
unstable models, we hypothesize that unstable models tend to have a higher (or
equal to) inconsistency rate than stable models. The first hypothesis evaluates
whether the inconsistency rate in unstable models is significantly higher (or equal
to) than in stable models. Thus, our hypotheses are summarized as follows:

Null Hypothesis 1, Hy.o:

Stable design models have similar or higher inconsistency rate than

unstable design models.

Hj.o: Rate(stable design models) > Rate(unstable design models).

Alternative Hypothesis 1, H;.;:

Stable design models have a lower inconsistency rate than unstable

design models.

Hj.;: Rate(stable design models) < Rate(unstable design models)

By testing the first hypothesis, we evaluate if stability is a good indicator to
identify the most critical Mcy in term of inconsistency rate from a sequence of
Mcm produced from multiple software development teams. Hence, developers can
then review the design models having a higher density of composition
inconsistencies. We believe that this strategy is a more effective one than going
through all Mcy produced or assuming an overoptimistic position where all My
produced is a Mag.

Second Hypothesis: Effect of Stability on Developer Effort (RQ5.2). As
previously mentioned, developers tend to invest different quantity of effort to
derive Mg from Mcym. Today, model managers are unable to grasp how much
effort this transformation can demand. This variation is because developers need
to resolve different types of problems in a composed model, from a simple
renaming of elements to complex modifications in the structure of the composed
model. In fact, the structure of the composed models may be affected in different
ways during the composition e.g., creating unexpected interdependences between
the model elements. Even worse, these modifications in the structure of the model
may cause ripple effects i.e., inconsistency propagation between the model

elements. The introduction of one inconsistency can often lead to multiple other

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

PUC-RIo - Certificacdo Digital N° 0821407/CA

196

inconsistencies because of a “knock-on” effect. An example would be the
inconsistency whereby a client component is missing an important operation in
the interface of a server component. This semantic inconsistency leads to a
“knock-on” syntactic inconsistency if another component requires the operation.
In the worst case, there may be long chains of inconsistencies all derived from a
single inconsistency. Given a composed model at hand, developers need to know
if they will invest little or too much effort to transform Mcy into Mg, given the
problem at hand. Based on this knowledge, they will be able to prioritize the
review of the output composed models and to better comprehend the effort to be
invested e.g., reviewing the models that require higher effort first and those
requiring less effort after. With this in mind, we are interested in understanding
the possible difference of effort to resolve inconsistencies in stable and unstable
design models. The expectation is that stable models require a lower developers’
effort to produce the output intended model. This expectation is based on the
speculation that unstable models may demand more restructuring modifications
than stable models; hence, requiring more effort. This leads to the second null and
alternative hypotheses as follows:

Null Hypothesis 2, H;.o:

Stable models require similar or higher effort to resolve

inconsistencies than unstable models.

H,.¢: Effort(stable models) > Effort(unstable models).

Alternative Hypothesis 2, H,.;:

Stable models tend to require a lower inconsistency resolution effort

than unstable ones.

H,.;: Effort(stable models) < Effort(unstable models).

By testing the first hypothesis, we evaluate if stability is a useful indicator to
identify the most critical effort-consuming cases in which severe semantic
inconsistencies in architectural components are more often. This knowledge helps
model mangers to allocate qualified developers to overcome the composition

inconsistencies in M.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

PUC-RIo - Certificacdo Digital N° 0821407/CA

197

6.1.2.3.
Target Cases: Evolving Product-Line Design Models

Model Composition for Expressing SPL Evolution. We have applied the
composition heuristics to evolve design models of three realistic SPLs for a set of
evolution scenarios (Table 29). That is, the compositions are defined to generate
the new releases of the SPL design models. These three SPLs are described below
and soon after the evolution scenarios are presented. The first target case is a
product-line called MobileMedia, whose purpose is to support the manipulation of
photos, music, and videos on mobile devices. The last release of its design model
consists of a UML component diagram with more than 50 component elements.
Figure 17 and Figure 18 show a practical example of the use of composition to
evolve this SPL.

The second SPL, called Shogi Game, is a board game, whose purpose is to
allow users to move, customize pieces, save, and load game. All the movements
of the pieces are governed by a set of well-defined rules. The last SPL, called
Checkers Game, is a board game played on an eight by eight-squared board with
twelve pieces on each side. The purpose of Checkers is to essentially move and
capture diagonally forwards.

The reason for selecting these SPLs in our evaluation is manifold. Firstly,
the models are well designed. Next, 12 releases of Mobile Media’s architectural
models were produced by independent developers using the model composition
heuristics. These releases are produced from five evolution scenarios. Note that an
evolution is the production of a release from another one e.g., from R1 to R2
(Table 28). In addition, 12 releases of Shogi’s and Checkers’ architectural models
were available as well. In both cases, six releases were produced from five
evolution scenarios. Together the 36 releases provide a wide range of SPL
evolution scenarios to enable us to investigate our hypotheses properly. These 36
releases were produced from the evolution scenarios described in Table 29.
Secondly, these releases were available for our investigation and had a
considerable quantity of structural changes in the evolution scenarios.

Another reason to choose these SPLs is that the original developers are
available to help us to validate the identified list of syntactic and semantic

inconsistencies. In total, eight developers worked during the development of the

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

PUC-RIo - Certificacdo Digital N° 0821407/CA

198

SPLs used in our study being three developers from the Lancaster University
(UK), two from the Pontifical Catholic University of Rio de Janeiro (Brazil), two
from University of Sao Paulo (Brazil), one from Federal University of
Pernambuco (Brazil). These are fundamental requirements to test our hypotheses
in a reliable fashion. Moreover, each SPL has more than one hundred modules and
their architecture models are the main artifact to reason about change requests and
derive new products. The SPL designs were produced by the original developers
without any of the model composition heuristics under assessment in mind. It
helped to avoid any bias and entailed natural software development scenarios. . In

total, eight developers worked during the development of the SPLs used in our

Release Description
R1 MobilePhoto core (Figueiredo et al, 2008)
R2 Exception handling included
New feature added to count the number of times a photo has been

;g R3 viewed and sorting photos by highest viewing frequency.
§ New feature added to edit the photo’s label
% New feature added to allow users to specify and view their
§ R4 favorite photos

R5 New feature to keep multiple copies of photos

R6 New feature to send photo to other users by SMS

R1 Checkers Game core

R2 New feature to indicate the movable pieces
)
§ R3 New feature to indicate possible movements
5 R4 New feature to save and load the game
i)
E R5 New feature added to customize the pieces
Q

R6 New feature added to log the game

R1 Shogi Game core

R2 New feature to customize pictures
g R3 New feature to customize pieces
s
E R4 New feature to indicate the piece movement
&b
é R5 New feature to indicate the movable pieces

R6 New feature to allow the users to save and load the game

Table 29: Descriptions of the evolution scenarios

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

PUC-RIo - Certificacdo Digital N° 0821407/CA

199

study being three developers from the Lancaster University (UK), two from the
Pontifical Catholic University of Rio de Janeiro (Brazil), two from University of
Sao Paulo (Brazil), and one from Federal University of Pernambuco (Brazil).
Finally, these SPLs have a number of other relevant characteristics for our
study, such as: (i) proper documentation of the driving requirements; and (ii)
different types of changes were realized in each release, including refinements
over time of the architecture style employed. After describing the SPLs employed
in our empirical studies, the evolution scenarios suffered by them are explained in

Table 29.

6.1.2.4.
Measured Variables and Quantification Method

First Dependent Variable. The dependent variable of hypothesis 1 is the
inconsistency rate. It quantifies the amount of composition inconsistencies divided
by the total number of elements in the composed model. That is, it allows
computing the density of composition inconsistencies in the output composed
models. This metric makes it possible to assess the difference between the
inconsistency rate of stable models and unstable models (H1). It is important to
point out that inconsistency rate is defined from multiple inconsistency metrics
(Oliveira, 2008a).

Second Dependent Variable. The dependent variable of the hypothesis 2 is
the inconsistency resolution effort, g(Mcm)—that is, the number of operations
(creations, removals, and updates) required to transform the composed model into
the intended model. We compute these operations because they represent the main
operations performed by developer to evolve software in real-world settings
(Mens, 2002). Thus, this computation represents an estimation of the
inconsistency resolution effort. The collected measures of inconsistency rate are
used to assess if the composed model has inconsistencies after the composition
heuristic is applied (diff(Mcym,Mag) > 0). Then, a set of removals, updates, and
creations were performed to resolve the inconsistencies. As a result, the intended
model is produced and the inconsistency resolution effort is computed.

Independent Variable. The independent variable of the hypotheses 1 and 2
is the Stability (S) of the output composed model (Mcm) with respect to the

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

PUC-RIo - Certificacdo Digital N° 0821407/CA

200
output intended model (Mag). The Stability is defined in terms of the Distance (D)
between the measures of the design characteristics of My and M.

|[Metric(x) — Metric(y)|
Metric(y) (D

Distance(x,y) =

Where:
Metric are the indicators defined in Table 1
X is the output composed model, Mcy

Y is the output intended model, Mg

Table 27 defines the metrics used to quantify the design characteristics of
the models, while Formula 1 shows how the Distance is computed. The Stability
can assume two possible values: 1, indicating that My and Mg are stable, and 0,
indicating that My and Mg are unstable. My is stable concerning Mg if the
distance between Mcym and Map (considering a particular design characteristic)
assumes a value equal (or lower than) to 0.2. That is, if 0 < Distance(Mcm,Map) <
0.2), then Stability(Mcm,Mag) = 0. On the other hand, Mcwv is unstable if the
distance between Mcy and Map (regarding a specific design characteristic)
assumes a value higher than 0.2. That is, if Distance(Mcm,Mag) > 0.2), then
Stability(Mcm,Mag) = 0. We use this threshold to point out the most severe
unstable models. For example, we check if architectural problems happen even in
cases where the output composed models are considered stable. In addition, we
also analyze the models that are closer to the threshold. Formula 2 shows how the

measure Stability is computed.

1,if 0 < Distance(x,y) < 0.2)
0,if Distance(x,y) > 0.2

Stability(x,y) = {

For example, Mcy and Mg have the number of classes equals to 8 and 10,
respectively (i.e., NClass = 8 and NClass = 10). To check the stability of Mcm
regarding this metric, we calculate the distance between Mcy and Map

considering the metric NClass as described below.

INClass(M¢y) — NClass(Myp)| |8 — 10|
NClass(M,g) 10

Distance(Mcy, Myg) = 0.2

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

PUC-RIo - Certificacdo Digital N° 0821407/CA

201

As the Distance(Mcm,Mag) 1s equal to 0.2, then we can consider that Mcy is
equal to 1. Therefore, Mcy is stable considering Mg in terms of the number of
classes. Elaborating on the previous example, we can now consider two design
characteristics: the number of classes (NClass), the afferent coupling (DepOut),
and the number of attributes (NAttr). Assuming DepOut(Mcm) = 12,
DepOut(Map) = 14, NAttr(Mcym) = 6, and NAttr(Map) = 7, the Distance is

calculated as follows.

|DepOut(Mcy) — DepOut(Myp)| |12 — 14|

0.14
DepOut(M,g) 14

Distance(M¢cy, Myg) =

INAttr(Mcy) — NAttr(Mup)| |7 — 9|

= 0.22
NAttr(M,g) 9

Distance(M¢cy, Myg) =

Therefore, Mcy is stable concerning Mg in terms of NClass and DepOut.
However, Mcy is unstable in terms of NAttr. In this example, we evaluate the
stability of Mcm considering three design characteristics, which was stable in two
cases. As developers can consider various design characteristics to determine the
stability of the Mcym, we define the Formula 3 that calculates the overall stability
of Mcwm with respect to Mag. Refining the previous example, we evaluate the
stability of Mcym considering two additional design characteristics: the number of
interfaces (NInter) and the depth of the class in the inheritance hierarchy (DIT).
Supposing that NInter(Mcym) = 15, NInter(Mag) = 17, DITMcm) = 11, and
DIT(Mag) = 13, the Distance is calculated as follows.

|NInter(Mcy) — NInter(Myg)| |15 — 17|
Ninter(M,p) 17

Distance(Mcy, Myg) = =0.11

IDIT(Mcy) = DIT(Mg5)| _ |11 — 13|
DIT(M,p) 13

Distance(M¢cy, Myg) = = 0.15

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

PUC-RIo - Certificacdo Digital N° 0821407/CA

202

In both cases, Mcw is stable as 0.11 and 0.15 are > 0 and < 0.2.Investigating
this overall stability, we are able to understand how far the measures of the design
characteristics of Mcy in relation to Mag are. The overall stability of Mcy in terms
of NClass, DepOut, NAttr, NInter, and DIT is calculated as follows. As the
overall stability is equal to 0.2, we can consider that Mcy is stable considering

Mag.

Y1 (Stabilityy,)

Stability (x,¥) overau = 1)

3
Legend: ©)

j: number of metrics used (e.g., 10 metrics in case of Table 1)

> izO(Stability(x,)

Stability(x,¥) overau = 1 —

5
4
INClass(M¢p) — NClass(Myg)|
Stability(x, =
kZO(ability(x y)) NClass(M,g)
N |DepOut(Mcp) — DepOut(Myg)| |NAttr(Mey) — NAttr(Myg)|
DepOut(Myg) NAttr(Myp)
|NInter(Mc),) — Ninter(M 45)| |DIT(My) — DIT(M 45)|
Ninter(M,g) DIT (M 45)
=0.2+0.144+022+0.11+0.11 (applying the Formula 2)
= 1 + 1 + 0 + 1 + 1 = 4
Then,

4
Stability(x,¥) overann = 1 — T = 1-08=0.2

6.1.2.5.
Evaluation Procedures

a. Target Model Versions and Releases

To test the study hypotheses, we have used the releases described in Table
29. Our key concern is to investigate these hypotheses considering a larger
number of realistic SPL releases as possible in order to avoid bias of specific

evolution scenarios.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

PUC-RIo - Certificacdo Digital N° 0821407/CA

203

Deriving SPL Model Releases. For each release of the three product-line
architectures, we have applied each of the composition heuristics (override,
merge, and union) to compose two input models in order to produce a new release
model. That is, each release was produced using the three algorithms. Similar
compositions were performed using the override, merge, and union heuristics to
help us to identify scenarios where the SPL design models succumb (or not). For
example, to produce the release 3 (R3) of the Mobile Media, the developers
combine R3 with a delta model that represents the model elements that should be
inserted into R3 in order to transform it into R4. For this, the developers use the
composition heuristics described previously. A practical example about how these
models are produced can be seen in Figure 17 and Figure 18.

Model Releases and Composition Specification. The releases in Table 29
were in particular selected because visible and structural modifications in the
architectural design were carried out to add new features. For each new release,
the previous release was changed in order to accommodate the new features. To
implement a new evolution scenario, a composition heuristic can remove, add, or
update the entities present in the previous model release. During the design of all
releases, a main concern was to maximize good modeling practices in addition to
the design-for-change principles. For example, assume that the mean of the
coupling measure of Mcy and Myg is equal to 9 and 11, respectively. So Mcy is
stable regarding Mg (because 9 is 18% lower than 11). Following this stability
threshold, we can systematically identify if the Mcy keeps stable over the

evolution scenarios.

b. Execution and Analysis Phases

Model Definition Stage. This step is a pivotal activity to define the input
models and to express the model evolution as a model composition. The evolution
has two models: the base model, M,, the current release, and the delta model, Mg,
which represents the changes that should be inserted into M, to transform it into
Mcwm, as previously discussed. Considering the product-line design models used in
the case studies, Mg represents the new design elements realizing the new feature.
Then, a composition relationship is specified between M, and Mg so that the

composed model can be produced, Mcwm.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

PUC-RIo - Certificacdo Digital N° 0821407/CA

204

Composition and Measurement Stage. In total, 180 compositions were
performed, being 60 in the Mobile Media, 60 in the Shogi Game and 60 in the
Checkers Game. The compositions were performed manually using the IBM RSA
(IBM RSA, 2011; Norris & Letkeman, 2011). The result of this phase was a
document of composition descriptions, including the gathered data from the
application of our metrics suite and all design models created. We used a well-
validated suite of inconsistency metrics applied in previous work (Oliveira et al.,
2008; Farias et al., 2010a; Farias et al., 2010b; Medeiros et al., 2010; Guimaraes
et al., 2010; Farias, 2011a, Farias et al., 2011b) focused on quantifying syntactic
and semantic inconsistencies. The syntactic inconsistencies were quantified using
the IBM RSA’s model validation mechanism. The semantic inconsistencies were
quantified using the SDMetrics tool (Wust, 2011). In addition, we also check both
syntactic and semantic inconsistencies manually because some metrics e.g., “the
number of non-meaningful model elements” depend on the meaning of the model
elements and the current modeling tools are unable to compute this metric.

The identification of the inconsistencies was performed in three review cycles
in order to avoid false positives and false negatives. We also consulted the
developers as needed, such as checking and confirming specific cases of semantic
inconsistencies. On the other hand, the well-formedness (syntactic and semantic)
rules defined in the UML metamodel were automatically checked by the IBM
RAS’s model validation mechanism.

Effort Assessment Stage. The goal of the third phase was to assess the effort
to resolve the inconsistencies using the quantification method described in Section
6.1.2.4. The composition heuristics were used to generate the evolved models, so
that we could evaluate the effect of stability on the model composition effort. In
order to support a detailed data analysis, the assessment phase was further
decomposed in two main stages. The first stage is concerned with pinpointing the
inconsistency rates produced by the compositions (H1). The second stage aims at
assessing the effort to resolve a set of previously identified inconsistencies (H2).

All measurement results and the raw data are available in Appendix A.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

PUC-RIo - Certificacdo Digital N° 0821407/CA

205

6.1.3.
Results

This section reports and analyzes the data set obtained from the
experimental procedures described in the previous section. The findings of this
work are derived from both the numerical processing of this data set and the
graphical representation of interesting aspects of the gathered results. Then,
Section 7.1.3.1 elaborates on the gathered data in order to test the first hypothesis
(H1). Lastly, Section 7.1.3.2 discusses the collected data related to the second
hypothesis (H2).

6.1.3.1.
H1: Stability and Inconsistency Rate

c. Descriptive Statistics

This section describes aspects of the collected data with respect to the
impact of stability on the inconsistency rate. For this, descriptive statistics are
carefully computed and discussed. The understanding of these statistics is a key
step to know the data distribution and grasp the main trends. To go about this
direction, not only the main trend was calculated using the two most used
statistics to discover trends (mean and median); the dispersion of the data around
them was also computed mainly making use of the standard deviation. Note that
these statistics are calculated from 180 composition scenarios i.e., with 60
compositions applied to the evolution of MobileMedia SPL, 60 compositions
applied to the Shogi SPL, and 60 compositions applied to the Checkers SPL.
From this bunch of evolution scenarios, we are confident that the collected data
are representative to be analyzed using descriptive statistics.

Table 30 shows descriptive statistics about the collected data regarding
inconsistency rate. Figure 19 depicts the box-plot of the collected data. By having
carried out a thorough analysis of this statistic, we can observe the positive effects
of high level of stability on the inconsistency rate. In fact, we observed only
harmful effects in the absence of stability. The main outstanding finding is that
inconsistency rate in stable design model is lower than in unstable design model.

This result is supported by some observations described as follows

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

PUC-RIo - Certificacdo Digital N° 0821407/CA

206

Variables Groups | N | Min | 25th | Median | 75th | Max | St. Dev.

. Stable 78 0 | 0.11 0.31 0.78 | 3.86 0.84
Inconsistency

Rate Unstable | 102 | 0.17 | 1.64 3.86 6.88 | 9.21 2.63

N: number of composed models, St. Dev.: Standard Deviation

Table 30: Descriptive statistics of the inconsistency rate

First, the median of inconsistency rate in stable models is considerably
lower than in unstable models. That is, a mean of 0.31 in relation to the intended
model instead of 3.86 presented by unstable models. This means, for example,
that stable SPL models present no inconsistencies in some cases. On the other
hand, unstable models probably hold a higher inconsistency rate than that
presented by stable models. This comprises normally 3.86 inconsistencies in
relation to the intended model. This implies, for example, that if the output
composed model is unstable, then there is a high probability of having
inconsistencies in these models.

Stable models have a favorable impact on the inconsistency rate. More
importantly, its absence has harmful consequences for the number of
inconsistencies. These negative effects are evidenced by the significant difference
between the number of inconsistencies in stable and unstable models. If, for
example, one SPL developer has to work with an unstable model, then he or she
will certainly have to handle 91.9 percent more inconsistencies, compared the
medians 0.31 (stable) and 3.86 (unstable). In fact, stable models tend to have just
8.1 percent of the inconsistencies that are found in unstable models, compared the
medians 0.31 (stable) and 3.86 (unstable). One of the main reasons is because
inconsistency propagations are found in unstable models more frequently. This
means that developers must check all model elements so that they can identify and
manipulate the composed model so that the intended model can be obtained.

Another interesting finding is that the inconsistencies tend to be quite close
to the central tendency in stable models, with a standard deviation equals to 0.84.
On the other hand, in unstable models these inconsistencies tend to spread out
over a large range of values. This is represented by a high value of the standard

deviation that is equal to 2.63. It is important to point out that to draw out valid

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

PUC-RIo - Certificacdo Digital N° 0821407/CA

207

conclusions from the collected data it is necessary to analyze and possibly remove
outliers from the data.

Outliers are extreme values assumed by the inconsistency measures that
may influence the study’s conclusions. To analyze the threat of these outliers to
the collected data, we made use of box-plots. According to (Wohlin et al., 2000;
Basili, 2007), it is necessary to verify whether the outliers are caused by an
extraordinary exception (unlikely to happen again), or whether the cause of the
outlier can be expected to happen again. Considering the first case, the outliers
must be removed, and in the latter, they should not be removed. In our study,
some outliers were identified; however, they were not extraordinary exceptions
since they could happen again. Consequently, they were left in the collected data

set as they do not affect the results.

Inconsistency Rate

- |

Stable Unstable

Figure 19: Box-plot of inconsistencies

d. Hypothesis Testing

We performed a statistical test to evaluate whether in fact the difference
between the inconsistency rates of stable and unstable models are statistically
significant. As we hypothesize that stable models tend to exert a lower
inconsistency rate than unstable models, the test of the mean difference between

stable and unstable groups will be performed as one-tailed test. In the analyses, we

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

PUC-RIo - Certificacdo Digital N° 0821407/CA

208

considered significance level at 0.05 level (p < 0.05) to indicate a true
significance.

Mann-whitney test. As the collected data violated the assumption of
normality, the non-parametric Mann-Whitney test was used as the main statistical
test. The results produced are U' = 7.21, U = 744, z = 9.33 and p < 0.001. The p-
value is lower than z and 0.05. Therefore, the null hypothesis of no difference
between the rates of inconsistency in stable and unstable models (H;) can be
rejected. That is, there is sufficient evidence to say that the difference between the
inconsistency rates of stable and unstable models are statically significant.
Table 31 depicts that the mean rank of inconsistency rate for unstable models are
higher than that of stable models. As Mann-Whitney test (Wohlin, 2000) relies on
ranking scores from lowest to highest, the group with the lowest mean rank is the
one that contains the largest amount of lower inconsistency rate. Likewise, the
group with the highest mean rank is the group that contains the largest amount of

higher inconsistency rate. Hence, the collected data confirm that unstable models

tend to have a higher inconsistency rate than the stable design models.

Variable Groups | N | Mean Rank | Rank Sum SC t-value* p
Resolution Stable 78 46,99 3665
effort Unstable | 102 | 123,77 625 | 08| 13 <0001
*with 178 degree of freedom, SC: Spearman’s Correlation

Table 31: Mann-whitney test and Spearman’s correlation analysis

Correlation. To examine the strength of the relationship (the correlation
coefficient) between stability and inconsistency rate, the Spearman's correlation
(SC) test was applied (see Table 31). Pearson’s correlation is not used because the
data sets are not normally distributed. Note that this statistic test assumes that both
variables are independent; i.e., is neither dependent on, causes nor influences the
other. The correlation coefficient takes on values between -1 and 1. Values close
to 1 or -1 indicate a strong relationship between the stability and inconsistency
rate. A value close to zero indicates a weak or non-existent relationship.

As can be seen in Table 31, the t-test of significance of the relationship has a
low p-value, indicating that the correlation is significantly different from zero.
Spearman’s correlation analysis resulted in a negative and significant correlation

(SC =-0.71). The negative value indicates an inverse relationship. That is, as one

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

PUC-RIo - Certificacdo Digital N° 0821407/CA

209

variable increases, the other decreases. Hence, composition inconsistencies tend to
manifest more often in unstable models than stable models. The above correlation
suggests that whereas the stability of product-line architectures decreases the
inconsistency rate in their models increases.

Therefore, the results suggest that, on average, stable models have
significantly lower inconsistency rate than unstable design models. Therefore, we
are confident that the results confirm a strong indication of correlation between
stability and inconsistency rate. Consequently, the null hypothesis (H;.9) can be

rejected and the alternative hypothesis (H;.;) confirmed.

e. Discussion

The Effect of Severe Evolution Categories. After discussing how the dataset
is grouped, grasping the main trends, and studying the relevance of the outliers,
the main co