
184

6
Effort on the Resolution of Inconsistency

The goal of this Chapter is to evaluate the effects of model stability and

design modeling language on the inconsistency resolution effort. For this, two

studies are realized. The first study (Section 6.1) is an exploratory study that

analyzes and reports the effects of model stability on the effort required to resolve

inconsistencies, and its impact on the inconsistency rate. These inconsistencies

emerged when three well-known composition algorithms (such as override,

merge, and union) were applied in evolution scenarios of three software product

lines. The results, supported by statistical tests, show that model stability was an

effective indicator of severe inconsistencies and high resolution effort of

inconsistency.

The second exploratory study (Section 6.2) reports the impact of modeling

language on the inconsistency rate and the resolution effort. More specifically, it

investigates whether aspect-orientation reduces the resolution effort as improved

modularization may help developers to better restructure the model. Similar to the

previous study, it uses model composition to express the evolution of design

models along six releases of a software product line. The composition algorithms

(i.e., override, merge, and union algorithms) were also applied. The AO and non-

AO composed models produced were compared in terms of their inconsistency

rate and effort to solve the identified inconsistencies. The findings reveal specific

scenarios where aspect-orientation properties, such as obliviousness and

quantification, result in a lower (or higher) resolution effort.

6.1.
Effect of Model Stability on Inconsistency Resolution

As previously mentioned, the composition of design models can be defined

as a set of activities that should be performed over two input models, MA and MB,

in order to produce an output intended model, MAB. To put the model composition

in practice, software developers usually make use of composition heuristics

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

185

(Clarke, 2001) to produce MAB. These heuristics match the model elements of MA

and MB by automatically “guessing” their semantics and then bring the similar

elements together to create a “big picture” view of the overall design model.

The problem is that, in practice, the output composed model (MCM) and the

intended model (MAB) often do not match (i.e., MCM ≠ MAB). Since, MA and MB

conflict with each other in some way, producing some syntactic and semantics

inconsistencies in MCM. Consequently, software developers should be able to

anticipate composed models that are likely to exhibit inconsistencies and

transform them into MAB. In fact, it is well known that the derivation of MAB from

MCM is considered an error-prone task (France & Rumpe, 2007). The developers

do not even have practical information or guidance to plan this task. Their

inability is due to two main problems.

First, developers do not have any indicator pointing which MCM should be

reviewed (or not), given a sequence of output composed models produced by the

software development team. Hence, they have no means to identify or prioritize

parts of design models that are likely to have a higher density of inconsistencies.

They are often forced to go through all output models produced or assume an

overoptimistic position i.e., all output composed models produced is a MAB. In

both cases, the inadequate identification of an inconsistent MCM can even

compromise the evolution of the existing design model (MA) as some composition

inconsistencies can affect further model compositions.

Second, model managers are unable to grasp how much effort the derivation

of MAB from MCM can demand, given the problem at hand (Norris & Letkman,

2011). Hence, they end up not designating the most qualified developers for

resolving the most critical effort-consuming cases where severe semantic

inconsistencies are commonly found. Instead, unqualified developers end up being

allocated to deal with these cases. In short, model managers have no idea about

which MCM will demand more effort to be transformed into a MAB. If the effort to

resolve these inconsistencies is high, then the potential benefits of using

composition heuristics (e.g., gains in productivity) may be compromised.

The literature in software evolution highlights that software remaining

stable over time tends to have a lower number of flaws and require less effort to

be fixed than its counterpart (Kelly, 2006; Molesini et al., 2009). However, little is

known whether the benefits of stability are also found in the context of the

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

186

evolution of design models supported by composition heuristics. This is by no

means obvious for us because the software artifacts (code and models) have

different level of abstraction and are characterized by alternative features. In fact,

design model has a set of characteristics (defined in language metamodel

expressing it) that are manipulated by composition heuristics and can assume

values close to what it is expected (or not) i.e., MCM ≈ MAB. If the assigned value

to a characteristic is close to one found in the intended model, then the composed

model is considered stable concerning that characteristic. For example, if the

difference between the coupling of the composed model and the intended model is

small, then they can be considered stable considering coupling.

Although researchers recognize software stability as a good indicator to

address the two problems described above in the context of software evolution,

most of the current research on model composition is focused on building new

model composition heuristics (e.g., (Clarke & Walker, 2001; Kompose, 2010;

Nejati et al., 2007). That is, little has been done to evaluate stability as an

indicator of the presence of semantic inconsistencies and of the effort that, on

average, developers should spend to derive MAB from MCM. Today, the

identification of critical MCM and the effort estimation to produce MAB are based

on the evangelists’ feedback that often diverge (Mens, 2002).

This section, therefore, presents an initial exploratory study analyzing

stability as an indicator of composition inconsistencies and resolution effort. More

specifically, we are concerned with understanding the effects of the model

stability on the inconsistency rate and inconsistency resolution effort. We study a

particular facet of model composition: the use of model composition when adding

new features to a set of models for three realistic software product lines. Software

product lines (SPLs) commonly involve model composition activities (Jayaraman

et al., 2007; Thaker et al., 2007; Apel et al., 2009) and, while we believe the kinds

of model composition in SPLs are representative of the broader issues, we make

no claims about the generality of our results beyond SPL model composition.

Three well-established composition heuristics (Clarke & Walker, 2001), namely

override, merge and union, were employed to evolve the SPL design models along

eighteen releases. SPLs are chosen because designers need to maximize the

modularization of features allowing the specification of the compositions. The use

of composition is required to accommodate new variabilities and variants

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

187

(mandatory and optional features) that may be required when SPLs evolve. That

is, in each new release, models for the new feature are composed with the models

for the existing features. We analyze if stability is a good indicator of high

inconsistency rate and resolution effort.

Our findings are derived from 180 compositions performed to evolve design

models of three software product lines. Our results, supported by statistical tests,

show that stable models tend to manifest a lower inconsistency rate and require a

lower resolution effort than their counterparts. In other words, this means that

there is significant evidence that the higher the model stability, the lower the

model composition effort.

In addition, we discuss scenarios where the use of the composition

heuristics became either costly or prohibitive. In these scenarios, developers need

to invest some extra effort to derive MAB from MCM. Additionally, we discuss the

main factors that contributed to the stable models outnumber the unstable one in

terms of inconsistency rate and inconsistency resolution effort. For example, our

findings show that the highest inconsistency rates are observed when severe

evolution scenarios are implemented, and when inconsistency propagation

happens from model elements implementing optional features to ones

implementing mandatory features. We also notice that the higher instability in the

model elements of the SPL design models realizing optional features, the higher

the resolution effort. To the best of our knowledge, our results are the first to

investigate the potential advantages of model stability in realistic scenarios of

model composition. We therefore see this study as a first step in a more ambitious

agenda to empirically assess model stability.

The remainder of the chapter is organized as follows. Section 6.1.1

describes the main concepts and knowledge that are going to be used and

discussed throughout the Chapter. Section 6.1.2 presents the study methodology.

Section 6.1.3 discusses the study results. Section 6.1.4 compares this work with

others, presenting the main differences and commonalities. Section 6.1.5

highlights some threats to validity. Finally, Section 6.1.6 presents some

concluding remarks and future work.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

188

6.1.1.
Background

This Section presents the fundamental concepts to a correct understanding

of the contributions presented in this Chapter. To this end, the concepts of model

stability, composition heuristics, and model inconsistency will be discussed.

6.1.1.1.
Model Stability

According to (Kelly, 2006), a design characteristic of software is stable if,

when compared to other, the differences in the metric associated with that

characteristic are regarded small. In a similar way in the context of model

composition, MCM can be considered stable if its design characteristics have a low

variation concerning the characteristics of MAB. In (Kelly, 2006), Kelly studies

stability from a retrospective view i.e., comparing the current version to previous

ones. In our study, we compare the current model and the intended model.

We define low variation as being equal to (or less than) 20 percent. This

choice is based on previous empirical studies (Kelly, 2006 on software stability

that has demonstrated the usefulness of this threshold. For example, if the measure

of a particular characteristic (e.g., coupling and cohesion) of the MCM is equal to

9, and the measure of the MAB is equal to 11. So MCM is considered stable

concerning MAB (because 9 is 18% lower than 11) with respect to the measure

under analysis. Following this stability threshold, we can systematically identify

weather (or not) MCM keeps stable considering MAB, given an evolution scenario.

Note that threshold is used more as a reference value rather than a final decision

maker. The results of this study can regulate it, for example. The differences

between the models are computed from the comparison of measures of each

model characteristic calculated with a suite of metrics described in Chapter 3 and

Table 27.

We adopt the definition of stability from (Kelly, 2006) (and its threshold) due

to some reasons. First, it defines and validates the quantification method of

stability in practice. This method is used to examine software systems that have

been actively maintained and used over a long term. Second, the quantification

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

189

Type Metric Description

Size NClass The number of classes

NAttr The number of attributes

NOps The number of operations

NInter The number of interfaces

NOI The number of operations in each interface

Inheritance DIT The depth of the class in the inheritance hierarchy.

InhOps The number of operations inherited.

InhAttr The number of attributes inherited.

Coupling DepOut The number of elements on which a class depends.

DepIn The number of elements that depend on this class.

Table 27: Metrics used

method of stability has demonstrated to be effective to flag evolutions that have

jeopardized the system design.

Third, many releases of the system under study were considered. This is a

fundamental requirement to test the usefulness of the method. As such, all these

factors provided a solid foundation for our study. These metrics were used

because previous works (Farias et al., 2008a; Medeiros et al., 2010; Guimarães et

al., 2010; Kelly, 2006; Farias, 2011) have already observed the effectiveness of

these indicators for the quantification of software stability. Knowing the stability

in relation to the intended model it is possible to identify evolution scenarios,

where composition heuristics are able to accommodate upcoming changes

effectively and the effort spent to obtain the intended model. The stability

quantification method is presented later in Section 6.1.2.4.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

190

6.1.1.2.
Composition Heuristics

As previously mentioned in Section 2.4, composition heuristics rely on two

key activities: matching and combining the input model elements (Farias et al.,

2010a; Farias et al., 2010b; Clarke, 2001, Reddy et al., 2006). Usually they are

used to modify, remove, and add features to an existing design model. This work

focuses on three state-of-practice composition heuristics: override, merge, and

union (Clarke & Walker, 2001; Clarke & Walker, 2005). These heuristics were

chosen because they have been applied to a wide range of model composition

scenarios such as model evolution, ontology merge, and conceptual model

composition. In addition, they have been recognized as effective heuristics in

evolving product-line architectures e.g., (Farias et al., 2010a). In the following, we

briefly define these three heuristics, and assume MA and MB as the input two

models. The input model elements are corresponding if they can be identified as

equivalent in a matching process. Matching can be achieved using any kind of

standard heuristics, such as match-by-name (Oliveira et al., 2009a; Oliveira et al.,

2009b; Reddy et al., 2005).

The design models used are typical UML class and component diagrams,

which have been widely used to represent software architecture in mainstream

software development (Ambler, 2005; Fowler, 2003; Dennis et al., 2007; Lüders

et al., 2000). In Figure 17, for example, R2 diagram plays the role of the base

model (MA) and Delta(R2,R3) diagram plays the role of the delta model (MB). The

components R2.BaseController and Delta(R2,R3).BaseController are considered

as equivalent. We defer further considerations about the design models used in our

study in Section 6.1.2.3. The composition heuristics considered in our study were

override, merge, and union. These heuristics were previously discussed in Section

2.4.1. Figure 17 shows two input models and two composed models produced

following the override and merge heuristics, respectively. Figure 18 shows the

intended model and the composed model produced following the union heuristic.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

191

Figure 17: Example of composition of the Mobile Media product line

Figure 18: The intended and composed model produced following the union heuristic

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

192

6.1.1.3.
Model Inconsistency

Inconsistencies emerge in the composed model when its properties assume

values other than those expected, as previously defined in Section 3. These values

can affect the syntactic and semantic properties of the model elements. Usually

the undesired values come from conflicting changes that were incorrectly realized

(Samar et al., 2011). We can identify two broad categories of inconsistencies: (i)

syntactic inconsistencies, which arise when the composed model elements do not

conform to the modeling language’s metamodel; and (ii) semantic inconsistencies,

which mean that static and behavioral semantics of the composed model elements

do not match those of the intended model elements.

In our study, we take into account syntactic inconsistencies that were

identified by the IBM Rational Software Architecture’s model validation

mechanism (IBM RSA, 2011). For example, this robust tool is able to detect the

violation of well-formedness rules defined in the UML metamodel specification

(OMG, 2011). In order to improve our inconsistency analysis, we also considered

the types of inconsistencies shown in Table 28, which were checked by using the

SDMetrics tool (Wust, 2011). In particular, these inconsistencies were used

because their effectiveness has been demonstrated in previous works (Farias et al.,

2008a; Farias et al., 2010a; Farias et al., 2012d). In addition, both syntactic and

semantic inconsistencies were manually identified as well. All these procedures

were followed in order to improve our confidence that a representative set of

inconsistencies were tackled by our study.

Many instances of these inconsistency types (Table 28) were found in our

study. For example, the static property of a model element, isAbstract, assumes

the value true rather than false. The result is an abstract class where a concrete

class was being expected. Another typical inconsistency considered in our study

was when a model element provides (or requires) an unexpected functionality or

even requires a functionality that does not exist.

The absence of this functionality can affect other design model elements

responsible for implementing other functionalities, thereby propagating an

undesirable ripple effect in the resulting composed model. For example, the

AlbumData does not provide the service “Update Image Information” because the

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

193

Metric Description

NFCon The number of functionality inconsistencies.

NCCon The number of model elements that are not compliance with the intended

model.

NDRCOn The number of dangling reference inconsistencies.

NASCon The number of abstract syntax inconsistencies.

NUMECon The number of non-meaningful model elements

NBFCon The number of behavioral feature inconsistencies.

Table 28: The inconsistencies used in our case study

method updateImageInfo():void is not present in the ManagePhotoInfoInterface.

Hence, the PhotoSorting component is unable to provide the service

“SortingPhotos.” This means that the feature “SortingPhoto” (feature ‘F’ in

Figure 17) – a critical feature of the software product line – is not correctly

realized. On the other hand, this problem is not present in Figure 17 (merge), in

which the AlbumData implement two features (C, model management, and E, edit

photo’s label). We defer further discussion about the examples and the

quantification of these types of inconsistencies to Section 6.1.2.4.

6.1.2.
Study Methodology

This section presents the main decisions underlying the experimental design

of our exploratory study. To begin with, the objective and research questions are

presented (Section 6.1.2.1). Next, the study hypotheses are systematically stated

from these research questions (Section 6.1.2.2). The product lines used in our

studies are also discussed in detail as well as their evolutionary changes (Section

6.1.2.3). Then, the variables and quantification methods considered are precisely

described (Section 6.1.2.4). Finally, the method used to produce the releases of the

target architectures is carefully discussed (Section 6.1.2.5). All these

methodological steps were based on practical guidelines of empirical studies

(Wohlin et al., 2000; Basili, 2007; Kitchenham et al., 2008; Kitchenham, 2006;

Shadish et al., 2006).

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

194

6.1.2.1.
Objective and Research Questions

This study essentially attempts to evaluate the effects of model stability on

two variables: the inconsistency rate and inconsistency resolution effort. These

effects are investigated from concrete scenarios involving design model

compositions so that practical knowledge can be generated. In addition, some

influential factors are also considered into precisely revealing how they can affect

these variables. With this in mind, the objective of this study is stated based on the

GQM template (Basili, 1994) as follows:

analyze the stability of design models

for the purpose of investigating its effect

with respect to inconsistency rate and resolution effort

from the perspective of developers

in the context of evolving design models with composition heuristics

 In particular, this study aims at revealing the stability effects while

evolving composed design models on inconsistency rate and the inconsistency

resolution effort. Therefore, we address research question RQ4, as stated in

Section 1.3:

• RQ4: What is the impact of design characteristics on the inconsistency rate

and inconsistency resolution effort?

Considering the quality notions defined in Chapter 3, we study whether the

syntactic and semantic quality notions of a model affects the effort and resolution

quality notions. We refine the research question into two research questions. Thus,

we focus on the following two research questions:

• RQ4.1: What is the effect of stability on the inconsistency rate?

• RQ4.2: What is the effect of stability on the developers’ effort?

6.1.2.2.
Hypothesis Formulation

First Hypotheses: Effect of Stability on Inconsistency Rate (RQ5.1). In the

first hypothesis, we speculate that a high variation of the design characteristics of

the design models may lead to a higher incidence of inconsistencies; since, it

increases the chance for an incorrect manipulation of the design characteristic by

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

195

the composition heuristics. In fact, modifications from severe evolutions may lead

the composition heuristics to be ineffective or even prohibitive. In addition, these

inconsistencies may also propagate. As a higher incidence of changes is found in

unstable models, we hypothesize that unstable models tend to have a higher (or

equal to) inconsistency rate than stable models. The first hypothesis evaluates

whether the inconsistency rate in unstable models is significantly higher (or equal

to) than in stable models. Thus, our hypotheses are summarized as follows:

Null Hypothesis 1, H1-0:

Stable design models have similar or higher inconsistency rate than

unstable design models.

H1-0: Rate(stable design models) ≥ Rate(unstable design models).

Alternative Hypothesis 1, H1-1:

Stable design models have a lower inconsistency rate than unstable

design models.

H1-1: Rate(stable design models) < Rate(unstable design models)

By testing the first hypothesis, we evaluate if stability is a good indicator to

identify the most critical MCM in term of inconsistency rate from a sequence of

MCM produced from multiple software development teams. Hence, developers can

then review the design models having a higher density of composition

inconsistencies. We believe that this strategy is a more effective one than going

through all MCM produced or assuming an overoptimistic position where all MCM

produced is a MAB.

Second Hypothesis: Effect of Stability on Developer Effort (RQ5.2). As

previously mentioned, developers tend to invest different quantity of effort to

derive MAB from MCM. Today, model managers are unable to grasp how much

effort this transformation can demand. This variation is because developers need

to resolve different types of problems in a composed model, from a simple

renaming of elements to complex modifications in the structure of the composed

model. In fact, the structure of the composed models may be affected in different

ways during the composition e.g., creating unexpected interdependences between

the model elements. Even worse, these modifications in the structure of the model

may cause ripple effects i.e., inconsistency propagation between the model

elements. The introduction of one inconsistency can often lead to multiple other

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

196

inconsistencies because of a “knock-on” effect. An example would be the

inconsistency whereby a client component is missing an important operation in

the interface of a server component. This semantic inconsistency leads to a

“knock-on” syntactic inconsistency if another component requires the operation.

In the worst case, there may be long chains of inconsistencies all derived from a

single inconsistency. Given a composed model at hand, developers need to know

if they will invest little or too much effort to transform MCM into MAB, given the

problem at hand. Based on this knowledge, they will be able to prioritize the

review of the output composed models and to better comprehend the effort to be

invested e.g., reviewing the models that require higher effort first and those

requiring less effort after. With this in mind, we are interested in understanding

the possible difference of effort to resolve inconsistencies in stable and unstable

design models. The expectation is that stable models require a lower developers’

effort to produce the output intended model. This expectation is based on the

speculation that unstable models may demand more restructuring modifications

than stable models; hence, requiring more effort. This leads to the second null and

alternative hypotheses as follows:

Null Hypothesis 2, H2-0:

Stable models require similar or higher effort to resolve

inconsistencies than unstable models.

H2-0: Effort(stable models) ≥ Effort(unstable models).

Alternative Hypothesis 2, H2-1:

Stable models tend to require a lower inconsistency resolution effort

than unstable ones.

H2-1: Effort(stable models) < Effort(unstable models).

By testing the first hypothesis, we evaluate if stability is a useful indicator to

identify the most critical effort-consuming cases in which severe semantic

inconsistencies in architectural components are more often. This knowledge helps

model mangers to allocate qualified developers to overcome the composition

inconsistencies in MCM.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

197

6.1.2.3.
Target Cases: Evolving Product-Line Design Models

Model Composition for Expressing SPL Evolution. We have applied the

composition heuristics to evolve design models of three realistic SPLs for a set of

evolution scenarios (Table 29). That is, the compositions are defined to generate

the new releases of the SPL design models. These three SPLs are described below

and soon after the evolution scenarios are presented. The first target case is a

product-line called MobileMedia, whose purpose is to support the manipulation of

photos, music, and videos on mobile devices. The last release of its design model

consists of a UML component diagram with more than 50 component elements.

Figure 17 and Figure 18 show a practical example of the use of composition to

evolve this SPL.

The second SPL, called Shogi Game, is a board game, whose purpose is to

allow users to move, customize pieces, save, and load game. All the movements

of the pieces are governed by a set of well-defined rules. The last SPL, called

Checkers Game, is a board game played on an eight by eight-squared board with

twelve pieces on each side. The purpose of Checkers is to essentially move and

capture diagonally forwards.

The reason for selecting these SPLs in our evaluation is manifold. Firstly,

the models are well designed. Next, 12 releases of Mobile Media’s architectural

models were produced by independent developers using the model composition

heuristics. These releases are produced from five evolution scenarios. Note that an

evolution is the production of a release from another one e.g., from R1 to R2

(Table 28). In addition, 12 releases of Shogi’s and Checkers’ architectural models

were available as well. In both cases, six releases were produced from five

evolution scenarios. Together the 36 releases provide a wide range of SPL

evolution scenarios to enable us to investigate our hypotheses properly. These 36

releases were produced from the evolution scenarios described in Table 29.

Secondly, these releases were available for our investigation and had a

considerable quantity of structural changes in the evolution scenarios.

Another reason to choose these SPLs is that the original developers are

available to help us to validate the identified list of syntactic and semantic

inconsistencies. In total, eight developers worked during the development of the

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

198

 Release Description

M
o

b
il

e
M

e
d

ia

R1 MobilePhoto core (Figueiredo et al, 2008)

R2 Exception handling included

R3

New feature added to count the number of times a photo has been

viewed and sorting photos by highest viewing frequency.

 New feature added to edit the photo’s label

R4
New feature added to allow users to specify and view their

favorite photos

R5 New feature to keep multiple copies of photos

R6 New feature to send photo to other users by SMS

C
h

ec
k

er
s

G
a

m
e

R1 Checkers Game core

R2 New feature to indicate the movable pieces

R3 New feature to indicate possible movements

R4 New feature to save and load the game

R5 New feature added to customize the pieces

R6 New feature added to log the game

S
h

o
g

i
G

a
m

e

R1 Shogi Game core

R2 New feature to customize pictures

R3 New feature to customize pieces

R4 New feature to indicate the piece movement

R5 New feature to indicate the movable pieces

R6 New feature to allow the users to save and load the game

Table 29: Descriptions of the evolution scenarios

SPLs used in our study being three developers from the Lancaster University

(UK), two from the Pontifical Catholic University of Rio de Janeiro (Brazil), two

from University of São Paulo (Brazil), one from Federal University of

Pernambuco (Brazil). These are fundamental requirements to test our hypotheses

in a reliable fashion. Moreover, each SPL has more than one hundred modules and

their architecture models are the main artifact to reason about change requests and

derive new products. The SPL designs were produced by the original developers

without any of the model composition heuristics under assessment in mind. It

helped to avoid any bias and entailed natural software development scenarios. . In

total, eight developers worked during the development of the SPLs used in our

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

199

study being three developers from the Lancaster University (UK), two from the

Pontifical Catholic University of Rio de Janeiro (Brazil), two from University of

São Paulo (Brazil), and one from Federal University of Pernambuco (Brazil).

Finally, these SPLs have a number of other relevant characteristics for our

study, such as: (i) proper documentation of the driving requirements; and (ii)

different types of changes were realized in each release, including refinements

over time of the architecture style employed. After describing the SPLs employed

in our empirical studies, the evolution scenarios suffered by them are explained in

Table 29.

6.1.2.4.
Measured Variables and Quantification Method

First Dependent Variable. The dependent variable of hypothesis 1 is the

inconsistency rate. It quantifies the amount of composition inconsistencies divided

by the total number of elements in the composed model. That is, it allows

computing the density of composition inconsistencies in the output composed

models. This metric makes it possible to assess the difference between the

inconsistency rate of stable models and unstable models (H1). It is important to

point out that inconsistency rate is defined from multiple inconsistency metrics

(Oliveira, 2008a).

Second Dependent Variable. The dependent variable of the hypothesis 2 is

the inconsistency resolution effort, g(MCM)—that is, the number of operations

(creations, removals, and updates) required to transform the composed model into

the intended model. We compute these operations because they represent the main

operations performed by developer to evolve software in real-world settings

(Mens, 2002). Thus, this computation represents an estimation of the

inconsistency resolution effort. The collected measures of inconsistency rate are

used to assess if the composed model has inconsistencies after the composition

heuristic is applied (diff(MCM,MAB) > 0). Then, a set of removals, updates, and

creations were performed to resolve the inconsistencies. As a result, the intended

model is produced and the inconsistency resolution effort is computed.

 Independent Variable. The independent variable of the hypotheses 1 and 2

is the Stability (S) of the output composed model (MCM) with respect to the

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

200

(1)

����������	, �� = 	 � 1, ��	0	 ≤ ���������	, �� 	≤ 0.2
0, ��	���������	, �� > 0.2														�

(2)

Distance�$%&, $'(� =
|*+�����$,-� − *+�����$'(�|

*+�����$'(� = |8 − 10|
10 = 0.2

Where:

Metric are the indicators defined in Table 1

X is the output composed model, MCM

Y is the output intended model, MAB

Distance�x, y� = |$��2���	� − $��2�����|
$��2�����

output intended model (MAB). The Stability is defined in terms of the Distance (D)

between the measures of the design characteristics of MCM and MAB.

Table 27 defines the metrics used to quantify the design characteristics of

the models, while Formula 1 shows how the Distance is computed. The Stability

can assume two possible values: 1, indicating that MCM and MAB are stable, and 0,

indicating that MCM and MAB are unstable. MCM is stable concerning MAB if the

distance between MCM and MAB (considering a particular design characteristic)

assumes a value equal (or lower than) to 0.2. That is, if 0 ≤ Distance(MCM,MAB) ≤

0.2), then Stability(MCM,MAB) = 0. On the other hand, MCM is unstable if the

distance between MCM and MAB (regarding a specific design characteristic)

assumes a value higher than 0.2. That is, if Distance(MCM,MAB) > 0.2), then

Stability(MCM,MAB) = 0. We use this threshold to point out the most severe

unstable models. For example, we check if architectural problems happen even in

cases where the output composed models are considered stable. In addition, we

also analyze the models that are closer to the threshold. Formula 2 shows how the

measure Stability is computed.

For example, MCM and MAB have the number of classes equals to 8 and 10,

respectively (i.e., NClass = 8 and NClass = 10). To check the stability of MCM

regarding this metric, we calculate the distance between MCM and MAB

considering the metric NClass as described below.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

201

Distance�$%&,$'(� =
|��345��$,-� − ��345��$'(�|

��345��$'(� = |12 − 14|
14 = 0.14

Distance�$%&,$'(� =
|*7��2�$,-� − *7��2�$'(�|

*7��2�$'(� = |7 − 9|
9 = 0.22

Distance�$%&,$'(� =
|*:���2�$,-� − *:���2�$'(�|

*:���2�$'(� = |15 − 17|
17 = 0.11

Distance�$%&, $'(� =
|DIT�$,-� − DIT�$'(�|

DIT�$'(� = |11 − 13|
13 = 0.15

As the Distance(MCM,MAB) is equal to 0.2, then we can consider that MCM is

equal to 1. Therefore, MCM is stable considering MAB in terms of the number of

classes. Elaborating on the previous example, we can now consider two design

characteristics: the number of classes (NClass), the afferent coupling (DepOut),

and the number of attributes (NAttr). Assuming DepOut(MCM) = 12,

DepOut(MAB) = 14, NAttr(MCM) = 6, and NAttr(MAB) = 7, the Distance is

calculated as follows.

Therefore, MCM is stable concerning MAB in terms of NClass and DepOut.

However, MCM is unstable in terms of NAttr. In this example, we evaluate the

stability of MCM considering three design characteristics, which was stable in two

cases. As developers can consider various design characteristics to determine the

stability of the MCM, we define the Formula 3 that calculates the overall stability

of MCM with respect to MAB. Refining the previous example, we evaluate the

stability of MCM considering two additional design characteristics: the number of

interfaces (NInter) and the depth of the class in the inheritance hierarchy (DIT).

Supposing that NInter(MCM) = 15, NInter(MAB) = 17, DIT(MCM) = 11, and

DIT(MAB) = 13, the Distance is calculated as follows.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

202

(3)
Legend:

j: number of metrics used (e.g., 10 metrics in case of Table 1)

����������	, ��?@ABCDD = 1 −	∑ ����������F�GHI
FJK

L

 = 0.2 + 0.14 + 0.22 + 0.11 + 0.11 (applying the Formula 2)

= 1 + 1 + 0 + 1 + 1 = 4

Then,

����������	, ��?@ABCDD = 1 −M �����������	, ���N
FJK

5

OP����������	, ��Q
N

FJK
= |*+�����$,-� − *+�����$'(�|

*+�����$'(�

+ |��345��$,-� − ��345��$'(�|
��345��$'(� +	 |*7��2�$,-� − *7��2�$'(�|

*7��2�$'(�

+ |*:���2�$+$� − *:���2�$7S�|
*:���2�$7S� 	+	 |�:T�$+$� − �:T�$7S�|

�:T�$7S� 	

����������	, ��?@ABCDD = 1 − 4
5	 = 1 − 0.8 = 0.2

In both cases, MCM is stable as 0.11 and 0.15 are ≥ 0 and ≤ 0.2.Investigating

this overall stability, we are able to understand how far the measures of the design

characteristics of MCM in relation to MAB are. The overall stability of MCM in terms

of NClass, DepOut, NAttr, NInter, and DIT is calculated as follows. As the

overall stability is equal to 0.2, we can consider that MCM is stable considering

MAB.

6.1.2.5.
Evaluation Procedures

a. Target Model Versions and Releases

To test the study hypotheses, we have used the releases described in Table

29. Our key concern is to investigate these hypotheses considering a larger

number of realistic SPL releases as possible in order to avoid bias of specific

evolution scenarios.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

203

Deriving SPL Model Releases. For each release of the three product-line

architectures, we have applied each of the composition heuristics (override,

merge, and union) to compose two input models in order to produce a new release

model. That is, each release was produced using the three algorithms. Similar

compositions were performed using the override, merge, and union heuristics to

help us to identify scenarios where the SPL design models succumb (or not). For

example, to produce the release 3 (R3) of the Mobile Media, the developers

combine R3 with a delta model that represents the model elements that should be

inserted into R3 in order to transform it into R4. For this, the developers use the

composition heuristics described previously. A practical example about how these

models are produced can be seen in Figure 17 and Figure 18.

Model Releases and Composition Specification. The releases in Table 29

were in particular selected because visible and structural modifications in the

architectural design were carried out to add new features. For each new release,

the previous release was changed in order to accommodate the new features. To

implement a new evolution scenario, a composition heuristic can remove, add, or

update the entities present in the previous model release. During the design of all

releases, a main concern was to maximize good modeling practices in addition to

the design-for-change principles. For example, assume that the mean of the

coupling measure of MCM and MAB is equal to 9 and 11, respectively. So MCM is

stable regarding MAB (because 9 is 18% lower than 11). Following this stability

threshold, we can systematically identify if the MCM keeps stable over the

evolution scenarios.

b. Execution and Analysis Phases

Model Definition Stage. This step is a pivotal activity to define the input

models and to express the model evolution as a model composition. The evolution

has two models: the base model, MA, the current release, and the delta model, MB,

which represents the changes that should be inserted into MA to transform it into

MCM, as previously discussed. Considering the product-line design models used in

the case studies, MB represents the new design elements realizing the new feature.

Then, a composition relationship is specified between MA and MB so that the

composed model can be produced, MCM.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

204

Composition and Measurement Stage. In total, 180 compositions were

performed, being 60 in the Mobile Media, 60 in the Shogi Game and 60 in the

Checkers Game. The compositions were performed manually using the IBM RSA

(IBM RSA, 2011; Norris & Letkeman, 2011). The result of this phase was a

document of composition descriptions, including the gathered data from the

application of our metrics suite and all design models created. We used a well-

validated suite of inconsistency metrics applied in previous work (Oliveira et al.,

2008; Farias et al., 2010a; Farias et al., 2010b; Medeiros et al., 2010; Guimaraes

et al., 2010; Farias, 2011a, Farias et al., 2011b) focused on quantifying syntactic

and semantic inconsistencies. The syntactic inconsistencies were quantified using

the IBM RSA’s model validation mechanism. The semantic inconsistencies were

quantified using the SDMetrics tool (Wust, 2011). In addition, we also check both

syntactic and semantic inconsistencies manually because some metrics e.g., “the

number of non-meaningful model elements” depend on the meaning of the model

elements and the current modeling tools are unable to compute this metric.

The identification of the inconsistencies was performed in three review cycles

in order to avoid false positives and false negatives. We also consulted the

developers as needed, such as checking and confirming specific cases of semantic

inconsistencies. On the other hand, the well-formedness (syntactic and semantic)

rules defined in the UML metamodel were automatically checked by the IBM

RAS’s model validation mechanism.

 Effort Assessment Stage. The goal of the third phase was to assess the effort

to resolve the inconsistencies using the quantification method described in Section

6.1.2.4. The composition heuristics were used to generate the evolved models, so

that we could evaluate the effect of stability on the model composition effort. In

order to support a detailed data analysis, the assessment phase was further

decomposed in two main stages. The first stage is concerned with pinpointing the

inconsistency rates produced by the compositions (H1). The second stage aims at

assessing the effort to resolve a set of previously identified inconsistencies (H2).

All measurement results and the raw data are available in Appendix A.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

205

6.1.3.
Results

This section reports and analyzes the data set obtained from the

experimental procedures described in the previous section. The findings of this

work are derived from both the numerical processing of this data set and the

graphical representation of interesting aspects of the gathered results. Then,

Section 7.1.3.1 elaborates on the gathered data in order to test the first hypothesis

(H1). Lastly, Section 7.1.3.2 discusses the collected data related to the second

hypothesis (H2).

6.1.3.1.
H1: Stability and Inconsistency Rate

c. Descriptive Statistics

This section describes aspects of the collected data with respect to the

impact of stability on the inconsistency rate. For this, descriptive statistics are

carefully computed and discussed. The understanding of these statistics is a key

step to know the data distribution and grasp the main trends. To go about this

direction, not only the main trend was calculated using the two most used

statistics to discover trends (mean and median); the dispersion of the data around

them was also computed mainly making use of the standard deviation. Note that

these statistics are calculated from 180 composition scenarios i.e., with 60

compositions applied to the evolution of MobileMedia SPL, 60 compositions

applied to the Shogi SPL, and 60 compositions applied to the Checkers SPL.

From this bunch of evolution scenarios, we are confident that the collected data

are representative to be analyzed using descriptive statistics.

Table 30 shows descriptive statistics about the collected data regarding

inconsistency rate. Figure 19 depicts the box-plot of the collected data. By having

carried out a thorough analysis of this statistic, we can observe the positive effects

of high level of stability on the inconsistency rate. In fact, we observed only

harmful effects in the absence of stability. The main outstanding finding is that

inconsistency rate in stable design model is lower than in unstable design model.

This result is supported by some observations described as follows

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

206

Variables Groups N Min 25th Median 75th Max St. Dev.

Inconsistency

Rate

Stable 78 0 0.11 0.31 0.78 3.86 0.84

Unstable 102 0.17 1.64 3.86 6.88 9.21 2.63

N: number of composed models, St. Dev.: Standard Deviation

Table 30: Descriptive statistics of the inconsistency rate

First, the median of inconsistency rate in stable models is considerably

lower than in unstable models. That is, a mean of 0.31 in relation to the intended

model instead of 3.86 presented by unstable models. This means, for example,

that stable SPL models present no inconsistencies in some cases. On the other

hand, unstable models probably hold a higher inconsistency rate than that

presented by stable models. This comprises normally 3.86 inconsistencies in

relation to the intended model. This implies, for example, that if the output

composed model is unstable, then there is a high probability of having

inconsistencies in these models.

Stable models have a favorable impact on the inconsistency rate. More

importantly, its absence has harmful consequences for the number of

inconsistencies. These negative effects are evidenced by the significant difference

between the number of inconsistencies in stable and unstable models. If, for

example, one SPL developer has to work with an unstable model, then he or she

will certainly have to handle 91.9 percent more inconsistencies, compared the

medians 0.31 (stable) and 3.86 (unstable). In fact, stable models tend to have just

8.1 percent of the inconsistencies that are found in unstable models, compared the

medians 0.31 (stable) and 3.86 (unstable). One of the main reasons is because

inconsistency propagations are found in unstable models more frequently. This

means that developers must check all model elements so that they can identify and

manipulate the composed model so that the intended model can be obtained.

Another interesting finding is that the inconsistencies tend to be quite close

to the central tendency in stable models, with a standard deviation equals to 0.84.

On the other hand, in unstable models these inconsistencies tend to spread out

over a large range of values. This is represented by a high value of the standard

deviation that is equal to 2.63. It is important to point out that to draw out valid

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

207

Figure 19: Box-plot of inconsistencies

conclusions from the collected data it is necessary to analyze and possibly remove

outliers from the data.

Outliers are extreme values assumed by the inconsistency measures that

may influence the study’s conclusions. To analyze the threat of these outliers to

the collected data, we made use of box-plots. According to (Wohlin et al., 2000;

Basili, 2007), it is necessary to verify whether the outliers are caused by an

extraordinary exception (unlikely to happen again), or whether the cause of the

outlier can be expected to happen again. Considering the first case, the outliers

must be removed, and in the latter, they should not be removed. In our study,

some outliers were identified; however, they were not extraordinary exceptions

since they could happen again. Consequently, they were left in the collected data

set as they do not affect the results.

d. Hypothesis Testing

We performed a statistical test to evaluate whether in fact the difference

between the inconsistency rates of stable and unstable models are statistically

significant. As we hypothesize that stable models tend to exert a lower

inconsistency rate than unstable models, the test of the mean difference between

stable and unstable groups will be performed as one-tailed test. In the analyses, we

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

208

Variable Groups N Mean Rank Rank Sum SC t-value* p

Resolution

effort

Stable 78 46,99 3665
- 0,698 - 13 < 0.001

Unstable 102 123,77 12625

*with 178 degree of freedom, SC: Spearman’s Correlation

Table 31: Mann-whitney test and Spearman’s correlation analysis

considered significance level at 0.05 level (p ≤ 0.05) to indicate a true

significance.

Mann-whitney test. As the collected data violated the assumption of

normality, the non-parametric Mann-Whitney test was used as the main statistical

test. The results produced are U' = 7.21, U = 744, z = 9.33 and p < 0.001. The p-

value is lower than z and 0.05. Therefore, the null hypothesis of no difference

between the rates of inconsistency in stable and unstable models (H1-0) can be

rejected. That is, there is sufficient evidence to say that the difference between the

inconsistency rates of stable and unstable models are statically significant.

Table 31 depicts that the mean rank of inconsistency rate for unstable models are

higher than that of stable models. As Mann-Whitney test (Wohlin, 2000) relies on

ranking scores from lowest to highest, the group with the lowest mean rank is the

one that contains the largest amount of lower inconsistency rate. Likewise, the

group with the highest mean rank is the group that contains the largest amount of

higher inconsistency rate. Hence, the collected data confirm that unstable models

tend to have a higher inconsistency rate than the stable design models.

Correlation. To examine the strength of the relationship (the correlation

coefficient) between stability and inconsistency rate, the Spearman's correlation

(SC) test was applied (see Table 31). Pearson’s correlation is not used because the

data sets are not normally distributed. Note that this statistic test assumes that both

variables are independent; i.e., is neither dependent on, causes nor influences the

other. The correlation coefficient takes on values between -1 and 1. Values close

to 1 or -1 indicate a strong relationship between the stability and inconsistency

rate. A value close to zero indicates a weak or non-existent relationship.

As can be seen in Table 31, the t-test of significance of the relationship has a

low p-value, indicating that the correlation is significantly different from zero.

Spearman’s correlation analysis resulted in a negative and significant correlation

(SC = - 0.71). The negative value indicates an inverse relationship. That is, as one

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

209

variable increases, the other decreases. Hence, composition inconsistencies tend to

manifest more often in unstable models than stable models. The above correlation

suggests that whereas the stability of product-line architectures decreases the

inconsistency rate in their models increases.

Therefore, the results suggest that, on average, stable models have

significantly lower inconsistency rate than unstable design models. Therefore, we

are confident that the results confirm a strong indication of correlation between

stability and inconsistency rate. Consequently, the null hypothesis (H1-0) can be

rejected and the alternative hypothesis (H1-1) confirmed.

e. Discussion

The Effect of Severe Evolution Categories. After discussing how the dataset

is grouped, grasping the main trends, and studying the relevance of the outliers,

the main conclusion is that stable models tend to present a lower inconsistency

rate than unstable models. This finding can be seen as the first step to overcome

the lack of practical knowledge about the effects of the model stability on the

inconsistency rate in realistic scenarios of model evolution supported by

composition heuristics. Some previous studies e.g., (Kelly, 2006; Kemerer &

Slaughter, 1999; Eman et al., 2002; Perry, 1998; Berzins, 1994, Yang et al., 1992)

also check similar insights on the code level. These studies report a positive

association between low variation of coupling and size with stability.

We have noticed that although the input design models (MA and MB) are well

structured, they are the target of widely scoped inconsistencies in certain model

composition scenarios. These widely scoped inconsistencies are motivated by

unexpected modifications in specific design characteristics of the design models

such as coupling and cohesion. These scenarios occurred mainly when

composition heuristics accommodate unanticipated, severe changes from MA to

MB. The most complicate changes observed are those related to the refinement of

the MVC (Model-View-Controller) architecture design of the SPLs used in this

study.

Another observation is that the composition heuristics (override, merge, and

union) are not effective to accommodate these changes from MA to MB. The main

reason is that the heuristics are unable to “restructure” the design models in such

way that these changes do not harm static or behavioral aspects of the design

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

210

models. These harmful changes usually emerge from a set of ever-present

evolving change categories, such as modification of the model properties and

derivation of new model elements (e.g., components or classes) from other

existing ones.

In the first category, modification, model elements have some properties

affected. This is typically the case when a new operation conflicts with an

operation previously defined. In Figure 17 and Figure 18, for example, the

operation getImage() in the interface R2.HandleException had its return type,

String[], conflicting with the return type, ImageData[] of the interface

Delta(R2,R3). HandleException. Another example is the component

ManageAlbum that had its name modified to ManageLabel to express semantic

alterations in the concepts used to realize the error handling feature. Only one of

the names and return types can be accepted, but the two modifications cannot be

combined. Both cases are scenarios in which the heuristics are unable to correctly

pick out what element must be renamed and what return type must be considered.

The problem is that detection and decision of these inconsistencies demand a

thorough understanding of: (i) what the design model elements actually mean as

well as the domain terms “Album” and “Label”; and (ii) the expected semantics of

the modified method. In addition, semantic information is typically not included

in any formal way so that the heuristics can infer the most appropriated choice.

Consequently, the new model elements responsible for implementing the added

features are presented with overlapping semantic values and unexpected

behaviors. Interestingly, this has been the case where existing optional as well as

alternative features are involved in the change.

In the second category, derivation, the changes are a little more severe.

Architectural elements are refined and/or moved in the model to accommodate the

new changes. Differently from the previous category, the affected architectural

elements are usually mandatory features because this kind of evolution in software

product lines is mainly required to facilitate the additions of new variabilities or

variants later in the project. Unfortunately, in this context of more widely scoped

changes, the heuristic-based composition heuristics have demonstrated to be

ineffective.

A concrete example of this inability in our target cases was the refinement

of the MVC architecture style of the MobileMedia SPL in the third evolution

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

211

scenario. In practical terms, the central architectural component, BaseController,

was broken into other controllers such as PhotoListController, AudioController,

VideoController and LabelController to support a better manipulation of the

upcoming media like photo, audio, video and the label attached to them. This

design rigidness to accommodate four new specific controllers (by refining the

previous general one) contributed significantly to the instability of the output

composed model. This is partially due to the name-based model comparison

policy in the heuristics, which are unable to recognize more intricate equivalence

relationships between the model elements. Indeed, this comparison strategy is

very restrictive whenever there is a correspondence relationship 1:N between

elements in the two input models. That is, it is unable to match the upcoming four

controllers with the previous one, BaseController.

A practical example of this category of relationship (1:N) encompassed the

required interface ControlPhoto (release 3) of the AlbumListScreen component.

This interface was decomposed into two new required interfaces ControlAlbum

and ControlPhotoList (release 4), thereby characterizing a relationship 1:2. For

this particular case, the name-based model comparison should be able to

“recognize” that ControlAlbum and ControlPhotoList are equivalent to

ControlPhoto. However, in the output model (release 4), the AlbumListScreen

component provides duplicate services to the environment giving rise to a severe

inconsistency.

Inconsistency Propagation. After addressing the hypotheses and knowing

that instabilities have a detrimental effect on the density of inconsistencies, we

analyze whether the local where they arise (i.e., architectural elements realizing

mandatory, alternative or optional features) can cause some unknown side effects.

Some interesting findings were found, which is properly discussed as follows.

To begin with, instability problems are more harmful when they take place

in design model elements realizing mandatory features. This can be explained by

some reasons. First, the inconsistency propagation is often higher in the model

elements implementing mandatory features than in alternative or optional features.

When inconsistencies arise in elements realizing optional and alternative features

they also tend to naturally cascade to elements realizing mandatory features.

Consequently, the mandatory features end up being the target of inconsistency

propagation. Based on the knowledge that mandatory features tend to be more

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

212

vulnerable to ripple effects of inconsistencies, developers must structure product-

line architectures in such a way that inconsistencies can keep precisely “confined”

in the model elements where they appear. Otherwise, the quality of the products

extracted from the SPL can be compromised as the core elements of the SPL can

suffer from problems caused by incorrect feature compositions. The higher the

number of inconsistencies, the higher the chance of them to continue in the same

output model, even after an inspection process performed by a designer.

Consequently, the extraction of certain products can become error-prone or even

prohibitive.

The second interesting insight is that the higher the instability in alternative

and optional features, the higher the inconsistency propagation to mandatory

features. However, the propagation in the inverse order (i.e., from alternative and

optional to mandatory features) seems to be less common. In Figure 17

(override), a practical example can be seen. The instability in mandatory features,

Album and Photo Management, compromises the optional feature, Edit Photo’s

Label. The NewLabelScreen component (optional feature) has its two services i.e.,

getLabelName() and getFormType() (specified in the interface ManageLabel)

compromised. The reason is that the required service editLabel() cannot be

provided by the BaseController (mandatory feature). Thus, the “edit photo’ label”

feature can no longer be provided due to problems in the mandatory feature

“album and photo management.”

For example, in the fourth evolution scenario of the Checkers Game, the

optional feature, Customize Pieces, is correctly glued to the R4 using the override

heuristic so that the new release, R5, can be generated. The problem is that the

inconsistencies emerging in the architectural component, Command, are

propagated to the architectural elements CustomizePieces and GameManager.

Thus, the mandatory feature “piece management” implemented by the Command

is affecting the optional feature “customize pieces” implemented by the

components CustomizePieces and GameManager. Although the optional feature,

Customize Pieces, has been correctly attached to the base architecture, the

composed models will not have the expected functionality related to the

customization of pieces.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

213

Variables Groups N Min 25th Median 75th Max St. Dev.

Resolution effort Stable 78 0 3,50 6 13 46 10.29

Unstable 102 4 27 111 229.25 368 106.7

N: number of composed models, St. Dev.: Standard Deviation

Table 32: Descriptive statistics of the resolution effort

6.1.3.2.
H2: Stability and Resolution Effort

a. Descriptive Statistics

This section discusses interesting aspects of the collected data concerning

the impact of stability on the developers’ effort. The knowledge derived from

them helps to understand the effects of model stability on the inconsistency

resolution effort. In a similar way to the previous section, we calculate the main

trend and the data dispersion. Table 32 provides the descriptive statistics of

sampled inconsistency resolution effort in stable and unstable model groups.

Figure 20 graphically depicts the collected data by using box-plot. To begin with

our discussion, we first compare the median values of the inconsistency resolution

effort of the both stable and unstable groups. We can observe that the median of

the stable models (equals to 6) is much lower than that one of unstable models

(equals to 111).

This superiority of the unstable models is also observed in the mean and

standard deviation, which represent the main trend and dispersion measures,

respectively. The gathered results, therefore, indicate that stable models claim less

resolution effort than unstable models. This means that developers tend to perform

a lower amount of tasks (creations, removals, and modifications) to transform the

composed model into the intended model. Although we have observed some

outliers e.g., the maximum value (368) registered in unstable models, they are not

an extraordinary exception as they could happen again. Consequently, they were

left in the collected data set, as they do not tamper the results.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

214

Figure 20: Box-plot of resolution effort in relation to the intended model

b. Hypothesis Testing

Given the difference between the mean and median described in the

descriptive statistical analysis, statistical tests are applied to assess whether in fact

the difference in effort to fix unstable model and stable model is statistically

significant. We conjecture that stable models tend to require a lower inconsistency

resolution effort than unstable models. Hence, a one-tailed test is performed to test

the significance of the mean difference between stable and unstable groups.

Again, in the analyses we considered significance level at 0.05 level (p ≤ 0.05) to

indicate a true significance.

Mann-Whitney test. As the dataset does not respect the assumption of

normality, we use the non-parametric Mann-Whitney test was used as the main

statistical test as well as it was done in the first hypothesis. However, the Mann-

Whitney test was only applied to the effort measures needed to transform the

composed model into the intended model. The results of the Mann-Whitney test

produced are U' = 7.372, U = 584, z = 9.79 and p < 0.001. The p-value is lower

than z and 0.05, therefore, the null hypothesis can be rejected. In other words,

there exists a difference between the efforts required to resolve inconsistencies in

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

215

Variable Groups N Mean Rank
Rank

Sum
SC t-value* p

Resolution effort
Stable 78 46,99 3665

- 0,698 - 13 < 0.001
Unstable 102 123,77 12625

*with 178 degree of freedom

Table 33: Mann-whitney test and Spearman’s correlation analysis

stable and unstable model groups. In fact, there is substantial evidence pointing

out the difference between the median measures of the two groups.

Table 33 shows that the difference between the mean ranks is significant.

The mean of rank in stable models consists of about 38 of the mean rank in

unstable models. As the Mann-Whitney test relies on ranking scores from lowest

to highest, the group with the lowest mean rank is the one that requires the highest

incidence of lowest effort. Likewise, the group with the highest mean rank is the

group that contains the largest occurrence of higher effort needed. Hence, the

collected data show that unstable models that are not stable tend to have higher

effort than the stable models.

Correlation Analysis. As the gathered data do not follow a normal

distribution, we cannot apply the Pearson’s correlation analysis. An alternative

way was to apply the Spearman's correlation (SC) test to measure the strength of

the linear relationship (the correlation coefficient) between stability and

inconsistency resolution effort. Table 33 provides the results of the Spearman’s

correlation test. The low p-value < 0.001 indicates that the correlation

significantly departs from zero. Remember that Spearman's correlation value close

to 1 or -1 indicates a strong relationship between the stability and effort. On the

other hand, a value close to 0 indicates a weak or non-existent relationship. The

results (SC = - 0.698) suggest that there is a negative and significant correlation

between the two variables. This implies that whereas the stability increases the

effort to resolve inconsistency decreases.

Hence, stable models required much lesser effort to be transformed into the

intended model than unstable models. Based on such results, we can reject the null

hypothesis (H2-0), and accept the alternative hypothesis (H2-1): stable models tend

to require lower effort to resolve composition inconsistency than unstable models.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

216

c. Discussion

The Effect of Instability on Resolution Effort. We have observed that the

higher instability in optional and alternative features, the higher the resolution

effort. This increased effort is due to instabilities in optional features cause

inconsistencies in model elements implementing mandatory features. In practice,

inconsistencies in architectural elements realizing optional features tend to affect

the structure of model elements realizing mandatory features. The reason is that

some relationships are (or not) introduced between architectural elements

realizing mandatory and optional features during the composition. These

undesired dependences favor the inconsistency propagation. Consequently,

developers must invest some additional effort to resolve the inconsistencies. The

effort is to restructure the composed model. That is, instability in optional features

tends to jeopardize some properties of the architectural elements realizing the

mandatory features, which requires some unexpected effort. That is, it is required

to resolve a cascading chain of inconsistencies, and usually this process should be

applied recursively until all inconsistencies have been resolved. This is typically

the case scenario when inconsistencies of operations with earlier operation, the

heuristic can therefore remove the earlier operation and add the new one, or vice-

versa.

We have identified that this higher effort to resolve inconsistencies is due to

the syntax-based composition heuristics being unable to deal with occurring

semantic conflicts between the model elements of mandatory and optional

features. As a result, inconsistencies are formed. In Figure 17, for example, the

component BaseController requires services from a component NewALbumScreen

that provides just one mandatory feature “create album” rather than from a

component that provides two features: “create album” and “edit photo’s label.”

This is because releases R2 and R3 use different component names

(R2.NewAlbumScreen and R3.NewLabelScreen) for the same purpose. That is,

they implement the mandatory feature Create Album in components with

contracting names.

A syntax-based composition is unable to foresee these kinds of semantic

inconsistencies, or even indicate any problem in BaseController as the component

remains syntactically correct. From R2 to R3, the domain term Album was

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

217

replaced by Label. However, the purely syntactical, match-by-name mechanism is

unable to catch and incorporate this simple semantic change into the composition

heuristic. To overcome this, a semantic-based approach would be required to

allow, for example, a systematic semantic alignment between these two domain

terms. Consequently, the heuristics would be able to properly match

R2.NewAlbumScreen and R3.NewLabelScreen.

Still in Figure 17, the architectural model R3, which was produced

following merge heuristic, contains a second facet of semantic problem:

behavioral inconsistency. The component ExceptionHandling provides two

services with the same purpose, getImage():String[] and getImage():ImageData[].

However, they have different semantic values. This contrasting characteristic is

emphasized by the different return types, String[] and ImageData[]. However, in

this case, the inconsistency got confined in the optional feature rather than

propagating to model elements implementing mandatory features. To resolve the

problem, the method getImage():String[] should be removed. In total, only one

operation is performed. Thus, these inconsistencies can be only pinpointed by

resorting to sophisticated semantics-based composition, which relies on the action

semantics of the model elements. According to (Mens, 2002), the current

detection of behavioral inconsistency is just based on complex mathematical,

program slicing, and program dependence graphs. Unfortunately, none of them is

able to systematically compare behavioral aspects of components neither realizing

two features nor even composing them properly. Even worse, the composition

techniques would be unable to match, for example, ManageAlbum and

ManageLabel interface

The Effect of Multiple Concerns on Resolution Effort. Another finding is

that the higher the number of features implemented by a model element, the

higher the resolution effort. We have observed that model elements realizing

multiple features tend to require more inconsistency resolution effort than those

realizing just one feature. The reason is that the models elements realizing

multiple features tend to receive a higher number of upcoming changes to-be

accommodated by the composition heuristics than ones realizing a single feature.

These model elements become more vulnerable to the unpredictable effects of the

severe evolution categories. This means that developers tend to invest more effort

to resolve all possible inconsistencies.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

218

In fact, a higher number of inconsistencies has been observed in ‘multiple-

featured’ components rather than in ‘single-featured’ components. As developers

cannot foresee or even precisely identify all ripple effects of these inconsistencies

through other model elements, the absence of stability can be used as a good

indicator of inconsistency. Let us consider the BaseController, the central

controller in MobileMedia architecture that implements two features (see Figure

17). The collected data show that the BaseController was modified in almost all

evolution scenarios because it is a pivotal architectural component in the model-

view-control architectural style of the SPL MobileMedia. Unfortunately, the

changes cannot be properly realized in all cases. In addition, we observe that

BaseController’s inconsistencies affect other four components, namely

NewLabelScreen, AlbumListScreen, PhotoListScreen, PhotoViewScreen, and

AddPhotoToAlbumScreen. All these affected components require the provided

services by the BaseController.

Moreover, we notice that the BaseController had a higher likelihood to

receive inconsistencies from other model elements than any other components.

The reason is that it also depends on many other components to provide the

services of the multiple features. For example, BaseController can be harmed by

inconsistencies arising from the components ManageAlbum, ManagePhotoInfo,

and ControlPhoto. This means that, at some point, BaseController can no longer

provide its services because it was probably affected by inconsistencies located in

these components.

It is interesting to note that NewAlbumScreen is also affected by an

inconsistency that emerged from AlbumData, as it requires the service

(viewPhoto) provided by the BaseController in the interface, ControlPhoto that

cannot be accessed. The main reason is that the service, resetImageData(),

specified in the interface ManagePhotoInfo can no longer be provided by the

component AlbumData, compromising the serviced offered in the interface

ControlPhoto. Since BaseController is not able to correctly provide all services

defined in the provided interface ControlPhoto, it is also re-affected by an

inconsistency that previously arose from it. This happens because

NewAlbumScreen does not provide the services described in the interface

ManageAlbum. This phenomenon represents cyclic inconsistency propagation.

Understanding this type of phenomenon, designer can examine upfront and more

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

219

precisely the design models in order to localize undetected cyclic dependence

between the model elements.

Another striking observation is that optional features are also harmed by this

propagation on the mandatory features. For example, the PhotoSorting component

(realizing optional feature “sorting photos”) is unable to provide the service,

sortCommand(), specified in the interface SoftPhoto. This is due to the absence of

the required service, resetImageData() from the ManagePhotoInfo interface,

which the mandatory feature “album management.” In practical terms, it indicates

that undesired effects in features can be due to some unexpected instabilities in the

mandatory features. In collaborative software development, for example, this is a

typical problem because the model elements implementing different features are

developed in parallel, but they rarely prepared upfront to-be composed. Hence,

developers should invest some considerable effort to properly promote the

composition.

d. Some Additional Considerations

Quantification Method. We are aware that there are pros and cons in

studying either an overall indicator or a single metric of design stability. In (Kelly,

2006), she defines a single metric of design stability and then uses this method as

an indicator of good practices of design. This study is performed in retrospective

i.e., analyzing software artifacts that evolved over a long term. On the other hand,

this thesis has a different goal that is to evaluate whether the “most severe

instabilities” may be related to model composition effort. We conjecture that the

most severe instability can be identified considering a greater number of design

characteristics. This will be also analyzed during the empirical studies.

If we consider only one single design characteristic, we will have at least

two problems: (i) first, we will potentially ignore severe instabilities that affected

other design characteristics, and (ii) second, we will end up artificially concluding

those variations of a single characteristic (e.g., high number of methods or high

number of attributes) always represents severe design instabilities. Then, we opted

for following a strategy, commonly adopted nowadays e.g., (Marinescu, 2004;

Lanza & Marinescu, 2006), to detect significant design problems through a

combination of multiple measures rather than a single metric.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

220

Effectiveness of the Threshold. As previously mentioned in Chapter 2, we

have also analyzed whether the threshold defined in (Kelly, 2006) is also valid in

the context of this study. To this end, we analyze whether the threshold (0.2)

jeopardizes the results (or not). More specifically, we study whether small

differences around a threshold of 0.2 can produce different results. After a careful

analysis of the collected data, we conclude that our conjecture stated in Section

2.6.1 is confirmed. That is, the threshold of 0.2 was effective for the purpose of

this study. The main reason is that the threshold did not harm the identification of

severe cases of inconsistency rate and resolution effort. This can be confirmed by

analyzing, for instance, the data in Table 30: the inconsistency rates of the stable

group and instable group are significantly different considering the median (0.31

against 3.86); the same pattern of significant difference applies to the other cases

(25th and 75th columns). Again, the same pattern is observed in Table 32 for

resolution effort. This means that the threshold considered (0.2) can clearly

separate the composed models into groups of stable and unstable models; since,

their measures concentrate in the opposite extremes. This confirms that we are

able to consistently implement our strategy of studying the impact of models with

the most severe instabilities (i.e., ones where more than 20% of the design

characteristics varied considerably) rather than analyzing the different degrees of

instabilities.

6.1.4.
Limitations of Related Work

To the best of our knowledge, our results are the first to empirically

investigate the relation between quality notions and model composition effort in a

broader context. In (Farias et al., 2011b), we initially investigated the research

questions addressed in this Chapter, but they were evaluated in a smaller scope.

This work, therefore, represents an extension of the results obtained previously.

The main extensions can be described as follows: (1) two more case studies were

performed i.e., the evolution studies with the Shogi and Checkers SPLs. This

implies that the number of composition jumped from 60 to 180; (2) new lessons

learned were obtained from a broader study; and (3) the size of the sample data

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

221

was higher than the previously found; hence, the hypotheses might be better

tested.

We have observed not only a wide variety of model composition techniques

Nejati et al., 2007; Clarke, 2001; Reddy, et al., 2005; Lange & Chaudron, 2006a;

OMG, 2011; Kompose, 2011; Norris & Letkeman, 2011; Whittle & Jayaraman,

2010; France et al., 2007; Fleury et al., 2007) have been created, but also some

previous works (Farias et al., 2011b; Nagappan et al., 2010) have demonstrated

that stability is a good predictor of defects (Nagappan et al., 2010) and the

presence of good designs (Kelly, 2006). However, none of them has directly

investigated the impact of stability on model composition effort.

The lack of empirical evidence hinders the understanding of the side effects

peculiar to stability on developers’ effort. Consequently, developers in industrial

projects have to rely solely on feedback from experts to determine “the goodness”

of the input models and their compositions. In fact, according to several recent

observations the state of the practice in model quality assessment indicates that

modeling is still in the craftsmanship era and this problem is even more

accentuated in the context of model composition (France & Rumpe, 2007; Dingel

et al., 2008; Farias et al., 2008; Molesini et al., 2009; Mens, 2002; Berzins, 1994;

France et al., 2006; Dzidek et al., 2008).

The current model composition literature does not provide any support to

perform empirical studies in model composition effort (France & Rumpe, 2007;

Farias et al. 2010a), or even to evaluate the effects of model stability on

composition effort. In (France & Rumpe, 2007), the authors highlight the need

empirical studies in model composition to provide insights about how deal with

ever-present problems such as conflicts and inconsistencies in real world settings.

In (Mens, 2002), Mens also reveals the need of more “experimental researches on

the validation and scalability of syntactic and semantic merge approaches, not

only regarding conflict detection, but also regarding the amount of time and effort

required to resolve the conflicts.” Without empirical studies, researchers and

developers are left without any insight about how to evaluate model composition

in practice. For example, there is no metric, indicator, or criterion available to

assess the UML models that are merged through, for instance, the UML built-in

composition mechanism (i.e., package merge) (Dingel et al., 2008; OMG, 2011).

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

222

There are some specific metrics available in the literature for supporting the

evaluation of model composition specifications. For instance, Chitchyan and

colleagues (Chitchyan et al., 2009) have defined some metrics, such as scaffolding

and mobility, to quantify quality attributes of compositions between two or more

requirements artifacts. However, their metrics are targeted at evaluating the

reusability and stability of explicit descriptions of model composition

specifications. In other words, their work is not targeted at evaluating model

composition heuristics. Boucke and colleagues (Boucke et al., 2006) also propose

a number of metrics for evaluating the complexity and reuse of explicitly defined

compositions of architectural models. Their work is not focused on heuristic-

based model composition as well. Instead, we have focused on analyzing the

impact of stability on the effort to resolve emerging inconsistencies in output

models. Therefore, existing metrics (such as those described in (Lange &

Chaudron, 2006a; Lange & Chaudron, 2006b; Nugroho et al., 2008)) cannot be

directly applied to our context.

Although we have proposed a metric suite for quantifying inconsistencies in

UML class diagrams (Farias et al., 2008a) and then applied these metrics to

evaluate the composition of aspect-oriented models and UML class diagrams

(Farias et al., 2010a), nothing has been done to understand the effects of model

stability on the developers’ effort. We therefore see this study as a first step in a

more ambitious agenda to support empirically the assessment of model

composition techniques in general.

Finally, some previous works investigate the effect of using UML diagrams

and its profiles with different purposes. In (Briand et al., 2005), Briand looked

into the formality of UML models and its relation with model quality and

comprehensibility. In particular, Briand and colleagues investigated the impact of

using OCL (Object Constraint Language (OMG, 2011)) on defect detection,

comprehension, and impact analysis of changes in UML models. In (Ricca et al.,

2010), Ricca carried out a series of four experiments to assess how developer´s

experience and ability influence Web application comprehension tasks supported

by UML stereotypes. Although they have found that the use of UML models

provide real benefits for typical software engineering activities, none has

investigated the peculiarities of UML models in the context of model

composition.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

223

6.1.5.
Threats to Validity

Our exploratory study has obviously a number of threats to validity that

range from internal, construct, statistical conclusion validity threats to external

threats. This section discusses how these threats were minimized and offers

suggestions for improvements in future study.

6.1.5.1.
Internal Validity

Inferences between our independent variable (stability) and the dependent

variables (inconsistency rate and composition effort) are internally valid if a

causal relation involving these two variables is demonstrated (Brewer, 2000;

Shadish et al., 2002). Our study met the internal validity because: (1) the temporal

precedence criterion was met, i.e., the instability of design models preceded the

inconsistencies and composition effort; (2) the covariation was observed, i.e.,

instability of design models varied accordingly to both inconsistencies and

composition effort; and (3) there is no clear extra cause for the detected

covariation. Our study satisfied all these three requirements for internal validity.

The internal validity can be also supported by other means. First, the detailed

analysis of concrete examples demonstrating how the instabilities were constantly

the main drivers of inconsistencies presented in this study. Second, our concerns

throughout the study to make sure that the observed values in the inconsistency

rates and composition effort were confidently caused by the stability of the design

models. However, some threats were also identified, which are explicitly

discussed below.

First, due to the exploratory nature of our study, we cannot state that the

internal validity of our findings is comparable to the more explicit manipulation of

independent variables in controlled experiments. This exceeding control employed

to deal with some factors (i.e., with random selection, experimental groups, and

safeguards against confounding factors) was not used because it would

significantly jeopardize the external validity of the findings.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

224

Second, another threat to the internal validity is related to the imperfections

governing the measurements of inconsistency rate and resolution effort. As the

measures were partially calculated in a manual fashion, there was the risk that

collected data would not be always reliable. Hence, this could lead to inconsistent

results. However, we have mitigated this risk by establishing measurement

guidelines, two-round data reviews with the actual developers of the SPL design

models, and by engaging them in discussions in cases of doubts related to, for

instance, the semantic inconsistencies.

Next, usually the confounding variable is seen as the major threat to the

internal validity (Shadish et al., 2002). That is, rather than just the independent

variable, an unknown third variable unexpectedly affects the dependent variable.

To avoid confounding variables in our study, a pilot study was carried out to make

sure that the inconsistency rate and composition effort were not affected by any

existing variable other than stability. During this pilot study, we tried to identify

which other variables could affect the inconsistency rate and resolution effort such

as the size of the models.

Another concern was to deal with the experimenter bias. That is, the

experimenters inadvertently affect the results by unconsciously realizing

experimental tasks differently that would be expected. To minimize the possibility

of experimenter bias, the evaluation tasks were performed by developers, which

that know neither the purpose of the study nor the variables involved. For

example, developers created the input design models of the SPLs without being

aware of the experimental purpose of the study. In addition, the composition

heuristics are automatically applied and are algorithms explicitly and

independently defined by others. Consequently, the study results can be more

confidently applied to realistic development settings without suffering influences

from experimenters.

Finally, the randomization of the subjects was not performed because it

would require simple task simple software engineering task. Hence, this would

undermine the objective of this study.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

225

6.1.5.2.
Statistical Conclusion Validity

We evaluated the statistical conclusion validity checking if the independent

and dependent variables (Section 6.1.2.4) were submitted to suitable statistical

methods. These methods are useful to analyze whether (or not) the research

variables covary (Cook et al., 1979; Shadish et al., 2006). The evaluation is

concerned on two related statistical inferences: (1) whether the presumed cause

and effect covary, and (2) how strongly they covary (Cook et al., 1979; Shadish et

al., 2006). Considering the first inferences, we may improperly conclude that there

is a causal relation between the variables when, in fact, they do not. We may also

incorrectly state that the causal relation does not exist when, in fact, it exists. With

respect to the second inference, we may incorrectly define the magnitude of

covariation and the degree of confidence that the estimate warrants (Shadish et al.,

2006).

Covariance of cause and effect. We eliminated the threats to the causal

relation between the research variables studying the normal distribution of the

collected sample. Thus, it was possible to verify if parametric or non-parametric

statistical methods could be used (or not). For this purpose, we used the

Kolmogorov-Smirnov test to determine how likely the collected sample was

normally distributed. As the dataset did not assume a normal distribution,

nonparametric statistics were used (Section 6.1.2.1 and Section 6.1.2.2.). Hence,

we are confident that the test statistics were applied correctly; as the assumptions

of the test statistics were not violated.

Statistical significance. Based on the significance level at 0.05 level (p ≤

0.05), Mann-Whitney test was used to evaluate our formulated hypotheses. The

results collected from this test indicated p < 0.001. This shows sufficient evidence

to say that the difference between the inconsistency rates (and composition effort)

of stable and unstable models are statically significant. The correlation between

the independent and dependent variables is also evaluated. For this, Spearman’s

correlation test was used. The low collected p-value (< 0.001) indicated that there

is a significant correlation between the inconsistency rate and stability as well as

composition effort and stability. In addition, we followed some general guidelines

to improve conclusion validity (Wohlin et al., 2000). First, a high number of

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

226

compositions were performed to increase the sample size, hence improving the

statistical power. Second, experienced developers used more realistic design

models of SPLs, state-of-practice composition heuristics, and robust software

modeling tool. These improvements reduced "errors" that could obscure the causal

relationship between the variable under study. Consequently, it brought a better

reliability for our results.

6.1.5.3.
Constructs Validity

Construct validity concerns the degree to which inferences are warranted

from the observed cause and effect operations included in our study to the

constructs that these instances might represent. That is, it answers the question:

"Are we actually measuring what we think we are measuring?" With this in mind,

we evaluated (1) whether the quantification method is correct, (2) whether the

quantification was accurately done, and (3) whether the manual composition

threats the validity.

Quantification method. All variables of this study were quantified using a

suite of metrics, which was previously defined and independently validated

(Farias et al. 2010a; Kelly, 2006; Medeiros et al., 2010; Guimaraes et al.; 2010).

Moreover, the concept of stability used in our study is well known in the literature

(Kelly, 2006) and its quantification method was reused from previous work. The

inconsistencies were quantified automatically using the IBM RSA’s model

validation mechanisms and manually by the developers through several cycles of

measurements and reviews. In practice, the developers’ effort is computed by

“time spent.” However, the “time spent” is a reliable metric when used in

controlled experiments. Unfortunately, controlled experiments require that the

software engineering tasks are simple; hence, it harms the objective of our

investigation (Section 6.1.2.1) and hypotheses (Section 6.1.2.2). Moreover,

we have observed in the examples of recovering models that, in fact, the

“time spent” is actually greater for unstable models than stable models,

independently of the type of inconsistencies. In addition, the number of syntactic

and semantic inconsistencies was always higher in unstable models than stable

models.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

227

Correctness of the Quantification. Developers worked together to assure that

the study does not suffer from construct validity problems with respect to the

correctness of the compositions and application of the suite of metrics. We

checked if the collected data were in line with the objective and hypotheses of our

study. It is important to emphasize that just one facet of composition effort was

studied: the effort to evolve well-structured design models using composition

heuristics. The quantification procedures were carefully planned and followed

well-known quantification guidelines (Wohlin et al., 2000; Basili et al., 1999;

Kitchenham et al., 2008; Kitchenham et al., 2006).

Execution of the Compositions. Another threat that we have controlled is if by

using manual composition threats validity since we might unintentionally avoids

conflicts. We have observed that the manual composition helps to minimize

problems that are directly related to model composition tools. There are some

tools to compose design models, such as IBM Rational Software Architect.

However, the use of these tools to compose the models was not included in our

study for several reasons. First, the nature of the compositions would require that

developers understood the resources/details of the tools. Second, even though the

use of these tools might intentionally reduce (or exacerbate) the generation of

specific categories of inconsistencies in the output composed models, it was not

our goal to evaluate particular tools. Therefore, we believe that by using a model

composition tool would impose more severe threats to the validity of our

experimental results. Finally, and more importantly, we don’t think the manual

composition would be a noticeable problem to the study for many reasons,

including: (i) even if the conflicts were unconsciously avoided, we deeply believe

that the heuristics should be used as “rules of thumb” (guidelines) even if tool

support is somehow available, and (ii) we have reviewed the produced models, at

least, three times in order to ensure that conflicts were injected accordingly; in the

case they still made their way to the models used in our analysis, they should be

minimal.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

228

6.1.5.4.
External Validity

External validity refers to the validity of the obtained results in other

broader contexts (Mitchell & Jolley, 2001). That is, to what extent the results of

this study can be generalized to other realities, for instance, with different UML

design models, with different developers and using different composition

heuristics. Thus, we analyzed whether the causal relationships investigated in this

study could be held over variations in people, treatments, and other settings.

As this study was not replicated it in a large variety of places, with different

people, and at different times, we made use of the theory of proximal similarity

(proposed by Donald T. Campbell (Campbell & Russo, 1998)) to identify the

degree of generalization of the results. The goal is to define criteria that can be

used to identify similar contexts where the results of this study can be applied.

Two criteria are shown as follows. First, developers should be able to make use of

composition heuristics (Section 7.1.1.2) to evolve UML design models such as

UML class and component diagrams. Second, developers should also be able to

apply the inconsistency metrics described previously and use some robust

software modeling tool e.g., IBM RSA (Norris & Letkeman, 2011; IBM RSA,

2011).

Given that these criteria can be seen as ever-present characteristics in

mainstream software development, we conclude that the results of our study can

be generalized to other people, places, or times that are more similar to these

requirements. Some characteristics of this study contributed strongly to its

external validity as follows. First, the reported exploratory study is realistic and,

in particular, when compared to previously reported case studies and controlled

experiments on composing design models (Dingle et al., 2008; Chitchyan et al.,

2009; Farias et al., 2010a; Whittle & Jayaraman, 2010; Briand et al., 2005; Clarke

& Walker, 2001; Norris & Letkeman, 2011). Second, experienced developers

used: (1) state-of-practice composition heuristics to evolve three realistic design

models of software product lines; (2) industrial software modeling tool (i.e., IBM

RSA) to create and validate the design models; and (3) metrics that were validated

in previous works (Farias et al., 2010b). Finally, this work investigates only one

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

229

facet of model composition: the use of model composition heuristics in adding

new features to a set of design models for three realistic software product lines.

6.1.6.
Concluding Remarks

Model composition plays a pivotal role in many software engineering activities

e.g., evolving SPL design models to add new features. Hence, software designers

are naturally concerned with the quality of the composed models. Our study,

therefore, represents a first exploratory study to empirically evaluate the impact of

stability on model composition effort. More specifically, the focus was on

investigating whether the presence of stable models reduces (or not) the

inconsistency rate and composition effort. In our study, model composition was

exclusively used to express the evolution of design models along eighteen releases

of three SPL design models. Three state-of-practice composition heuristics have

been applied, and all were discussed in detail throughout this chapter.

The main finding was that the model stability is a good indicator of

composition inconsistencies and resolution effort. More specifically, we found

that stable models tend to minimize the inconsistency rate and alleviate the model

composition effort. This observation was derived from statistical analysis of the

collected empirical data that have shown a significant correlation between the

independent variable (stability) and the dependent variables (inconsistency rate

and effort). Moreover, our results also revealed that instability in design models

would be caused by a set of factors as follows. First, SPL design models are not

able to support all upcoming changes, mainly unanticipated incremental changes.

Next, the state-of-practice composition heuristics are unable to semantically

match simple changes in the input model elements, mainly when changes take

place in crosscutting requirements. Finally, design models implementing

crosscutting requirements tend to cause a higher number of inconsistencies than

the ones modularizing their requirements more effectively. The main consequence

is that the evolution of the design models using composition heuristics can even

become prohibitive given the effort required to produce the intended model.

As future work, we will replicate the study in other contexts (e.g., evolution

of statecharts) to check whether (or not) our findings can be extended to different

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

230

evolution scenarios of design models supported by composition heuristics. We

also consider exploring varieties of our stability metrics. We also wish to improve

understanding if design models with superior stability have some gain (or not): (i)

when produced from other composition heuristics, and (ii) on the effort localizing

the inconsistencies. It would be useful if, for example, intelligent recommendation

systems could help the developers to indicate the best heuristic to-be applied to a

given evolution scenario or even recommending how the input model should be

restructured to prevent inconsistencies. Finally, we hope that the issues outlined

throughout the evaluation encourage other researchers to replicate our study in the

future under different circumstances and that this work represents a first step in a

more ambitious agenda on better supporting model composition tasks.

6.2.
Impact of Design Language on Inconsistency Resolution Effort

 This section aims at evaluating the impact of design modeling languages

such as AO and non-AO modeling on the inconsistency resolution effort. The

hypothesis investigated is that aspect-orientation may alleviate the effort of

inconsistency resolution to some extent. Aspect-orientation provides an improved

modularity and that more effective modularization may help developers to deal

with the inconsistencies, thus minimizing the resolution effort. However, it is by

no means obvious that this hypothesis holds. It may be, for instance, that

inconsistencies in aspect-oriented models have a detrimental effect on the

resolution effort because inconsistencies aspectual elements may require the

developers to examine all points in the model crosscut by the aspects.

With this in mind, the goal of this section is to report on an exploratory

empirical study that aimed at providing evidence to support or refute this

hypothesis. To this end, we again make use of model composition to add new

features to a set of models in a software product line, called Mobile Media.

We investigate this hypothesis in the context of SPLs evolution because

they commonly involve model composition activities (Jayaraman et al., 2007;

Thaker et al., 2007) and, while we believe the kinds of model composition in

SPLs are representative of the broader issues, we make no claims about the

generality of our results beyond SPL model composition. We show the results for

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

231

model compositions of six releases of an SPL. In each release, models for the new

feature are composed with the models for existing features. For each release, we

analyze both the quantity and nature of the composition inconsistencies.

Furthermore, we compare two versions of the SPL models — one which uses

aspect-oriented modeling and one which does not.

The results show that higher inconsistency rates were observed in the

presence of aspects when they had a higher degree of quantification. On the other

hand, this problem did not entail more effort on inconsistency resolution. We also

found that higher degree of obliviousness tended to yield compositions of AO

composed models that are closer to the intended compositions. To the best of our

knowledge, our results are the first to empirically investigate the potential

advantages of aspects during modeling phase. Despite a wide variety of technical

approaches to AOM e.g., MATA (Whittle & Jayaraman, 2010) and Kompose

(Kompose, 2011), to-date there has been almost no empirical evaluation of AOM.

We therefore see this study as a first step in a more ambitious agenda to

empirically assess aspect-oriented modeling.

The remainder of the study is organized as follows. Section 6.2.1 introduces

the main concepts and knowledge that are going to be used and discussed

throughout this section. Section 6.2.2 we present the methodology. Section 6.2.3

discusses the composition analysis effort. Section 6.2.4 contrasts this work with

others, highlighting the commonalities and differences. Section 6.2.5 analyzes the

threats to validity. Finally, Section 6.2.6 presents some concluding remarks and

future work.

6.2.1.
Aspect-Oriented Modeling for Architectural Models

Model composition applies both to development with and without aspect-

oriented modeling (Clarke & Walker, 2005). This study compares the

inconsistency resolution effort in both cases. AOM languages aim at improving

separation of concerns by supporting the modular representation of concerns that

cut across multiple software modules. Crosscutting concerns are represented by a

new model element, called aspect. The goal of AOM is, therefore, to provide

software developers with the means to express aspects and crosscutting

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

232

Figure 21: AOM language for architectural models

crosscutting roles

<<component>>

<<aspectual connector>>

base roles

around
crosscutting
relationship

<<component>>

before
after

relationships in their models. There are AOM languages for modeling aspects at

many levels of abstraction, ranging from use cases and architectural design to

detailed designs. As far as the solution space is concerned, aspects are usually first

expressed in architectural models.

Figure 21 is an illustrative example of the architectural AOM language

(Garcia et al., 2009) used in this study (Section 6.2.3). We chose this AOM

language because: (i) we selected architectural models as our focus due to the

availability of existing industrial models; (ii) the AOM language has been widely

used in other contexts (such as modularization of crosscutting concerns

(Sant’Anna, 2008)) and is therefore mature (Garcia et al., 2009).

The notation supports the visual symmetric representation of aspect-oriented

software architectures. The target modeling approach consists of an extension of

the UML’s component diagram (OMG, 2011). In order to put the composition in

practice, we should consider the properties of model elements defined in the UML

metamodel specification in this diagram. Thus, the properties of the model

elements considered were component (name, provided interface, and required

interface), interface (name, operation, and attribute), operation (name, return type,

and parameters), attribute (name and type), relationship (source and target),

crosscutting relationship, and join-points. Therefore, the composition algorithms

are fine-grained due to take into account these properties in each composition.

The notation provides explicit elements for expressing different forms of

component-aspect collaborations, which are represented by aspectual connectors.

Aspectual connectors are illustrated by rectangles in Figure 21. They define which

components, interfaces or specific operations are affected by a component

modularizing a crosscutting concern. Aspectual connectors are associated with

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

233

crosscutting relationships represented by dashed arrows. The notation also

supports the visual modeling of specific pointcut designators (e.g., advising all the

provided interfaces) and sequencing operators (after, before, and around). For the

sake of simplicity in this study, only aspectual connectors and crosscutting

relationships will be represented in the models of our case study; all the other

visual details have been omitted from here on.

6.2.2.
Study Methodology

This section describes the study definition, the target application, the

evaluation method used for computing model composition effort, and the other

study procedures in our exploratory study.

6.2.2.1.
Objective and Research Questions

This study attempts to evaluate the impacts of aspect-oriented modeling on

two variables: the inconsistency rate and inconsistency propagation. These effects

are evaluated from evolution scenarios considering compositions of architectural

models. Additionally, some scenarios are described in which the influence of AO

models on effort is precisely described. With this in mind, the objective of this

study is stated based on the GQM template (Basili et al., 1994) as follows:

Analyze design modeling techniques

for the purpose of investigating their effects

with respect to inconsistency rate and inconsistency propagation

from the perspective of developers

in the context of evolution of architectural models

 Specially, this study aims at discovering the inconsistency rate, resolution

effort, and revealing scenarios where these inconsistencies propagate, affecting

multiple model elements. Therefore, we address research question RQ3, as stated

in Chapter 1:

• RQ3: What is the effect of design decomposition techniques in particular

with respect to misinterpretation, inconsistency rate, inconsistency detection

effort, and inconsistency resolution effort?

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

234

Regarding the quality notions defined in Chapter 3, we study whether the

syntactic and semantic quality of a design model affects the effort and resolution

quality notions. We refine RQ4 into two more research questions. Thus, we focus

on the following research questions:

• RQ3.4: Does the composition of AO models produce a higher

inconsistency rate than non-AO models?

• RQ3.5: What is the impact of AO modeling on the way inconsistencies

propagate in the output model?

These research questions were investigated considering the inconsistencies

described in Section 5.1.2 and Section 6.1.1.3.

6.2.2.2.
Hypotheses Formulation

Aspect-oriented modeling has been a topic of research for at least ten years

(Clarke & Walker, 2005; Clarke & Banaissad, 2005). However, there is currently

very limited knowledge as to how aspects, when incorporated in input models,

affect the model composition effort. In particular, there is no understanding if the

composition of aspect-oriented models affects the emergence of inconsistencies in

the output composed models.

First Hypothesis: Impact of Aspect on Inconsistency Rate. Our first null

hypothesis assumes that the inconsistency rate in output AO composed models is

equal or higher than in output non-AO composed models. As aspect orientation

tends to improve the modularization of design models, the alternative hypothesis

states that the inconsistency rate in AO models is lower than in non-AO models.

This would lead to the following null and alternative hypotheses:

Null Hypothesis 1, H1-0: The inconsistency rate (Rate) in AO models

is equal or higher than in non-AO models.

H1-0: Rate(AO) ≥ Rate(non-AO).

Alternative Hypothesis 1, H1-1: The inconsistency rate (Rate) in AO

models is lower than in non-AO models.

H1-1: Rate(AO) < Rate(non-AO).

Given that inconsistency tends to propagate in a composed model (Farias et

al., 2010a). That is, the introduction of one inconsistency can often lead to

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

235

multiple other inconsistencies because of a “knock-on” effect. An example would

be the inconsistency whereby a composed component is missing an important

operation. This semantic inconsistency leads to a “knock-on” syntactic

inconsistency if another component requires the operation. In the worst case, there

may be long chains of inconsistencies all derived from a single inconsistency.

Studying such propagation effects is important because propagation directly

affects the effort in resolving inconsistencies e.g., a propagation chain of length n

may be actually fixed by resolving a single inconsistency rather than the expected

n inconsistencies. Thus, we are interested in understanding the possible

inconsistency propagation patterns in AO and non-AO models (RQ4.5). Similar to

the previous hypothesis, it is assumed that inconsistency equally spread through

output (non-)AO models. This leads to the second null and alternative hypotheses

as follows:

Null Hypothesis 2, H2-0: The inconsistency propagation in AO

models is equal or higher than in non-AO models.

H2-0: Prop(AO) ≥ Prop(non-AO).

Alternative Hypothesis 2, H2-1: The inconsistency propagation in AO

models is lower than in non-AO models.

H2-1: Prop(AO) < Prop(non-AO).

To test the hypotheses, metrics were used to quantify inconsistency rate, the

propagation, and the effort to resolve the inconsistencies when they spread

through model elements. Aforementioned, these metrics are presented in Chapter

3. The metrics were applied to both non-AO and AO models of an evolving

software product line described in the next section.

6.2.2.3.
Case Study: Evolving an SPL

Model composition can be applied in different contexts and with different

purposes. We have selected a particular scenario to test our study hypotheses: the

use of model composition to express the evolution of software product line (SPL)

architecture.

Model Composition for Expressing SPL Evolution. Model compositions

were defined to generate the new releases of the SPL architecture model. That is,

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

236

the composition algorithms (override, merge, and union) were used to define how

each architecture model (MA) of an SPL release and the new model increments

(MB) were going to be combined to generate the new architecture SPL release

(MAB). The first input model (MA) represents the current architecture of an SPL

release, while the second input model (MB) represents the delta capturing the

modifications to the base model (MA). The output model (MAB) generated by the

application of the composition algorithm represents the next SPL release.

MobileMedia: the Target SPL. A product line, called Mobile Media

(Figueiredo et al., 2008), of 6 kLOC was selected to be the target case of the

evaluation. The purpose of the MobileMedia SPL is to manipulate photos, music,

and videos on mobile devices. In (Figueiredo et al., 2008), it is possible to find a

fine-grained description about its characteristics and how its evolution happened.

The reasons for selecting this system in the evaluation are described as follows.

First, the developers of the MobileMedia SPL are the responsible for creating its

architecture design models. Second, two versions of the same product line and the

respective architectural models were available for our investigation: an AO

version and a non-AO version. This is a fundamental requirement to test the

hypotheses (Section 6.2.2.2). Third, the last release of the architectural design has

more than one hundred modules, and its architectural models are the main artifact

to reason about change requests and derive new products. Fourth, the architectural

models were produced by the original developers, which do not have any of the

model composition algorithms under assessment in mind, thereby avoiding any

bias and entailing a more natural software development scenario. Fifth, the

architectural models (MA) and the increment models (MB) were conceived with

the modularity and changeability as key drivers. Sixth, we had available seven

fully documented evolution scenarios, which could be expressed with model

compositions (examples are given later).

Finally, Mobile Media met a number of other equally-important

requirements, such as: (1) proper documentation of the driving requirements; (2)

the system evolved for more than three years, and the more recent releases have

more than 100 modules; (3) different types of change were realized in each

release, including refinements of the architecture style employed, (4) the system

has been successfully used in other studies involving empirical evaluation of OO

and AO implementations (Figueiredo et al., 2008), and (5) the original developers

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

237

were available to help us with the production and analysis of the composed

models and the intended models. As such, all these factors provided a solid

foundation for our study.

6.2.2.4.
Quantifying Inconsistency Rate and Resolution Effort

The goal is to quantify: (i) the number of inconsistencies, and (ii) the

activities required to transform the output composed model into an output

intended model. The analysis of the results relies on an inconsistency measure,

called inconsistency rate (Rate), to quantify the amount of composition

inconsistencies divided by the total number of elements in the output model. That

is, inconsistency rate allows computing the density of composition inconsistencies

in the output composed models. Using this metric, we may quantify the

inconsistency rate in AO and non-AO models, and analyze the differences

between them (H1). Note that the inconsistency rate is defined from multiple

inconsistencies, which can be found in Section 6.1.1.3.

The resolution effort consists of the number of operations that should be

performed to transform an output composed model into an output intended model.

We compute the number of creations, removals, and modifications needed to

realize this transformation. That is, this computation represents an estimation of

the resolution effort (g(MCM)). After we collect the g(MCM) measure, we

performed an inspection of the output model to check if there was any occurrence

of inconsistency propagation. This enabled us to check if the presence of aspects

in the input models had any impact on the way composition inconsistencies were

propagated (H2). In order to come up with a suitable characterization of the

measures of the compositions and the MobileMedia SPL releases, we defined a

basic formalism for the metric space of composition effort as follows.

A metric space is a set M equipped with a real-valued function CE(w,s)

defined for all w, s ϵ M. Let M = {Ri,x,y, i = 1,…,n; x = override, merge; y = left,

right}, where:

• n is a finite natural number representing the model release;

• left and right represent the direction of the composition relationship in the

override algorithm.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

238

For example, R3,merge,right represents the Release 3 that was produced by

merging: Release 2 +merge Delta(Release 2, Release 3) � Release 3. Delta(Release

2, Release 3) represents the model elements that should be merged with Release 2

to transform it into Release 3, as previously discussed. In practical terms, the

Delta represents the evolution to be inserted into the previous release. On the

other hand, R3,merge,left would be Delta(Release 2,Release3) +merge Release 2 �

Release 3 (the inverse order can also be represented with an asterisk). Therefore,

the reader should note that the order of override-based composition might produce

different output composite models (Dingel et al., 2008). Each model of a Ri,x,y can

be characterized by observing its syntactic and semantic properties. If we have a

high inconsistency rate in an evolution scenario, then this implies a higher effort

to resolve inconsistencies.

6.2.2.5.
Evaluation Procedures

Once the case study was selected (Section 6.2.2.3) and the inconsistency

resolution metrics were defined (Section 6.2.2.4), we needed to undergo a number

of specific evaluation procedures. They are discussed in the following.

a. Target Model Versions and Releases

We have used both non-AO and AO versions of the Mobile Media models

in order to test the study hypotheses (Section 6.2.2.2). These two model versions

of the same system enabled us to identify if the presence of aspects in the input

models had positive or negative effects on the quality of the output model.

Deriving AO and non-AO Model Releases. For each release of Mobile

Media, we have applied each of the composition algorithms described in Section

2.3. That is, we have used the merge algorithm to compose two input AO models

in order to produce a new AO release model; similarly, we applied the merge

strategy to compose two input non-AO models in order to produce the next non-

AO release model. We performed similar compositions with override and union

algorithms. The goal was to identify if the outcomes, in terms of inconsistency

rate and propagation (hypotheses), were the same or different. All the releases of

the non-AO and AO versions realized exactly the same SPL features and

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

variability points. They also

from changes in heterogeneous mobile platforms and additions of many

alternative and optional features

represented by conventional UML component models, while AO

represented using the AOM language described in Section

Figure 22: The input models: the AO base and AO delta model

In fact, AOM is used in this work to represent the aspect

releases of the SPL under study. For example, in Figure

interfaces (e.g., PersistPhoto

we also have aspectual components, such as the

Moreover, we can also have some relationships: realization (e.g., between

the components BaseController

the component NewAlbumScreen

crosscutting (e.g., between the aspectual component

component PersistPhoto, in which the service

the component). The notation used in this work to express the architectural models

has been used in other works

shown to be effective for its purpose.

Model Releases and Composition Specification.

of MobileMedia (Figueiredo et al., 2008)

variability points. They also underwent the same evolution scenarios, ranging

from changes in heterogeneous mobile platforms and additions of many

alternative and optional features (Figueiredo et al., 2008). Non-AO models were

conventional UML component models, while AO models were

represented using the AOM language described in Section 6.2.1.

The input models: the AO base and AO delta model

In fact, AOM is used in this work to represent the aspect-oriented model

releases of the SPL under study. For example, in Figure 22, in addition to have

PersistPhoto), components (e.g., ImageAcessor and AlbumData

components, such as the ExceptionHandling aspect.

Moreover, we can also have some relationships: realization (e.g., between

BaseController and ControlPhoto), dependency (e.g., between

NewAlbumScreen and the interface ControlPh

crosscutting (e.g., between the aspectual component ExceptionHandling

, in which the service loadAlbums(): void is woven into

the component). The notation used in this work to express the architectural models

n used in other works (Figueiredo et al., 2008; Garcia et al., 2009)

shown to be effective for its purpose.

Model Releases and Composition Specification. We considered six releases

(Figueiredo et al., 2008) in this study. They were

239

underwent the same evolution scenarios, ranging

from changes in heterogeneous mobile platforms and additions of many

AO models were

models were

oriented model

, in addition to have

AlbumData),

aspect.

Moreover, we can also have some relationships: realization (e.g., between

), dependency (e.g., between

ControlPhoto), and

ExceptionHandling and the

(): void is woven into

the component). The notation used in this work to express the architectural models

(Figueiredo et al., 2008; Garcia et al., 2009) and has

We considered six releases

in this study. They were selected

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

240

because they were the ones where the changes implied visible modifications in the

architectural design. For each new release, the previous release was modified in

order to accommodate the features to be modified, inserted, or removed. To

implement a new evolution scenario, a model composition specification can

remove, add, derive, or modify the entities present in the previous release. During

the design of all releases, a main concern was to follow best practices of

modeling.

b. Execution and Assessment Phases

The execution and assessment of the study were structured in three main

steps, which are described in the following.

Model Refactoring Phase. The model refactoring is a pivotal activity to

define the input models and, hence, to express the model evolution as an explicit

model composition relationship. To this end, MobileMedia’s architectural models

were initially refactored to specify the delta itself and to represent the change

scenarios as composition relationships. To create the delta model it is necessary to

identify the differences between the releases models and then gather them into the

input model. To go about this, we took into account an evolution description

created by the original modelers involved in a previous study (Figueiredo et al.,

2008). These descriptions specify in-depth the modifications needed to realize

each evolution scenario (from one release to another). They allowed us to identify

how the model elements were changed. For example, in the second evolution

description, the Delta(R2,R3) were based on the description such as: the interface

ControlPhoto — realized by BaseController — had the method edilLabel(): void

added (see Figure 22). Another example would be the change concerning the

name of the interface ManageLabel to ManageAlbum. Thus, all model elements of

the Delta(R2,R3) are derived from one evolution description, which ensures that

the input model specification is free of bias.

Composition and Measurement Phase. From one release to another, 6

compositions were produced: 3 compositions following override, merge, and

union from the current release to delta, and 3 compositions in the inverse

direction. We considered 5 evolution scenarios for the non-AO version as well as

the AO version of the Mobile Media, totaling 60 compositions. The result of this

phase was a document of composition descriptions, including the gathered data

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

241

Figure 23: Output AO models produced by override and merge algorithms

from the application of our metrics suite. Figure 22 presents partial input models

being used in one of the releases, while Figure 23 and Figure 24 represent

examples of composition based on merge, override, and union, respectively.

Figure 24 is the intended result of the composition (or intended model). As

well-validated metrics for model composition are not available yet, we used a set

of inconsistency metrics defined in our previous work (Farias et al., 2008a). The

inconsistencies (and their effects) were identified manually using such

inconsistency metrics. The identification of the inconsistencies was performed in

5 review cycles in order to avoid false positives/negatives. We also consulted the

Mobile Media developers when needed, such as checking and confirming specific

cases of semantic inconsistencies.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

242

Figure 22: AO intended model (from Figure 22) and AO output model produced

following the union heuristic

Effort Assessment Phase. The goal of the third phase was to assess the effort

to resolve the inconsistencies using the metrics described previously. The

composition algorithms were used to generate the evolved models, so that we

could assess the impact of aspects on the model composition effort. In order to

support a detailed data analysis, the assessment phase was further decomposed in

two main stages. The first stage (Section 6.2.3.1) is concerned with pinpointing

the inconsistency rates produced by composition of either non-AO or AO (H1).

The second stage (Section 6.2.3.2) aims at assessing the effort to resolve a set of

previously identified inconsistencies and whether (or not) the use of aspect has a

higher impact on the way composition inconsistencies are propagated (H2). We

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

243

analyzed how inconsistency rate differs across the releases in order to detect

potential benefits and drawbacks of using AOM in the input models. We have

decided to focus the discussions on the merge and override algorithms, because

the union algorithm did not present any additional interesting insight. However,

all measurement results were considered during the study analysis.

6.2.3.
Composition Effort Analysis

This section presents the results collected during the investigation of the

RQ3.4 and RQ3.5 to both the AO and non-AO output models realizing each SPL

release. Histograms are used to provide an overview of the data gathered in the

measurement process. These histograms allow us to analyze the impact of aspects

on study variables: inconsistency rate, inconsistency propagation, and

inconsistency resolution effort. Each histogram focuses on the application of a

particular composition algorithm. The Y-axis presents the values gathered for a

particular metric. The X-axis specifies the evolution scenarios.

Note that each pair of bars is attached to a pair of values, with the first

capturing the performance of the AO version and the second capturing the non-

AO one. The lower the value, the better is the performance of the modeling

approach used. It is important to highlight that the results shown in the histograms

were gathered with respect to the entire model. Based on the inconsistencies

identified by the inconsistency rate metric, Section 6.2.3.1 discusses the findings

related to the first hypothesis (H1). Section 6.2.3.2 relies on the metric for

quantifying model recovery effort in order to support the analysis of the second

hypothesis (H2).

6.2.3.1.
H1: Aspects and Inconsistency Rate

Figure 25 illustrates the results for the inconsistency rate obtained following

the override algorithm. Figure 26 shows the results of the same metric for the

merge algorithm. The first observation allows us to conclude that the

inconsistency rate measures have favored aspect-orientation in both merge and

override cases and for most of the evolution scenarios. This implies that the tally

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

244

Figure 23: Inconsistency rate produced by the override algorithm

of inconsistencies to some extent is decreased whenever aspects are present in the

models to-be-composed. The presence of aspects in the input models produced

lower inconsistency rate than aspect-free models when the override algorithm is

applied in both directions (right and left (represented by the *-columns)). For

example, the inconsistency rate decreases from 1.72 (non-AO version) to 1.33

(AO version) in Scenario 2, which represents a reduction of 22.6% in favor of

aspect-orientation. Similarly, the inconsistency rate decreases from 0.59 to 0.41

when the composition is performed in the left direction, which represents a

reduction of 30%.

Moreover, it is well known that the higher the number of model elements

that take part in compositions, the higher the likelihood of inconsistencies being

generated. Nevertheless, the AO versions still had lower absolute measures of

inconsistencies. For example, the absolute measure decrease from 38 (non-AO

version) to 36 (AO version) in Scenario 2, which represents a reduction of 5.2% in

favor of aspect-orientation. Similarly, the inconsistency rate decreases from 13 to

11 in the inverse order, which represents a reduction of 15.3%. The only case

where aspect-free models led to a close inconsistency was the application of the

merge algorithm in the second release; this special case is discussed in the

following section.

The main reason for the superiority of the AO models is that changes,

reified by the delta model, tend to be confined in fewer modules due to the

superior modularization of crosscutting features in AO models. The confinement

of modifications to aspects, in turn, leads to a better localization of both syntactic

and semantic inconsistencies, thereby making them easier to detect and address in

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

245

Figure 24: Inconsistency rate produced by the merge algorithm

the output models. Therefore, we refute the null hypothesis H1-0 and confirm the

alternative hypothesis H1-1.

We have noticed that the decrease of inconsistencies observed in the AO

models is potentially influenced by two factors: (i) quantification, the higher the

quantification of aspects in input models, the higher the inconsistency rate

measures, and (ii) obliviousness, the higher the degree of obliviousness, the lower

the inconsistency rate measures in the output models. Another predominant factor

in the emergence of high inconsistency rates was the nature of the change.

Independently of the degree of obliviousness and quantification in AO models, the

nature of the change directly affected the inconsistency rate observed in the output

models. In the following, we elaborate these issues further and discuss examples

that support each of these findings.

a. Obliviousness and Quantification

We have observed that quantification (Filman & Friedman, 2000)

influenced the inconsistency rate measures. The presence of aspects with lower

quantification (in the input models) led to fewer syntactic and semantic

inconsistencies in the output models. When aspects were being used, for example,

to encapsulate domain–specific features, a lower inconsistency rate manifested in

the output models. On the other hand, we also observed that when a conflict arises

in aspects with higher quantification (in the input models), higher rates of

syntactic and semantic inconsistencies occurred in the output models. Therefore,

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

246

the quantification mechanism may (or may not) improve inconsistency rate

results.

This category of aspects is the case where the aspects work as glue between

a few elements in the base model and the changes realized by the delta model.

Aspects with a higher degree of quantification, such as exception handling (Figure

22, Figure 23, and Figure 24), affect the input base model in many places (join

points). This was exactly the case in Scenario 2, where the non-AO version (Rate

= 0.82) has a measure close to the AO version (Rate = 0.78) (Figure 22). Higher

quantification increases the aspect scope and, therefore, the likelihood of aspects

interfering with each other. When the merge algorithm was applied, the exception

handling aspect (Figure 23) led to undesired superimpositions with other aspectual

behaviors advising the same join points.

The overall inconsistency rate (Rate measure) has been usually lower in the

AO version because most of the aspects were not affecting more than three

elements. By overall rate, we mean the average of inconsistencies considering all

the model elements. However, a careful analysis of the number of inconsistencies

in individual model elements (e.g., a particular component) reveals some

interesting information. The composition output of AO models consistently

caused an increase on the number of inconsistencies for some specific model

elements. For example, this can be observed in Scenario 4, when the highest

number of inconsistencies emerged in both non-AO and AO versions. Despite the

significant Rate difference favoring the AO version, the component

BaseController presented an increase (Rate = 38) in relation to BaseController

of the non-AO version (Rate = 24). We noted that this problem occurred in

situations where the components were affected by two aspects or more in the delta

model. In other words, when a base component had a high density of join points

shared by multiple aspects; it generated a higher number of inconsistencies.

An additional interesting finding was that the composition of AO models

tended to manifest fewer inconsistencies when the obliviousness degree of the

base elements was higher. We have noted that the creation of new aspects (via the

delta model) for encapsulating new features implies that the modules in the input

base model are more oblivious to the modification being implemented in the

release. This observation holds for both mandatory and varying(optional or

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

247

alternative) features. Consequently, the combination of the AO modules tended to

ripple fewer inconsistencies in the output models.

This finding implies that the presence of obliviousness is a good indicator

that the model composition at hand will better adhere to the Open-Closed

principle (Meyer, 1988). This principle states “software should be open for

extensions, but closed for modification.” AO modeling conformed more closely to

this principle in scenarios where the behavior in the new aspect (part of the Delta

model) is more independent of the affected elements in the base model. Release 3

illustrates this finding. For instance, the AlbumData component demanded

modifications in the non-AO version of Release 3 in order to include the feature

of sorting photos by highest viewing frequency. On the other hand, the AO

counterpart required no modification in this component. The reason was that new

components and the PhotoSorting aspect in the delta model modularly

implemented the feature.

The open-closed principle was more closely adhered by the composition of

AO models than non-AO models. However, this observation did not occur in all

the cases. In general, this principle was fully achieved only when the delta model

was adding new elements to the base models. The other types of changes realized

by the delta model exerted more specific implications in the rate of

inconsistencies detected in the output models. This issue is discussed in the

following section.

b. The Effect of the Change Category

A careful analysis of the results has pointed out that the inconsistency rate is

strictly affected by the category of changes to be applied to the base model. We

identified four types of changes throughout our target SPL study:

• Addition: new model elements are inserted into base model; for instance, the

new method getFormType() is inserted into the provided interface, named

ManageLabel, of the component NewLabelScreen (Figure 23).

• Removal: a model element in the base model is removed; for example, the

required interface ControlPhoto of the component AlbumListScreen is

removed in the fourth Mobile Media release;

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

248

• Modification: a model element has some properties modified; for instance,

the component NewAlbumScreen (Release 1) has its name modified to

NewLabelScreen in Release 2.

• Derivation: model elements are refined and/or move to accommodate the

changes; for example, the provided interface ControlPhoto (with 14

methods) of the component BaseController (Release 3) has some methods

moved to the provided interface ControlPhoto of the component

PhotoController (Release 4).

Additions. As previously discussed in the previous section, the use of

aspects has contributed to produce an output model with much lower

inconsistency rate when the evolution scenarios were dominated by additions.

This finding is supported by the low inconsistency rate in Scenarios 3 and 5. The

main reason is that the created aspects (in the delta model) modularize the changes

and insert them into the target model elements, without requiring their

modifications. In these cases, we also observed that lower Rate measures were

observed in the AO models when the override algorithm is used and performed in

the left direction. For all the other compositions, the inconsistency rate of the AO

releases was equal or lower than the non-AO releases.

A concrete example of the superiority of the AO version was the decrease of

the inconsistency rate from 3.8 to 2.24 in Scenario 1. This was due to the

aspectual component, included in this release (via the delta model), which advises

9 methods: (i) three of them in the interface ManagePhotoInfo of the component

AlbumData; and (ii) 6 of them in the interface PersistPhoto of the

ImageAcessor. This led to a Rate decrease in the interface PersistPhoto from 11

(non-AO version) to 4 (AO version). In the same way, the ManagePhotoInfo had

its inconsistency rate decreased from 9 to 6.

Modifications, Removals and Derivations. We could not find a recurring

Rate pattern (in favor of AO or non-AO versions) when modification was being

realized. The AO version performed better in certain cases, while the non-AO

version was better in others. On the other hand, the inconsistency rate was slightly

higher in non-AO models when removals and derivations were applied. We also

observed that a very high inconsistency rate occurred simultaneously in both AO

and non-AO models when the change scenario was complex. This was the case

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

249

when the change scenario involved a blend of modifications, removals, and

derivations. More specifically, this occurred in Scenario 4, when there is a

significant architectural change: a single controller was restructured as a set of

specialized controllers, for example.

Therefore, the heuristic composition algorithms were inefficient in widely

scoped architecture evolution, such as the refinement of the MVC (Model-View-

Controller) architecture style of Mobile Media. This is also due in part to the

name-based model comparison, which is not able to recognize more intricate

equivalence relationships between the model elements. This comparison strategy

is very restrictive whenever there is a 1:N correspondence relationship between

elements in the two input models. An example of the 1:N relationship category

encompassed the required interface ControlPhoto (Release 3) of the

AlbumListScreen component. This interface was decomposed into two new

required interfaces ControlAlbum and ControlPhotoList (Release 4), thereby

characterizing a 1:2 relationship. In this particular case, the name-based model

comparison should be able to “recognize” that ControlAlbum and

ControlPhotoList are equivalent to ControlPhoto. However, in the output model

(Release 4), the AlbumListScreen component provides duplicated services to the

environment giving rise to an inconsistency. However, even in these cases the

aspect orientation presented a lower inconsistency rate (e.g., see Scenario 4 in

Figure 27 and Figure 28).

It is known that a higher number of model elements may lead to a higher

inconsistency rate when the composition is put in practice. However, this was not

the case with aspect-orientation. For instance, let us consider the fourth scenario.

Although fewer composed elements (25) were observed in the non-AO version,

the latter presents a higher Rate measure (2.59). On the other hand, the AO

version has a higher number of compositions (27), but the inconsistency rate is

lower (Rate = 1.97). A real example would be the PhotoViewScreen component,

which decreased the number of inconsistencies from 3 (non-AO version) to 1 (AO

version).

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

250

Figure 25: Inconsistency resolution effort to recover the output model produced by

override algorithm

6.2.3.2.
H2: Aspects and Inconsistency Propagation

We focus our discussion about inconsistency propagation on the analysis of

model recovery effort, the resolution effort (g(MCM)) measure (Section 6.2.2.4).

This g(MCM) measure is a useful indicator to support the analysis of the presence

(or absence) of inconsistency propagation (H2) in both AO and non-AO models.

The higher the effort of recovering the output model (towards the intended

composed model), the higher the chance of inconsistency propagation being

observed in the output model. Figure 27 depicts the recovery effort measures to

transform the output model produced by the override algorithm in the intended

model. Similarly, Figure 28 shows the results of the same metric for the merge

algorithm. The structure of the histograms follows those in the previous section.

We have concluded that aspects indeed affect the manner of the

inconsistencies spread over the output models. We identified a number of

recurring inconsistencies in the AO models, which did not occur in the non-AO

models. In general, some inconsistencies specific to aspect orientation were

caused by a conflict (or several) arising at a single aspect and spreading through

all the affected elements in the base model. Therefore, we have found that there is

a sensible difference on the way composition inconsistencies are propagated in

non-AO and AO models. Therefore, we refute the null hypothesis H2-0 and

confirm the alternative hypothesis H2-1.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

251

Figure 26: Effort to recover the output model produced by merge algorithm

a. Quantification and Model Recovery Effort

According to previous discussion, aspects with higher quantification

contribute to higher inconsistency rates in AO models. An inspection of the output

models, however, pointed out that this problem occurred because these aspects led

to higher inconsistency propagation manifesting during the model composition

process. Surprisingly, increase the inconsistency rates in AO models does not

imply in more effort to transform the output composed into the intended

composed model. In other words, the finding is that a high degree of

quantification does not lead to more effort to recover the output model. The

g(MCM) measure often tends to be similar in AO and non-AO models.

This phenomenon can be illustrated, for example, in Scenario 2 (Figure 28),

where the AO version presents an inconsistency rate closer to (Rate = 0.78) than

the non-AO version (Rate = 0.82). However, the model resolution effort is equal

to 9 for both AO and non-AO versions (Figure 28). This was the case of

inconsistencies arising in a reusable exception handling aspect (modified by the

delta model). When inconsistencies arose in such an aspect, they spread over all

the model elements directly advised by the aspect. During the model recovery

process, there was a need to fix only the inconsistency in the specification of the

exception handling aspect.

Therefore, although AO and non-AO versions present different

inconsistency rates in certain evolution scenarios (e.g., Scenario 1 in Figure 28),

the effort to recover the output model from the inconsistencies in both versions is

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

252

similar. The effort directly depends on how instances of inconsistencies are

interrelated. Propagation channels of inconsistencies were more common in AO

models as discussed above. For example, despite aspect orientation exhibiting an

inconsistency rate close to the non-AO inconsistency rate in Scenario 2 (Figure 27

and Figure 28), the inconsistency resolution effort is similar to non-AO models.

Thus, when the inconsistency that is responsible for propagation is identified and

resolved, all inconsistencies are indirectly resolved as well.

b. Shared Join Points and Cyclic Propagation

We have noticed that when an inconsistency emerged in a highly coupled

base module (e.g., a controller in Mobile Media), it led to a higher degree of

inconsistency propagation in the AO versions than the non-AO versions. This

problem was particularly observed when the highly coupled base module was the

source of join point shadows shared by multiple aspects. For instance, we have

analyzed the inconsistency channels triggered by an inconsistency arising in the

BaseController, a central model element in the Mobile Media architecture. We

observed that the inconsistency propagation affected four components in the non-

AO version, namely AlbumListScreen, PhotoListScreen, PhotoView Screen, and

AddPhotoToAlbumScreen. However, the propagation affected three additional

modules (aspects) in the AO version.

The HandleExceptions interface had a method signature modified from

String[] getImages(String record-Name) to ImageData[] getImages(String

record-Name). However, the R1.HandleExceptions incorrectly overrides

Delta(R1,R2).HandleExceptions. As a result, this method was incorrectly present

into the output model, which gives rise to some functionality inconsistencies. This

propagation was spread through the component AlbumData, because the aspect is

no longer able to introduce the expected method ImageData[] getImages(String

record Name) into the provided interface ManagePhotoInfo of AlbumData.

Consequently, AlbumData does not provide any expected service to the

environment. Hence, inconsistencies are propagated through the component

BaseController and ImageAcessor.

It is interesting to note that ImageAcessor is also affected by an

inconsistency that emerged from AlbumData. As ImageAcessor requires the

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

253

service (ImageData[] getImages(…)) provided by the interface

ManagePhotoInterface, it is not able to correctly provide the all services defined

in the provided interface PersistPhoto. Hence, the AlbumData is also re-affected

by an inconsistency that previously arose from it. This phenomenon represents the

cyclic conflict propagation. On the other hand, this propagation is solved in the

composition R2,overide,left due to the Delta(R1,R2).HandleExceptions override the

R1.HandleExceptions, decreasing the inconsistency rate from 1.3 in

R2,overide,right to 0.41 in R2,overide,left.

6.2.4.
Limitations of Related Work

Model composition is a very active research field in many domains,

including database integration (Bernstein & Melnik, 2007), composition of web

services (Milanovic & Malek, 2004), merging of statecharts (Nejati et al., 2007) ,

model composition in product lines (Jayaraman et al., 2007), composition of UML

models (Dingel et al., 2008; Clarke & Walker, 2005; Farias et al., 2010), aspect-

oriented modeling (Whittle et al., 2009; Klein et al., 2006), and AO composition

of models (Reddy et al., 2006; Cottenier et al., 2007). However, there is little

related work focusing on the quantitative and qualitative assessment of AOM. In

general, most of the research on the interplay of AOM and model composition rest

on subjective assessment criteria. Even worse, they lead to dependence on experts

who have built up an arsenal of mentally held indicators to evaluate the growing

complexity of models in general (France & Rumpe, 2007; Lange et al., 2006a,

Lange et al., 2006b). Consequently, the truth is that modelers ultimately rely on

feedback from experts to determine “how well” the input models and their

compositions can be. According to (Figueiredo et al., 2008), the state of the

practice in assessing model quality provides evidence that modeling is still in the

craftsmanship era and when we assess model composition this problem is

accentuated.

More specifically, to the best of our knowledge, researchers have neglected

the assessment of how aspects affect model composition effort. The need for

assessing models during a model composition process has neither been pointed

out nor proposed by current model composition techniques (Cottenier et al., 2008;

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

254

Nejati et al., 2007; Reddy et al., 2006; Apel et al., 2011; IBM RSA, 2011). For

example, the UML built-in composition mechanism, namely package merge

(OMG, 2011; Dingel et al., 2008), does not define metrics or criteria to assess the

merged UML models. Moreover, it has been found to be incomplete, ambiguous,

and inconsistent (OMG, 2011).

The lack of quantitative and qualitative indicators for model compositions

hinder the understanding of side effects peculiar to certain model composition

strategies (in the presence of aspects or not). Many different types of metrics have

been developed during the past few decades for different UML models. These

metrics have certainly helped designers analyze their UML models to an extent.

However, as researchers’ focus has shifted to the activities related to model

management (such as model composition, evolution, and transformation), the

shortcomings, and limitation of UML model metrics have become more apparent.

Some authors (Fenton & Pfleeger, 1996; Lorenz & Kidd, 1994; Chidamber &

Kemerer, 1994) have proposed a set of metrics that can be applied to measure

UML models’ properties. These works have shown that their measures satisfy

some properties expected for good measures of design models. However, these

metrics cannot be employed to assess problems that may arise in a model

composition process such as semantic inconsistencies.

There are some specific metrics available in the literature for supporting the

evaluation of model composition specifications. For instance, Chitchyan and

colleagues (Chitchyan et al., 2009) have defined some metrics to quantify the

effort to specific compositions between two or more requirements models, such as

scaffolding and mobility. However, their metrics are targeted at evaluating the

reusability and stability of explicit model composition specifications. Boucké and

colleagues (Bouke et al., 2006) propose a number of metrics for evaluating the

complexity and reuse of architectural model compositions. However, in this study,

we have focused on the evaluation of heuristic composition algorithms, such as

merge and override, where explicit model compositions are not provided up front.

In addition, we have focused on analyzing the impact of aspects on the effort to

resolve emerging inconsistencies in output models. Therefore, existing metrics

(such as those described in (Chitchyan et al., 2009; Bouke et al., 2006)) cannot be

directly applied to our context.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

255

6.2.5.
Threats to Validity

The exploratory study obviously has a number of threats to validity that

range from (Wohlin et al., 2000): (i) the use of single target application and a

single AOM language, to (ii) the use of specific metrics to compute the conflict

resolution effort. Obviously, more investigations involving other case studies with

compositions of larger UML models are required. We observed that the number of

properties and details (i.e., granularity) of the model elements taken into

consideration throughout the compositions affect directly the composition results.

Consequently, it is necessary to observe that, to generalize our findings, other

types of model with different levels of abstraction are needed to make further

investigation.

Further empirical evaluations are indeed fundamental to confirm or refute

our findings in other real-world design settings involving UML model

compositions. However, it was never our goal to conduct a controlled study. Our

investigation represents a first stepping-stone, where a number of initial findings

can be used to drive the experimental designs of more controlled studies in the

future.

6.2.6.
Conclusions and Future Work

Model composition is one of the pillars of AOM, and it is an operation

intended to be used in many software development activities. Hence, software

designers naturally become concerned about the quality of the composed models.

This study represents a first exploratory study to assess the potential advantage of

aspect-orientation in reducing conflict resolution effort. In our study, model

composition was used to express the evolution of architectural models along six

releases of a software product line. Three canonical algorithms for heuristic model

composition have been applied, and two of them were discussed in detail in this

study. As expected, we found that the presence of aspects in input models

improved modularization and, therefore, tended to better localize inconsistencies.

We have also observed: (i) a higher degree of obliviousness between base

models and aspects led to a significant decrease of inconsistencies when compared

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

256

to the non-AO model counterparts, and (ii) aspects with higher quantification

were the cause of higher inconsistency rates in AO models. Another interesting

finding was that, even in scenarios where the inconsistency rate of AO models

was close to (or higher than) the inconsistency rate of non-AO models, conflict

resolution effort was similar in AO and non-AO models. This means that the time

spent in recovering output AO models from emerging inconsistencies is, at least,

similar to non-AO models. All these findings were independent of the specific

composition algorithms being assessed. These results provide some initial

indication that aspect-orientation may alleviate conflict resolution effort.

We should point out that assessing the benefit of AOM in model

composition is in its initial stage and there is little experience that can be used to

determine the feasibility of current approaches. This study represents a first

exploratory study that investigates the impact of aspects on conflict resolution

effort. However, further empirical studies are still required to evaluate the impact

of AO modeling on model composition in real-world settings. We also need to

better understand if aspect orientation provides some gain or not: (i) when applied

to other composition algorithms, and (ii) with respect to the time spent to identify

the inconsistencies rather than the effort to resolving them. We hope that the

issues outlined throughout the study encourage researchers to replicate our study

in the future under different circumstances.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

