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5 
Effort on the Detection of Inconsistency 

Modeling languages, such as UML (OMG, 2011) and its extensions, provide 

different types of models (e.g., class and sequence diagrams) to represent 

complementary views of a software system. These models define the system 

structure and behavior so that design decisions can be properly understood. 

Developers will implement these complementary models later. Examples of these 

complementary models would be UML sequence diagrams and UML class 

diagrams. It is well known that, in practice, these models are created and used by 

different developers in parallel and often suffer from the inconsistency problems 

(Lange, 2007a; Apel et al., 2011; Mens, 2002;). These inconsistencies are mainly 

caused by the mismatch between the overlapping parts of complementary models 

and by the lack of formal semantics to prevent these contradictions (Lange et al., 

2006a; Lange et al., 2004). Consequently, developers must invest some effort to 

detect and properly deal with these inconsistencies (Farias et al., 2011); otherwise, 

misinterpretation caused by inconsistencies could be transformed into defects in 

code. 

Different modeling languages support different forms of modular 

decomposition and may influence how developers detect or neglect 

inconsistencies (Farias et al., 2010a). This might be particularly the case with 

aspect-oriented modeling (AOM) (Clarke & Banaissad, 2005; Clarke, 2001) as it 

intends to improve design modularity of otherwise crosscutting concerns. Current 

research in AOM varies from UML extensions (Losavio et al., 2009; Chavez et 

al., 2002; Clarke & Banaissad, 2005) to alternative strategies for model weaving. 

Unfortunately, nothing has been done to investigate whether aspect-oriented 

models can alleviate the burden of dealing with model inconsistencies. Someone 

might hypothesize that they might help developers to understand the design before 

implementing it. Others could also postulate that the improved modularization 

would reduce the effort to detect inconsistencies and minimize misinterpretations 

arising between multiple design models.  
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Unfortunately, it is by no means obvious whether these assumptions hold or 

not. First, it may be the case that additional constructs in AO models to support a 

superior modularization lead to detrimental effects on design understanding. 

Second, it is still not clear if an aspect affecting multiple join points can increase 

the inconsistency detection and improve the model interpretation. Third, 

developers might get “distracted” by the global reasoning motivated by the 

presence of crosscutting relations (Filman & Friedman, 2000; Clarke & Walker, 

2001) between classes and aspects. At last, developers might even invest more 

effort using AO models while examining all points that are crosscut by the aspects 

(Farias et al., 2010a). 

In this context, the goal of this chapter is to investigate the effects of the 

design modeling languages on the following quality notions: detection, social, 

syntactic, and semantic ones. This Chapter, therefore, reports a controlled 

experiment aimed at investigating the impact of aspect-oriented (AO) modeling 

on: (1) the rate of inconsistency detection; (2) the developers’ effort to detect 

these inconsistencies; and (3) developers’ misinterpretation rate. The use of AO 

models was contrasted with the use of OO models in a particular context: the use 

and understanding of design models by developers needed to produce the 

corresponding implementation. The results supported by statistical tests and 

qualitative analysis, show that AO models alleviated the effort to detect 

inconsistencies. Nevertheless, it reduced neither inconsistency detection rate nor 

misinterpretation rate.  

Other findings were also reported. For instance, we observed that the 

downsides of AO modeling were largely caused by the degree of aspect 

quantification (Filman & Friedman, 2000). That is, the higher the number of 

modules affected by an aspect, the lower the inconsistency detection rate and the 

higher the misinterpretation rate. Moreover, we observed that developers tended 

to detect inconsistencies more quickly in AO models when the scope of aspect 

pointcuts was narrow. Equally relevant was the finding that the number of 

crosscut relationships influences the creation of the “intended model.” To the best 

of our knowledge, our results are the first to pinpoint the potential (dis)advantages 

of AO modeling in imprecise multi-view modeling.  

The remainder of this chapter is organized as follows. Section 5.1 presents 

background. Section 5.2 describes the study methodology. Section 5.3 and Section 
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5.4 are the main contributions — the experimental results and their discussion 

itself. Section 5.5 compares the study with the related work and, Section 5.6 

discusses the threats to validity. Finally, Section 5.7 gives some conclusions.  

 

5.1. 
Background 

This background is complementary to the explanations described in Chapter 

2. Inconsistency detection has been studied for many years in software 

engineering (Lange et al., 2006a; Lange et al., 2004) and in other related 

disciplines. In fact, developers often need to detect conflicting information 

between artifacts during the software development process. In the context of our 

study, we investigate if developers are more able to detect inconsistencies in AO 

models rather than OO models used to communicate design decisions. 

 

5.1.1. 
Aspect-Oriented Modeling 

As previously mentioned in Chapter 2, aspect-oriented modeling (AOM) 

languages aim at improving the modularity of design models by supporting the 

modular representation of concerns that cut across multiple software modules.  

The modularization of such crosscutting concerns is achieved by the 

definition of a new model element, called aspect. In general, the notation enables 

to explicitly distinguish between aspects and classes. An aspect can crosscut 

several classes in a system. These relations between aspects and other modules are 

called crosscutting relationships. 

This aim is achieved in different ways in the AOM techniques. The current 

proposed approaches e.g., (Klein et al., 2006) are mainly aimed at supporting 

innovative weaving process for base and aspect models. That is, they aim at 

expressing and simulating the weaving relations between the base model and 

aspectual model elements. Approaches that are more conservative propose UML 

profiles (Losavio et al., 2009; Chavez & Lucena, 2002; Stein et al., 2002) for 

supporting the modeling aspect-oriented design. These techniques are more 

aligned to AOP models, such as those realized by AspectJ (AspectJ, 2011) and 

dialects.  
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Given the goal of our work (Section 5.2.1), we opt for evaluating the impact 

of aspect-oriented UML profiles on inconsistency detection processes. This choice 

can be explained by some reasons. First, real developers use UML profiles for AO 

modeling instead of any other AO modeling technique. Second, these profiles 

have the advantage of supporting classical AOP concepts at a more abstract level 

(Losavio et al., 2009; Aldawud et al., 2003; Chavez & Lucena, 2002). This means 

that AO key concepts are usually represented via conventional extension 

mechanisms of the Unified Modeling Language (UML), such as stereotypes. This 

alternative avoids classical side effects related to the learning curve in a controlled 

experiment like ours. Otherwise, it would not be possible to investigate the causal 

relationships between the dependent and independent variables (Section 5.2.6) 

without any high overhead to the subjects involved. 

Another reason is that UML is the standard for designing software systems. 

The use of stereotypes reduces the gap between subjects with low experience and 

ones with more experience (Ricca et al., 2010). The other consequence of using 

UML profiles for AOM is that the model reading technique used by the subjects 

would not be more influenced by new notation issues. As UML profiles are 

supported by academic and commercial modeling tools, such as IBM Rational 

Software Architect and Borland Together, developers are familiar with stereotype 

notations. Moreover, the learning curve of the current state-of-the-art of AOM is 

not a trivial task for developers in early adoption of aspect-oriented programming.  

Finally, UML profiles for aspect-oriented design is the approach more 

common for structural and behavioral diagrams. Therefore, the interpretation of 

the models is exclusively influenced by the use of the concepts in object-oriented 

and aspect-oriented modeling. Based on these reasons, the AOM language used in 

our study is a UML profile (Losavio et al., 2009; Aldawud et al., 2003; Chavez & 

Lucena, 2002). Erro! Fonte de referência não encontrada.Figure 16 presents an 

illustrative example of the models used in our study: a class and a sequence 

diagram of the AOM language used in our study: (A) and (B) represent the 

conflicting structural diagrams, while (C) and (D) represent the structural and 

sequence diagrams without inconsistencies. The notation supports the visual 

representation of aspects, crosscutting relationships and other AOM concepts. The 

stereotype <<aspect>> represents an aspect, while the dashed arrow decorated 

with the stereotype <<crosscut>> represents a crosscutting relationship. Inner 

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA



159 
 

 

Figure 16: An illustrative example of aspect-oriented models used 

 

elements of an aspect are also represented such as pointcut (<<pointcut>>) and 

advice. An advice adds behavior before, after, or around the selected join points 

(Clarke & Walker, 2005; Clarke & Walker, 2001). The stereotype associated with 

an advice indicates when (<<before>>, <<after>> or <<around>>) a join point is 

affected by the aspect. The join point is a point in the base element where the 

advice specified in a particular pointcut is applied. 

 

5.1.2.  
Model Inconsistency 

Model inconsistency was previously discussed in Chapter 2. However, it is 

discussed again due to the need for further details to investigate the research 

questions addressed in this Chapter. Additionally, it is only discussed here due to 

readability issues.  

Model inconsistency is often the case that complementary diagrams of a 

software system, such as class and sequence diagrams, inevitably have conflicting 

information (Langes & Chaudron, 2004). If software developers do not detect and 

properly deal with these inconsistencies the potential benefits of using design 
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models can be compromised. This means that, for instance, gains in productivity 

and design understandability will be hindered. Consequently, developers must 

invest some considerable effort to detect these inconsistencies. Two broad 

categories of the most common inconsistencies are: (1) syntactic inconsistencies, 

which arise when the models do not conform to the modeling language’s 

metamodel; and (2) semantic inconsistencies, in which the meaning of one or 

more model elements does not match with that of the actual design model. Our 

study focused on semantic inconsistencies because they cannot be automatically 

identified with tool support (Lange & Chaudron, 2006a). Moreover, they are 

usually the main cause of design misinterpretation (Wohlin et al., 2000). 

Occurrences of semantic inconsistencies are particularly very common when 

class and sequence diagrams are used in conjunction with a system (Lange & 

Chaudron, 2006a; Lange & Chaudron, 2004). This is probably due to the fact they 

are the most used UML models in practice (Doring & Parsons, 2006) and 

represent the same concepts under different perspectives. These are the key 

reasons governing the selection of these diagrams in our experimental study. 

Moreover, we have particularly selected semantic inconsistencies that are: (i) 

detectable by developers (Lange & Chaudron, 2004), and (ii) difficult or 

impossible to detect automatically. The reason for the latter is that the semantics 

of model elements are rarely expressed in a formal manner. Semantic 

inconsistencies are even more difficult to detect in multi-view modeling 

(Kitchenham et al., 2008). Semantic inconsistencies arise in multi-view models 

when they have overlapping parts. For instance, objects exchange messages in 

sequence diagrams, while these messages represent methods in the class diagram. 

In addition, a message from one object to another means that the first object calls 

a method that is provided by the second object. Other forms of overlapping 

elements occur in aspect-oriented models. There are several forms of multi-view 

inconsistencies and we discuss below how they can manifest in both OO and AO 

models. This thesis aims at inconsistencies that have been documented elsewhere 

(Lange et al. 2004) and used in a previous empirical study (Lange et al. 2006). 

The inconsistencies used in this study are described as follows: 

1) Conflicting relationships: this inconsistency occurs when the presence or 

the nature of a relationship diverge in structural and behavioral models. 

For instance, according to the sequence diagram, the advice of an aspect A 
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crosscuts the behavior of class B; however, the semantics of the advice in 

A dictates when the class diagram should have either a <<crosscut>> or a 

<<use>> relationship between A and B. For example, Figure 16 presents 

this kind of inconsistency. The aspect t:TraceAspect crosscuts the 

c:CheckingAccount objects (Figure 16.B). In this case, the relationship 

between TraceAspect and CheckingAccount should be <<crosscut>> 

instead of <<use>> (Figure 16.C) given the logging semantics of the 

advice logOperations(). In the structural diagram (Figure 16.A), the aspect 

TraceAspect has a <<use>> relationship with the class CheckingAccount 

instead of <<crosscut>> relationship. 

2) Messages with different return types: the return type of a message m from 

an object A to an object B does not match with the return type of the 

method M in the corresponding class B in the class diagram. For instance, 

the method CheckingAccount.getBalance has conflicting return types: 

string in the class diagram and double in the sequence diagram. A similar 

conflict can occur with the return type of an around advice (Losavio et al., 

2009; Aldawud et al., 2003; Chavez & Lucena, 2002) and the return type 

from a method execution being advised by the latter. 

3) Object without class/aspect: an object in a sequence diagram does not have 

a corresponding class or aspect in the class diagram. 

4) Weaving in a wrong element: an aspect A weaves advice into model 

element B in the sequence diagram, but in the class diagram does not exist 

any crosscutting relationship from A to B. 

5) Message without name: a message between objects in the sequence 

diagram does not have a name. 

6) Message without method: a message from an object of class A to an object 

of class B does not correspond to any method of the class B in the class 

diagram. 

7) Message with wrong return type: the return type of a message X from an 

object of class A to an object of class B does not match with the return type 

of the method X of the class B in the class diagram. 

8) Message in the wrong direction: there is a message from an object of class 

A to an object of class B, but the method corresponding to the message is a 

member of class A instead of class B. 
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9) Class without meaning: a class does not have any semantic value in the 

class diagram. 

10) Instance of abstract class: an abstract class is used in the sequence 

diagram as object. 

Although the behavioral and structural diagrams are syntactically correct, 

the contradicting information makes the models semantically incorrect. Note that 

if developers do not detect these inconsistencies, they will likely transform them 

into defects in code due to the misinterpretation. For example, a developer might 

take in consideration the specification of the method CheckingAccount.getBalance 

in the structural diagram (i.e., string as return type), whereas other developer 

might consider the specification in the sequence diagram (double as return type). 

Consequently, this can give rise to unexpected behavior in the code as a method 

can expect a string as return type instead of double (Mens, 2002). This 

contradicting information between the models may lead to static and behavioral 

inconsistencies in code. 

 

5.1.3.  
Inconsistency Detection Effort 

Developers detect inconsistencies when they identify conflicting 

information in the models and, then, possibly report that the models cannot be 

implemented. This decision often relies on “guessing” the semantics of model 

elements. To reach this conclusion, developers need to invest some effort: the 

time to go through the model and infer that the models suffer from 

inconsistencies. There is currently very limited knowledge regarding the amount 

of effort required to detect inconsistencies. Anecdotal evidence from companies 

suggests that the effort is significant (Farias et al., 2011), but nothing can be 

conjectured considering AO models in comparison to OO models.  

There are some tools to support the visualization of crosscutting relation 

effects in class diagrams (Clarke & Walker, 2005). There are also tools to 

generate a woven sequence diagram (Klein et al., 2006) or even integrating or 

simulating the effects of composing state machines. The use of these tools was not 

included in our study for several reasons. First, the nature of the investigated 

conflicts would require that developers undergo model inspection anyway. In fact, 
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the focus of our study is to investigate whether developers can pinpoint 

inconsistencies and understand the design decisions when producing the 

corresponding implementation. Second, even though the use of these tools might 

reduce or exacerbate the generation of specific categories of inconsistencies in AO 

models, it was not our goal to evaluate particular tools. More importantly, these 

tools are not used in practice yet; either because they are not robust enough to be 

applied in real-world settings, or because they are not intuitive to be used in 

practice. Hence, their use would impose severe threats the validity of our 

experimental results. 

 

5.2. 
Study Methodology 

This section presents the main decisions underlying the experimental design 

of the controlled experiment, which adheres to guidelines of empirical studies 

(Kitchenham et al. 2008; Wohlin et al. 2000). We chose controlled experiment 

due to the same reasons discussed in Section 4.1.1.     

         

5.2.1. 
Experiment Definition  

We formulate the goal of this study using the GQM template (Wohlin et al. 

2000) as follows: 

Analyze AO and OO modeling techniques 

for the purpose of investigating the impact 

with respect to detection effort and misinterpretation 

from the perspective of developers 

in the context of multi-view design models. 

Therefore, this is related to research question RQ3, as stated in Chapter 1: 

 RQ3:  What is the effect of design decomposition techniques in particular 

with respect to misinterpretation, inconsistency rate, inconsistency detection 

effort, and inconsistency resolution effort? 

Regarding the quality notions defined in Chapter 3, we study how design 

modeling languages affect six quality notions, namely: syntactic, semantic, 

pragmatic, social, effort, and detection ones. Based on this, we refine the research 
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question into three more specific research questions. Thus, we focus on the 

following research questions: 

RQ3.1: Does AO model affect the efficiency of developers to detect 

multi-view model inconsistencies?  

RQ3.2: Does AO model influence the effort invested by developers to 

detect model inconsistencies? 

RQ3.3: Do AO models lead to a different misinterpretation rate as 

compared to OO models? 

The context selection is representative of situations where developers 

implement classes (or aspects) based on design models. The experiment was 

conducted within two postgraduate courses at the Pontifical Catholic University of 

Rio de Janeiro (PUC-Rio) and Federal University of Bahia (UFBA). In both 

courses, AO modeling and OO modeling were taught in the first year of Master 

and Doctoral programs in Computer Science. Therefore, all the subjects (18) hold 

a Master’s or Bachelor’s degree, or equivalent. In addition, eight (8) professionals 

from three companies also participated in the experiment. Most of the 

professionals held a Master’s or Bachelor’s degree. 

 

5.2.2. 
Hypothesis Formulation 

First Hypothesis. The first research question investigates whether 

developers by using AO models produce a lower (or higher) inconsistency 

detection rate than by using OO models. Usually developers do not indicate the 

presence of existing inconsistencies in multi-view models (Lange et. al., 2006). 

The main reason is that they can make implicit assumptions about the correct 

design decisions based on previous experience. Moreover, they might feel forced 

to produce an implementation even in the presence of inconsistency. Thus, our 

intuition is that developers identify fewer inconsistencies in AO models than OO 

models because they might get distracted by the global reasoning motivated by the 

presence of additional crosscutting relations in the models. Consequently, they 

may have a higher number of implicit assumptions to assemble the “big picture” 

of a system. However, it is by no means obvious that this hypothesis hold. 

Perhaps, the increased modularity of AOM models may help developers to switch 
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more quickly between the behavioral and structural views while implementing 

their aspects. Consequently, developer may localize more inconsistencies than in 

OO models. Theses hypotheses are summarized as follows: 

Null Hypothesis 1, H1-0: The inconsistency detection rate in AO models is 

equal or higher than in OO models. 

H1-0: DetectionRate (AO) ≥ DetectionRate (OO) 

Alternative Hypothesis 1, H1-1: The inconsistency detection rate in AO 

models is lower than in OO models. 

H1-1: DetectionRate (AO) < DetectionRate (OO) 

 

Second hypothesis. The second research question investigates whether 

developers invest less (or more) effort to detect inconsistencies in AO models than 

in OO models. The superior modularity of AO models may help developers to 

better match and contrast the structural and behavioral information about the 

crosscutting relations. In this case, developers may switch more quickly between 

the behavioral and structural views while systematically implementing their 

aspects. Thus, our expectation is that the higher the number of crosscutting 

relationships (an aspect crosscutting a wider scope) in the model, the lower the 

effort to detect inconsistencies. This assumption is based on the superior ripple 

effects of inconsistencies observed in AO models when model composition 

techniques are applied (Farias et al., 2010a). This propagation can directly affect 

the effort in detecting inconsistencies, since developers, facing the complexity of 

the propagations, avoid doing any implementation. That is, by using AOM 

developers tend to get more quickly convinced about the severity of multi-view 

inconsistencies. This means that they are more likely to report them and not going 

forward on the design implementation. However, it is not clear whether this 

intuition holds because, at first, developers may examine all model elements 

affected (or not) by the inconsistencies, or even the inconsistencies to some extent 

may even be confined in the aspectual elements. This leads to the second null and 

alternative hypothesis as follows: 

Null Hypothesis 2, H2-0: The effort to detect inconsistencies in AO models 

is equal or higher than in OO models. 

H2-0: EffortToDetect (AO) ≥ EffortToDetect (OO) 
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Alternative Hypothesis 2, H2-1: The effort to detect inconsistencies in AO 

models is lower than in OO models. 

H2-1: EffortToDetect (AO) < EffortToDetect (OO) 

Third hypothesis. The third research question investigates whether 

developers’ misinterpretation rate (MisR) is higher (or lower) in AO models than 

in OO models. The chief reason of the disagreement between developers’ 

interpretations is the contradicting understanding of the design models. They are 

often caused by inconsistencies emerging from the mismatches between the 

diagrams specifying the multiple, complementary views of the software system 

(Lange & Chaudron, 2006a; Farias et al., 2010a). Contradicting design models 

make it difficult for developers to think alike and, hence, producing code with the 

same semantics. The key reason is that software implementation widely depends 

on cognitive factors. Someone can consider that additional AOM concepts, such 

as crosscutting relationships or aspects, may negatively interfere in a common 

understanding of design models by different developers. For instance, developers 

need to precisely grasp the actual meaning of the crosscutting relations (in 

addition to all other relations), and when they are actually established during the 

system execution. Then, as developers have to examine all join points affected by 

the aspects, their extra analyses can increase the opportunities of diverging 

interpretations. However, this expectation might not hold because the crosscutting 

modularity may improve the overall understanding of the design when compared 

to pure OO models. This would lead to the following null and alternative 

hypotheses: 

Null Hypothesis 3, H3-0: The misinterpretation rate (MisR) in AO 

models is equal or higher in AO models than in OO models. 

H3-0: MisR(AO) ≥ MisR(OO) 

Alternative Hypothesis 3, H3-1: The misinterpretation rate in AO 

models is lower than in OO models. 

H3-1: MisR(AO) < MisR(OO) 
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5.2.3. 
Selection of Subjects 

Subjects (18 students and 8 professionals) were selected based on two key 

criteria: the level of theoretical knowledge and practical experience related to 

software modeling and programming. The subjects studied in educational systems 

that place a high value on key principles of software modeling and programming. 

In addition, the subjects were exposed to more than 120 hours of courses (lectures 

and laboratory) exclusively dedicated to software design, software modeling, OO 

programming, and AO software development. It can be considered they 

underwent an intensive modeling-specific and programming training. As far as 

practical knowledge is concerned, the main selection criterion was that subjects 

had, at least, 2 years of experience with software modeling and programming 

acquired from real-world project settings. 

 

5.2.4.  
Experiment Design 

The design of this study was a paired comparison design. All subjects were 

submitted to two treatments (AO and OO modeling) to allow us to compare the 

matched pairs of experimental material. The subjects were randomly assigned and 

equally distributed to the treatments. The distribution followed a within-subjects 

design in which all subjects served in the two treatments. Each treatment had a 

printed questionnaire with five multiple-choice questions. That is, the subjects did 

not make use of modeling tools to understand and answer the questions. Although 

it was generally accepted nowadays that the current state-of-the-art of AOM (such 

as (Klein et al., 2006)) should be always used with a tool, the use of any kind of 

tool would certainly add some bias to the collected data: the subjects would be 

influenced by the different maturity and usability degrees of AO and OO 

modeling tools. Hence, we would end up comparing the tools instead of modeling 

languages. Moreover, we emphasize that the focus of this work is on the current 

state-of-the-practice of AOM instead of the state of the art of AOM, as briefly 

justified in Section 5.1.1. By doing so, the first treatment had only questions with 

AO models while the second one had only questions with OO models. The 

subjects were assigned randomly and equally distributed to these treatments so 
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that the effects of the order could be discarded. Therefore, the experimental design 

of this study was by definition a balanced design.  

To minimize the “gain in information” from one treatment to another one, 

the models used in the study were fragments of real class and sequence diagrams. 

Hence, the subjects had no prior information and no accumulated knowledge 

about the semantics of the model elements. In addition, each pair of structural and 

behavioral models had different kinds of inconsistencies, and the meanings of 

their elements were completely different. Therefore, we can assume that the 

performance of subjects was not influenced by the treatments of previous 

questions.  

 

5.2.5. 
Operation and Material 

Operation. In both treatments, the subjects received a pair of corresponding 

class (structural) and sequence (behavioral) diagrams similar to the models 

presented in Figure 16. They were asked how they would implement particular 

classes (or aspects) based on these diagrams. That is, rather than stimulated to 

review or inspect the diagrams, the subjects were encouraged to implement 

particular model elements (classes or aspects). Our goal is to identify how 

developers deal with contradicting information between complementary models in 

the context of concrete software engineering tasks. The subjects should choose, 

then, the most appropriated implementations between the five possible answer 

options. In each question, although the subjects were responsible for registering 

the time invested in each question (“start time” and “end time”), they were 

properly managed to avoid bias in the collected data. They were also stimulated to 

justify their answers on the answer sheet, but this part of the time was not 

counted. In total, ten questions were answered. After the experiment, the subjects 

were also interviewed to clarify the answers and results. 

Material. Table 24 describes some design characteristics for the OO and AO 

models used in the study. For example, in the first task, the AO model had seven 

classes and one aspect, seven relationships between the classes and aspect, and six 

crosscutting relationships. Additionally, it is important to highlight three points: 

(1) every pair of OO or AO class and sequence diagrams had two kinds of 
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Task Treatment 
Class Diagram Sequence  Diagram 

#CA #RC #AT #OP #O #M 

1 OO 7 6 18 27 6 7 

AO 8 11(6) 5 16 7 13 

2 OO 8 6 16 23 6 6 

AO 6 5(1) 9 19 5 10 

3 OO 4 4 4 16 4 7 

AO 5 4(1) 6 14 5 10 

4 OO 4 4 6 12 5 10 

AO 6 7(2) 7 20 6 11 

5 OO 4 4 11 13 5 7 

AO 5 5(2) 7 14 5 8 

#CA: the number of classes or /and aspects;  

#RC: the number of UML relationships or crosscutting relationships 

#AT: the number of attributes. #OP: number of operations. 

#O: the number of objects or instance of aspects. (n): number of aspects. 

#M: the number of messages between the classes and aspects. 
 

Table 24: Measures of the diagram used in the study 

 

inconsistencies, (2) research questions were investigated in all tasks of the 

experiment, and (3) the AO models vary with respect to the number of 

crosscutting relationships. The reason for the latter decision is that we suspect that 

these relationships might affect the variables (i.e., inconsistency detection rate) 

and detection effort) of this study (Section 5.2.6). The inconsistencies were 

always related to contradictions between the class and sequence diagrams. That is, 

there was conflicting information between those diagrams, as the examples given 

in Section 5.1.1. 

Considering the answer options in each question, they were planned 

according to the following schema. The first answer option is according to the 

class diagram while the second one is just in concordance with the sequence 

diagram. The third answer option is based on the combination of the information 

presented in both diagrams. The fourth one is incorrect considering all two 

diagrams. All questions had a fifth answer option where the subjects could 

indicate that an inconsistency was detected in the models. The subjects were 

encouraged to carefully explain their answers, but those careful explanations are 

not part of the time required to solve the task.  
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(1) 

 

Where: 

K: the number of alternatives for a question 

ki: the number of times alternative i was selected,  

    where 0 ≤ i < K and   (for all i : 0 ≤ i < K − 1 : ki ≥ ki+1) 

N: the sum of answers over all alternatives: N =    

 

 

5.2.6. 
Variables and Quantification Method 

The independent variable of this study is the choice of the modeling 

language. It is nominal and can assume two values: AO modeling and OO 

modeling. We investigate the effects of this independent variable on following 

dependent variables. 

Inconsistency detection rate (Rate). This variable is intended to measure the 

overall rate of inconsistencies detected by all subjects (RQ4.1). It represents the 

ratio of the number of subjects that detect inconsistencies in a question divided by 

the number of subjects that answer the question without notifying the presence of 

inconsistency. Note that subjects detect inconsistencies when they explicitly 

indicate that they are unable to achieve a suitable implementation from the 

conflicting diagrams.  

Inconsistency detection effort (Effort). It represents the mean of time 

(minutes) spent by the subjects to detect inconsistencies in a question (RQ4.2). 

Misinterpretation rate (MisR). This variable represents the degree of 

variation of the answers (RQ4.3). That is, it measures the concentration of the 

answers over the four possible alternatives (the fifth alternative represents the 

detection of inconsistency). Our concern is if the differences in (un)detected 

inconsistency affects the design interpretation of the subjects. An undetected 

inconsistency is not necessarily problematic (Lange & Chaudron, 2006a) if all 

subjects have the same interpretation. For example, if the 26 subjects have the 

same answer (e.g., the alternative “A”) for a question, then the inconsistencies in 

the diagrams did not lead to misinterpretations (MisR = 1). On the other hand, if 

the developers’ answers spread equally over the four alternatives, then the 
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inconsistencies cause serious misinterpretations (MisR = 0). That is, the 

misinterpretation rate is 0 (zero) if the answers are distributed equally over all 

options, and 1 (one) if the answers are concentrated only one answer option. This 

variable can be measured as follows (Lange et al., 2004). 

 

5.2.7.  
Operation 

Preparation phase. The subjects (students and professionals) were not 

aware about the research questions (and hypotheses) of our study in order to avoid 

biased results. The motivation of the students was to gain extra points for their 

grades. The results obtained in the questionnaire had no effect on their grades. The 

professionals received the same questions as a printable questionnaire. All 

subjects received a refresher training to be sure of their familiarity with the 

modeling concepts used in the study. 

Execution phase. The experiment tasks were run within two courses at two 

different Brazilian universities (PUC-Rio and UFBA). Both runs were carried out 

in a classroom following typical exam-like settings. However, because of time 

constraints and location, the professionals run the experiment in their work 

environment. However, the experiment was carefully controlled. All subjects 

received 10 questions and the answer sheets. It is important to point out that there 

was no time pressure for the subjects, but they were rigorously supervised to 

correctly register the time. Therefore, we are confident that the time was recorded 

properly. For clarification reasons, the subjects were encouraged to justify their 

answers. After finishing the experiment, the subjects filled out a questionnaire to 

collect their background i.e., their academic background and work experience. 

 

5.2.8. 
Analysis Procedures 

Quantitative Analysis. The normal distribution of the collected data was 

checked using the Shapiro-Wilk and Kolmogorov-Smirnov test (Devore et al., 

1999; Wohlin et al., 2000). The three hypotheses were tested using the parametric 

paired t-test and the non-parametric Wilcoxon test. Both methods compare two 

related samples or repeated measurements on a single sample to assess whether 
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their population means differ (Devore et al., 1999). All hypotheses were tested 

considering a significance level of 0.05 (p-value < 0.05). The null hypotheses 

were rejected when the p-value was lower than 0.05.  

Qualitative Analysis. Qualitative data were collected from two sources: 

think aloud answer sheet comments and interviews. The comments were 

expressed in a free-text field in which the subjects could report anything to 

explain their answer. In addition, some questions were prepared and asked to 

developers in interview sessions. Interview guidance with relatively open 

questions was prepared and all sessions were audio recorded with the permission 

of the subjects 

 

5.2.9. 
Qualitative Data 

Interviews. A semi-structured interview approach (Wohlin et al., 2000) was 

chosen following a funnel model, in which one initial open question is told and 

then directed towards to more specific one. It was organized in topics with open 

and closed questions. They were organized in such a way that research questions 

could be exploited. An interview guide was created based on the authors’ 

experience and the study design. The interviews were recorded and transcribed 

into text. All subjects were selected for the interviews. It was assured that only 

anonymous data would be presented externally. Each interview lasted from 30 to 

55 minutes, depending on how talkative the subjects were. 

Observational Study. In order to investigate how the tasks in the experiment 

were performed, extensive observations were conducted through two different 

approaches. First, the authors run the experiment. This allowed a more effective 

observation and monitoring of the tasks of the subjects. Second, to obtain an 

additional feedback from the subjects, they were encouraged to write down the 

rationale used to answer the questions. 

 

5.3.  
Experimental Results 

This section discusses the experimental results related to the research 

questions RQ4.1, RQ4.2, and RQ4.3 (Section 5.2.1). All hypotheses were tested at 
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Variable Treatment Mean St Dev Min. 25th Med. 75th Max %diff 

Detection 
AO 0.37 0.09 0.23 0.29 0.35 0.46 0.54 43.24 
OO 0.53 0.11 0.38 0.42 0.5 0.67 0.69 

Effort 
AO 5.28 1.67 4 4.08 4.22 7 7.8 

19.69 
OO 6.32 1.57 4.33 5.06 6.08 7.71 8.65 

MisR 
AO 0.51 0.07 0.38 0.45 0.52 0.57 0.58 37.25 
OO 0.7 0.07 0.62 0.64 0.69 0.77 0.81 

St Dev: standard deviation, diff: difference 

 

Table 25: Descriptive statistics 

the significance level of α = 0.05 and the findings were derived from both 

descriptive statistics and statistical inference. 

 

5.3.1. 
RQ4.1: Detection Rate in AO and OO models 

Descriptive Statistics. The first research question investigates if developers 

detect more (or less) inconsistencies in AO models or OO models. Contradicting 

the expected AOM superiority, the collected data indicate that developers tend to 

detect more inconsistencies in OO models than in their AO counterparts. Table 25 

provides evidence for this observation through descriptive statistics of the 

collected data. The superior detection rate in OO models manifests in terms of 

both means and medians. As far as the latter in concerned, the median of the 

detection rate is 0.35 in AO models and 0.5 in OO models. This difference 

represents a superiority of 42.85 percent in favor of OO models. This observation 

is reinforced by analyzing the means of the detection rate. Developers detected, on 

average, 43.24 percent more inconsistencies in OO models (0.53) than AO models 

(0.37). These results suggest that OO models enable developers to identify more 

inconsistencies than AO models. As a consequence, classical UML-based 

modeling for crosscutting modularity (Section 5.1.1) do not necessarily imply on 

more effective inconsistency detection according our observations. This 

contradicts somehow the intuition that the improved modularity of AOM helps 

developers to localize inconsistencies (Section 5.1.2). 

Hypothesis Testing. We check whether this result is statistically significant 

by trying to reject the first null hypothesis H1-0 in the five experimental tasks 

(Table 26). Since the Shapiro-Wilk and Kolmogorov-Smirnov normality tests 
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Variables Treatment 
Paired  t-test Wilcoxon 

t p-value Mean Difference p-value 

Detection 
AO 

4.03 0.015 - 0.16 0.031 
OO 

Effort 
AO 

3.1 0.036 - 1.48 0.033 
OO 

MisR 
AO 

2.94 0.042 - 0.192 0.029 
OO 

*with 4 degree of freedom,  a significance level of α = 0.05 

 

Table 26: Hypotheses testing 

(Devore et al., 1999) suggest that the data are normally distributed, the paired t-

test was applied to test H1. This strategy allowed us to realize a pairwise 

comparison of the distributions and check if there exists a significant difference 

between AO and OO models with respect to detection rate. Pairwise p-values and 

mean differences across pairs for each measure are reported in (Table 26). The 

mean differences between pairs of AO and OO models indicate the direction in 

which the result is significant. For example, considering the varying detection rate 

for AO and OO models, the mean difference is negative (-0.16); in addition, the p-

value (0.015) is less than 0.05, our selected level of significance. This implies that 

the detection rate in AO models was statistically lower than in OO models. Given 

this unexpected result, we were encouraged to apply the non-parametric Wilcoxon 

test to eliminate any threats to statistical conclusion validity. The low value of the 

p-value collected (0.031) also confirmed the aforementioned conclusion. Hence, 

there is sufficient evidence to reject the null hypothesis, and conclude that there is 

a difference between the detection rates in AO and OO models at the 0.05 level of 

significance.  

 

5.3.2.  
RQ4.2: Detection Effort in AO and OO models 

Descriptive Statistics. The second research question investigates the effort 

that developers must invest to detect inconsistencies in AO and OO models. The 

gathered data in Table 25 indicate that developers spend more effort to detect 

inconsistencies in OO models than AO models. The mean of detection effort is 

5.28 (minutes) in AO models and 6.32 in OO models. This comprises a 
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representative increase of 19.69 percent against plain UML models. This lower 

effort on the use of AOM is also observed comparing the medians. The detection 

effort ranges from 4.22 (minutes) in AO models to 6.08 in OO models, which 

represents an increase of 44.07 percent in the latter case. This difference suggests 

that users of AOM tend to realize faster that: (i) a particular multi-view conflict 

exists, and (ii) such a conflict will compromise the implementation of the intended 

design. This phenomenon would confirm our initial intuition that the superior 

modularity of AO models accelerates inconsistency detection. In fact, during the 

interviews, the subjects (18) reported that the manifestation of inconsistencies in 

crosscutting relations is an influential factor on the conflict detection. According 

to them, such inconsistencies are perceived more quickly than other non-AOM 

inconsistencies. They noticed they were keener to match and contrast the 

structural and behavioral information governing the crosscut relations. Therefore, 

developers often report conflicting crosscutting relations as the reason for not 

progressing towards the implementation. This implies that although developers 

detect fewer inconsistencies in AO models, they spend less effort to localize them. 

Hypothesis Testing. We also check if the finding above is statistically 

significant as follows. The Shapiro-Wilk and Kolmogorov-Smirnov certified the 

normal distribution of the measure (Devore et al., 1999). Therefore, the paired t-

test was also applied to test H2 and evaluate RQ4.2. Table 26 shows the pairwise 

p-values and mean differences across pairs for each measure. Recall that the mean 

differences between pairs of AO and OO models indicate the direction in which 

the result is significant. The detection effort in AO and OO groups presented a 

negative value for the mean difference (-1.48), while p-value (0.036) is less than 

0.05. The non-parametric Wilcoxon was also applied, which confirmed the above 

results given the p-value equal to 0.033. This enables us to infer that the average 

difference for detection effort between AO and OO models is not zero and that 

there is significant evidence that AO models required lower detection effort than 

in the OO counterparts.  
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5.3.3. 
RQ4.3: Misinterpretation Rate in AO and OO models 

Descriptive Statistics. The third research question investigates whether AO 

models lead to a higher or lower misinterpretation rate than OO models. Table 25 

shows the descriptive statistics to the misinterpretation measures of AO and OO 

models. Recall that MisR varies between zero and one and that MisR = 1 indicates 

that developers did not have misinterpretation. On the other hand, MisR = 0 

indicates that the developers’ answers spread equally over the four different 

alternatives, which represent the most serious misinterpretations. The data 

revealed that the use of in OO models led to less misinterpretation (higher MisR 

value) than AO models. The misinterpretation rate was 37.25 percent lower in OO 

models; the mean was 0.51 in AO groups against 0.7 in OO groups. This upward 

trend was also observed in the medians: 0.52 in AO models against 0.68 in OO 

models, comprising an increase of 32.69 percent. The results suggest that the 

presence of inconsistencies in AO models entails a higher detrimental impact on 

model interpretation by developers than in OO models. Our initial expectation that 

by using contradicting AO design models would lead the number of diverging 

interpretations of the participants was confirmed. During the interviews and 

examining the answer sheets, the subjects (22) reported that the need to scan all 

join points affected by the aspects increased the likelihood of different 

interpretations by developers.  

Hypothesis Testing. We analyze the strength of the result testing H3 as 

follows. As in the previous analysis, the paired t-test was applied to test H3 as the 

measures assumed a normal distribution. Table 26 shows the pairwise p-values 

and mean differences across pairs for each measure. As the mean difference is 

negative (-0.192) and p-value (0.042) is less than 0.05, we can conjecture that 

there is significant evidence that the number of diverging interpretations in AO 

models is statistically higher than in OO models. We also applied the non-

parametric Wilcoxon test (Devore et al., 1999) to check this conclusion. The p-

value (0.029) also assumed a low value (p < 0.05). Therefore, as the p-value is 

less than 0.05 and the mean difference is negative, we can conclude that: there is 

evidence that the MisR in AO models is significantly lower than in OO models. 

Therefore, we reject the null hypothesis H3-0. 
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5.4.  
Discussion 

This section highlights particular characteristics of the design modeling 

languages that more influenced the dependent variables. The answer sheets, 

interviews, and observational study were instrumental in this investigation. We 

have identified four main outstanding findings, which are described as follows. 

Higher Aspect Quantification and Lower Inconsistency Detection. First, 

aspects with higher quantification (Filman & Friedman, 2000) harmed 

inconsistency detection (RQ4.1) and the model interpretation (RQ4.3) by 

developers. We observed that when an aspect had six crosscutting relationships 

(see Table 24) and, therefore, affected multiple join points (11, in this case), the 

subjects spend more time performing global reasoning. The analysis of several 

aspect effects in the structural diagrams made developers often to neglect the 

analysis of behavioral interactions at each specific join point in the behavioral 

diagrams. According to the interviewees, this effect distracts away developers 

from observing possible inconsistencies between the structural and behavioral 

views. This finding is also confirmed by complementary data analyses. We 

observed, for example, that the inconsistency detection rate in OO models was 71 

percent higher than in AO models when the latter were composed of aspects with 

high quantification; in these circumstances, the mean in OO models was 0.65 

compared to 0.38 in AO models. An explanation for this phenomenon can be 

derived from the interviews and the observational study. We noticed that 20 

subjects explicitly reported that they felt distracted by the presence of high density 

of crosscutting relationships in the models. 

Overlapping Information about Crosscutting Relationships. Conversely, we 

observed that the subjects tended to detect more quickly inconsistencies in AO 

models when the scope of aspect pointcuts was narrow. In these cases, developers 

invested effort in only confronting structural and behavioral information about the 

crosscutting relations. According to the subjects, they could observe 

inconsistencies more quickly in AO models because structural diagrams often 

express the type of an advice (i.e., before, after or around), which is also a 

behavioral information that is present in the sequence diagram. Then, they could 

easily identify inconsistencies between: (i) the types of advices in the class 
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diagram, and (ii) when a particular message was being advised by the aspect in the 

sequence diagram. 

Crosscutting Relationships and Diverging Mental Models of the “Big 

Picture.” Data analysis seems to suggest that uniform interpretation of AO 

models by different developers is harder to achieve than in OO models. According 

to the comments from the subjects, they often faced difficulties to create a “big 

picture” view from the conflicting class and sequence diagrams. This view 

represents a mental model reflecting how software developers perceive the 

problem, think about it, and solve it by producing the expected code from the 

diagrams. This understanding shapes the actions of the developers and defines the 

approach to guide the design realization in the code. In particular, the developers 

apparently had diverging mental models when the model inconsistencies were 

sourced in the crosscutting relationships. In these cases, developers came up with 

very different solutions for realizing crosscutting relationships in the code. They 

provided different answers on which and when the advice should affect the base 

model elements. Consequently, the communication from designers to 

programmers seems to be more sensitive to inconsistencies in aspect-oriented 

models. 

The Level of Model Detail Matters. Given the presence of inconsistencies in 

the diagrams, developers usually consider the sequence diagrams as the basis for 

the design implementation. Note that in this case the developers do not report the 

presence of inconsistency. This phenomenon can be explained based on some 

reasons observed during the interviews and the observational study. First, 

sequence diagrams often present a higher number of details than the class 

diagrams. Thus, the lower level of abstraction leads the software developers to be 

more confident to the behavioral diagrams than structural diagrams. Next, 

sequence diagrams are closer to the final implementation; hence, developers 

become confident that the information present in the sequence diagram is the 

correct one compared to the class diagram. As a result, it means that when models 

are used to guide the implementation of design decisions, inconsistencies in 

behavioral diagrams have a superior detrimental effect than those in class 

diagrams. 

This finding is useful for improving quality assurance procedures in some 

activities in model-driven software development as, for example, model review. 

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA



179 
 

Model review is a well-known, effective way to minimize defects in code. 

Nevertheless, it is not clear for developers what diagram should be reviewed at 

first. By using this finding, developers can put the focus on the behavioral 

diagrams rather than the structural diagrams. In practice, this information is 

important because the preference of the behavioral diagrams can result in action 

that is more effective. Since model review requires some considerable effort to 

examine and define the focus of the analysis, it usually receives some criticism. 

By using this finding, developers can also tame or improve this problem. 

Identifying Fewer Inconsistencies in Less Time. Developers identify fewer 

inconsistencies in AOM than in OOM. However, they spend less effort to detect it 

in AOM. Note that when developers identify an inconsistency, they have two 

options: they report that they detected an inconsistency or try to overcome the 

problem based on their experience, but will give a wrong answer at the end. Based 

on this, we have observed that developers report more often the presence of 

inconsistency in AO models (compared to OO models) than try finding any other 

solution. On the other hand, by using OO models developers try answering the 

question even observing the presence of inconsistency.  

During the interviews, it was possible to observe the main reason why 

developers stop in AOM and go ahead in OOM: inconsistencies in AOM cause 

more severe doubts to developers than in OOM. Hence, developers do not feel 

comfortable using their experience to overcome the inconsistency problems given 

the problem at hand. It is important to point out that the subjects identify fewer 

inconsistencies in AOM not because they spent less time but because it is seen as 

a “wicked problem.” In doing so, we observed that the subjects are more afraid of 

dealing with problems in AO models rather than OO models. Finally, given that 

multi-view design models usually have inconsistencies (Lange et al., 2004), this 

can mean that classical UML extensions for AOM (Section 5.1.1) need to be 

carefully employed. The observed results of our study suggest that developers 

might insert more defects into code. This can be motivated for two reasons: (1) 

low inconsistency detection (Section 5.3.1), and (2) high disagreement on design 

interpretations (Section 5.3.3). 
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5.5.  
Limitations of Related Work 

Aspect-oriented modeling supports early separation of otherwise 

crosscutting concerns in software design. Concerns are separated to improve, for 

example, the interpretation of design decisions governing crosscutting concerns 

by developers before the implementation is accomplished. In practice, AOM will 

be considered useful compared to traditional modeling techniques if the claimed 

improved modularity actually leads to practical benefits, such as reduction of 

inconsistency detection effort and misinterpretations. Unfortunately, it is well 

known, as previously mentioned, that empirical studies of AOM are rare in the 

current literature, which confirms that it is still in the craftsmanship era (France & 

Rumpe, 2007). 

 Research has been mainly carried out in two areas: (1) defining new AOM 

techniques, and (2) proposing new weaving mechanisms. First, several authors 

have proposed new modeling languages, focusing on the definition of constructs, 

such as <<aspect>> and <<crosscut>>. These constructs represent concepts of 

aspect-orientation as UML-based extensions (Clarke & Walker, 2005; Chavez & 

Lucena, 2002; Aldawud et al., 2003; Stein & Hanenberg, 2002). In addition, 

(Clarke and Baniassad, 2005) make use of UML templates to specify aspect 

models. The chief motivation of some works is to provide a systematic method for 

weaving aspect and base models e.g., (Whittle et al., 2010; Klein et al., 2006; 

Jézéquel, 2008). Klein (Klein et, al, 2006) presents a semantic-based aspect 

weaving algorithm for hierarchical message sequence charts (HMSC). They use a 

set of transformations to weave an initial HMSC and a behavioral aspect 

expressed with scenarios. Moreover, the algorithm takes into account the 

compositional semantics of HMSCs.  

Most of empirical studies on aspect-orientation are performed at the code 

level. For example, Hanenberg (Hanenberg et al., 2009) compares the time 

invested by developers to implement crosscutting concerns using object-oriented 

and aspect-oriented programming techniques. Other studies focus on the 

assessment of aspect-oriented programming under different perspectives, such as 

stability (Ferrari et al., 2010; Greenwood et al., 2007) and fault-proneness 

(Lasavio et al., 2009; Burrows et al., 2010). However, empirical studies of AOM 
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(such as (Farias et al., 2010a)) have not been conducted, in particular in the 

context of modeling inconsistencies (or defects). Only the literature on OO 

modeling does highlight that empirical studies have been done on identifying 

defects in design models (Lange & Chaudron, 2004). Lange (Lange & Chaudron, 

2006a) investigates the effects of defects in UML models. The two central 

contributions were: (1) the description of the effects of undetected defects in the 

interpretation of UML models, and (2) the finding that developers usually detect 

more certain kinds of defects than others do.  

In conclusion, there are two critical gaps in the current understanding about 

AOM: (1) the lack of practical knowledge about the developers’ effort to localize 

inconsistencies, and (2) the lack of empirical evidence about the detection rate and 

misinterpretations when understanding AO models.  

 

5.6. 
Threats to Validity 

Internal validity. Inferences between our independent variable and the 

dependent variables are internally valid if a causal relation involving these two 

variables is demonstrated (Wohlin et al., 2000). Our study met the internal 

validity because: (1) the temporal precedence criterion was met; (2) the 

covariation was observed, i.e., the dependent variables varied accordingly, when 

the independent changed; and (3) there is no clear extra cause for the detected 

covariation. Our study satisfied all these three requirements for internal validity. 

External validity. It refers to the validity of the obtained results in other 

broader contexts (Wohlin et al., 2000). Thus, we analyzed whether the causal 

relationships investigated in this study could be held over variations in people, 

treatments, and other settings. Some characteristics were identified that strongly 

contributed for this purpose. First, the subjects used: (1) a practical AOM 

technique to perform the tasks; and (2) the design models were fragments of real-

world models. Second, the reported controlled experiment was rigorously 

performed, in particular, when compared to previously reported controlled 

experiments (Lange et al., 2006; Ricca et al., 2010). 

Construct Validity. It concerns the degree to which inferences are warranted 

from the observed cause and effect operations included in our study to the 
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constructs that these instances might represent. All variables of this study were 

quantified using a suite of effort metrics or indicators that were previously defined 

and independently validated in experiments of inconsistency detection (Lange, 

2007). Moreover, the concept of effort used in our study is well known in the 

literature (Jorgensen, 2005; Menzies et al., 2006; Grimstad & Jorgensen, 2007; 

Jorgensen et al., 2008) and its quantification method was reused from previous 

work (Lange & Chaudron, 2006a). Therefore, we are confident that the 

quantification method used is correct, and the quantification was accurately 

performed. 

Statistical Conclusion Validity. We evaluated the statistical conclusion 

validity checking if the independent and dependent variables were submitted to 

suitable statistical methods. Experimental guidelines were followed to eliminate 

this threat (Wohlin et al., 2000): (1) the assumptions of the statistical tests (paired 

t-test and Wilcoxon) were not violated; (2) collected datasets were normally 

distributed; (3) the homogeneity of the subjects’ background was assured; (4) the 

quantification method was properly applied; and (5) statistical methods were used. 

The Kolmogorov-Smirnov and Shapiro-Wilk tests (Devore et al., 1999) were used 

to check how likely the collected sample was normally distributed. 

 

5.7.  
Concluding Remarks 

This study reports an empirical investigation about the impact of alternative 

design decompositions on the inconsistency detection rate, the effort to detect 

inconsistencies, and the misinterpretation rate. We observed that developers 

detected fewer inconsistencies in AO decompositions than OO decompositions. 

The reason is that they got more distracted by the global reasoning motivated by 

the presence of crosscutting relations and overlooked the negative effects of 

existing model inconsistencies. According to the subjects, complex-crosscutting 

collaborations between modules led developers to unconsciously make 

assumptions that are more implicit about the correct design decisions. 

Consequently, aspects with higher quantification were the cause of the low 

detection rate of inconsistencies. Second, developers spent less effort using AO 

models to detect each inconsistency than in OO models. This was mainly due to 
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the higher degree of overlapping information in structural and behavioral views of 

AOM. Third, the developers presented a superior rate of misinterpretation in AO 

models mostly thanks to the additional number of modeling concepts (e.g., 

crosscut relationships and aspects). They also had to examine all join points 

affected by the aspects. This extra analysis increased the degree of disagreement 

by developers while interpreting AO models and producing the code. It is 

important to highlight that all the aforementioned findings were independent of 

inconsistencies being assessed.  

We should point out that empirical studies in AOM are in its initial stage 

and there is very little practical knowledge that can be used to determine the 

effectiveness of the current AOM approaches on improving design understanding. 

This study represents the first controlled experiment that addresses this issue. 

Although we are confident that the collected results are very concrete, significant 

results, further empirical studies are still required to test the hypotheses in other 

contexts. This is essential to better understand whether the results of this study 

hold (or not) in a broader context. In further studies, some questions should be 

investigated: what will it be the impact of quantification on the misinterpretation 

rate? Which will inconsistencies cause a higher misinterpretation rate? What is the 

effort to repair AO models with elevated quantification rate? Will we collect the 

same results by using larger design models? Finally, we hope that the issues 

outlined throughout the Chapter encourage researchers to replicate our study in 

the future under different circumstances. 
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