
87

4
Effort on the Application of Composition Techniques

The goal of this Chapter is to evaluate the effects of model composition

techniques on the developers’ effort. To this end, two studies are performed. The

first study investigates the effort that developers invest to compose design models

based on a controlled experiment. The second study evaluates the effort to

compose design models from industrial case studies.

4.1.
Effects of Composition Techniques on the Composition Effort

Model composition techniques can be classified in two categories (Chapter

2): (i) specification-based techniques, such as Epsilon (Epsilon, 2011) and MATA

(Whittle & Jayaraman, 2010), and (ii) heuristic-based techniques, such as merge

and override (Clarke, 2001; Clarke & Walker, 2001) and the three-way merge

algorithm (Mens, 2002). The manual model composition is expected to be error-

prone and time consuming. Then, developers apply model composition techniques

with the aims of reducing the composition effort and improving the correctness of

the composed model. The techniques in the first category primarily aim at

producing correctly composed models, but it is questionable if they necessarily

reduce composition effort. On the other hand, the second category aims at

alleviating the developers’ effort. However, its positive impact on the correctness

of the composed models is expected to be worse than the first category.

By using the specification-based techniques, developers explicitly specify

the correspondence and composition relations between the input model elements

MA and MB to produce MAB (Section 2.4). On the other hand, by using the

heuristic-based techniques developers apply a set of predefined heuristics, which

“guess” the relations between model elements before composing MA and MB.

Specification-based techniques provide a systematic way to specify the relations

between the input model elements, instead of trying to “guess” them. It is

expected that these techniques not only alleviate the composition effort, but also

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

88

assure a higher rate of correctly composed models when compared to the heuristic

techniques (Epsilon, 2011; Whittle & Jayaraman, 2010).

To date, however, there is little empirical evidence to confirm (or not) if

these expectations hold; mainly, when developers try to: (1) select and apply the

model composition techniques; (2) detect syntactic and semantic inconsistencies;

and (3) resolve the identified inconsistencies in realistic settings. As described in

Chapter 3, these three composition activities are required to obtain the intended

model MAB. Empirical studies in model composition are lacking, mainly ones

considering the impact of the composition techniques on the following quality

notions described in our quality model: effort, application, detection, resolution,

syntactic, and semantic notions. In fact, the literature fails to provide such

empirical evidence to software developers. As a result, developers are left without

any practical knowledge to answer questions such as “what are the effects of

specification-based and heuristic-based techniques on the developers’ effort and

the correctness of the composed models?” It is important to answer this question

because, before adopting any composition technique in realistic settings, it is

necessary to have practical knowledge about the effects of model composition

techniques.

In fact, to date, both specification-based and heuristic-based techniques have

been used without any empirical evidence. Currently developers rely on diverging

feedbacks (Norris & Letkeman, 2011) from evangelists to evaluate how good

techniques can be, rather than on practical, evidence-based knowledge derived

from experimental studies. The practical knowledge about these effects (or even a

trade-off analysis) can be viewed as the main impairment to the wide application

of composition techniques in practice where resources and time are tight. Note

that if a composition technique reduces effort but does not favor model

correctness (or vice-versa), it is quite questionable whether it can be applied in

industry. On the other hand, if the composition effort is high, the potential benefits

of using composition techniques (e.g., gains in productivity) can be compromised.

The literature in model composition fails to provide assessments of model

composition techniques (Apel et al., 2011; Sarma et al., 2011; Shao et al., 2011;

Brun et al., 2011; Whittle et al., 2009; Klein et al., 2006). Apel (Apel et al., 2011).

Mens (Mens, 2002) also reinforces the need for more empirical and experimental

research. Burn and colleagues (Brun et al., 2011b) evaluate the composition of

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

89

code in the context of a retrospective, quantitative study of the evolution of nine

open-source systems. They concluded that inconsistencies in code are the norm

rather than the exception, and that 16% of all merges required human effort to

resolve them. However, even this kind of primary empirical analysis is lacking in

the context of model composition.

With this in mind, this Chapter reports a controlled experiment performed

with 24 subjects, which used Epsilon, IBM RSA and traditional composition

algorithms to evolve design models. The techniques are investigated in 144

evolution scenarios and by about 2304 compositions of model elements (such as

classes and relationships). The main results, supported by a complete statistical

and qualitative analysis, are: (1) the IBM RSA and traditional composition

algorithms require less effort to produce the intended model than Epsilon, and (2)

there is no significant difference in the correctness of the output composed models

generated by these techniques. Additionally, in some cases, the number of

inconsistencies produced by Epsilon was significantly higher than one generated

by IBM RSA and traditional composition algorithms. The techniques investigated

are robust and representative and there are reasons to believe the results will

generalize to broader scenarios. However, we do not claim generalization beyond

these techniques and their use on other types of design models, in particular class

and sequence diagrams.

The remainder of the chapter is organized as follows. Section 4.1.1 presents

the experiment planning. Section 4.1.2 analyzes the results. Section 4.1.3 contrasts

our work with related work. Section 4.1.4 presents the threats to validity. Finally,

Section 4.1.5 describes some concluding remarks.

4.1.1.
Experiment Planning

This section presents the experiment planning followed to carry out a

controlled experiment. This planning is based on practical and conventional

guidelines of empirical studies such as (Wohlin et al., 2000; Kitchenham et al.,

2008; Shadish et al., 2002; Sjober et al., 2002). We have opted to conduct a

controlled experiment to investigate the hypotheses formulated in Section 4.1.1.2

due to a number of reasons (Basili et al., 2007). First, it allows us to conduct well-

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

90

defined, focused studies, with the potential for gathering statistically significant

results, which is not possible with non-controlled case studies. Moreover, it helps

to formulate hypotheses by forcing us to clearly state the question being studied

and allow us to maximize the number of questions being asked.

Second, as controlled experiments require well-formulated dependent and

independent variables as well as null and alternative hypotheses, it also allows us

to understand the relations of specific variables and measures.

Third, by running a controlled experiment, we are forced to state clearly

what questions the investigation is intended to address and how we will address

them, even if the study is exploratory (Basili, 2007). Moreover, we can create a

study design in such a way that maximizes the chance for replication of the study

in order to test the hypotheses in different contexts and by independent

researchers.

Fourth, controlled empirical studies can better investigate the cause-effect

relationships between variables, allowing us to understand, for example, the

effects of the independent variables on the dependent variables. Additionally, a

controlled study provides insight into why relationships and results do and do not

occur. It also forces us to analyze the threats to validity, leading to the

identification of where replications or alternate studies are needed and where

variations might show different effects. It also allows us to build a body of

knowledge in model composition that helps researchers to build theories

supported by clear empirical evidence.

4.1.1.1.
Experiment Definition

This study aims at evaluating the effects of model composition techniques

on six quality notions, namely syntactic, semantic, effort, application, detection,

and resolution ones. For this, we control two variables: the effort to compose

design models and the correctness of the output models. Correctness is also

controlled, as the evaluation of effort needs to be put in the perspective of the

quality of the produced models. Otherwise, the cost-effective analysis cannot be

fully drawn. These effects are investigated through a controlled experiment in

which developers use specification-based and heuristic-based techniques to evolve

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

91

design models. With this in mind, the objective of this study is stated based on the

GQM template (Basili et al., 1994) as follows:

Analyze composition techniques

for the purpose of investigating their effects

with respect to effort and correctness

from the perspective of developers

in the context of the evolution of design models.

Therefore, this controlled experiment addresses the research question RQ2,

as stated in Section 1.3.

 RQ2: What is the relative effort of composing design models with

specification-based composition techniques and heuristic-based

composition techniques?

Based on this, we further decompose the RQ2 into two research

subquestions described below:

 RQ2.1: What is the relative effort of composing two input models by using

specification-based composition techniques with respect to heuristic-based

composition techniques?

 RQ2.2: Is the number of correctly composed models higher with

specification-based techniques than with heuristic techniques?

4.1.1.2.
Hypothesis Formulation

Table 8 describes the hypotheses for testing the effects of composition

techniques on effort and correctness. These hypotheses are elaborated throughout

this section.

Hypothesis 1. The first hypothesis of this section is that, although the

specification-based composition technique provides a more systematic way to

compose the input models, it does not reduce the composition effort. Our

expectation is that developers invest more effort to write down the specifications

rather than using the heuristic-based composition techniques. This can be

explained based on the expectation that they are not intuitive or flexible enough to

express the change requests. Moreover, the presence of inconsistencies in the

output composed model may have a detrimental effect on the composition effort.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

92

As developers should examine all points in the input models (affected by the

specifications) or even “guess” which input model elements are incorrectly

combined. Consequently, this additional effort may increase the composition

effort rather than minimize it. However, it is by no means obvious that this

hypothesis holds. It may be, for example, that they help developers to match and

then compose the input models more quickly. With this in mind, the null

hypothesis states that the specification-based technique requires less (or equal)

effort to compose the input models than the heuristic-base technique. On the other

hand, the alternative hypothesis states that the effort is significantly higher. These

hypotheses are summarized as follows. Note that our expectation has a specific

direction, which leads, in turn, to the definition of one-tailed hypotheses.

Null Hypothesis 1, H1-0: The specification-based composition

techniques require less (or equal) effort than the heuristic-based

composition techniques to produce MAB from MA and MB.

H1-0: Effort(MA,MB)Specification ≤ Effort(MA,MB)Heuristic

Alternative Hypothesis 1, H1-1: The specification-based composition

techniques require more effort than the heuristic-based composition

techniques to produce MAB from MA and MB.

H1-1: Effort(MA,MB)Specification > Effort(MA,MB)Heuristic

For a more detailed investigation, we break this hypothesis in three

subhypotheses (H12, H13, and H14). The goal is to evaluate the relative efforts (f,

diff, and g) defined in the composition effort equation (see Figure 3). A complete

formulation of these hypotheses can be seen in Table 8.

Hypothesis 2. The second hypothesis is that the use of specification-based

composition techniques increases the number of correctly composed models. This

is because developers can explicitly specify the composition relations between the

input models. However, it is not clear whether this manner of realizing model

composition promotes higher correctness of the output model. The need to

explicitly take into consideration each of the models’ properties (such as

isAbstract), when specifying the relations, may cause difficulties to properly write

down the specifications. If this is confirmed, then inconsistencies are inserted into

the output composed model, compromising its correctness (i.e., MCM ≠ MAB).

With this in mind, the null hypothesis assumes that the specification-based

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

93

Null Hypothesis Alternative Hypothesis

H11-0: Effort(MA,MB)S ≤ Effort(MA,MB)H H11-1: f(MA,MB)S > f(MA,MB)H

H12-0: f(MA,MB)S ≤ f(MA,MB)H H12-1: f(MA,MB)S > f(MA,MB)H

H13-0: diff(MCM,MAB)S ≤ diff(MCM,MAB)H H13-1: diff(MCM,MAB)S > diff(MCM,MAB)H

H14-0: g(MCM)S ≤ g(MCM)H H14-1: g(MCM)S > g(MCM)H

H21-0: Cor(MCM)S ≤ Cor(MCM)H H21-1: Cor(MCM)S > Cor(MCM)H

H22-0: Rate(MCM)S ≥ Rate(MCM)H H22-1: Rate(MCM)S < Rate(MCM)H

Dependent Variables

Effort: Effort to compose the input models (RQ3.1)

f: Effort to apply the composition techniques (RQ3.1)

diff: Effort to detect inconsistencies (RQ3.1)

g: Effort to resolve the inconsistencies (RQ3.1)

Cor: Correcteness of the composition (RQ3.2)

Rate: Inconsistency rate of the composed model (RQ3.2)

 Table 8: Tested hypotheses

composition technique produces a lower (or equal) number of correctly composed

models than the heuristic-based composition technique. On the other hand, the

alternative hypothesis states that the specification-based technique produces a

higher number of correctly composed models than the heuristic-based technique.

In other words, the correctness (Cor) of the output composed models is usually

assured when they are produced by the specification-based techniques. These

hypotheses are presented as follows:

Null Hypothesis 2, H2-0: Specification-based techniques produce a

lower (or equal) number of correctly composed models than the

heuristic-based techniques.

H2-0: Cor(MCM)Specification ≤ Cor(MCM)Heuristic

Alternative Hypothesis 2, H2-1: Specification-based techniques

produce a higher number of correctly composed models than

heuristic-based techniques.

H2-1: Cor(MCM)Specification > Cor(MCM)Heuristics

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

94

Task Models Required Changes to the Base Model

1 Oil Extraction
Add one class, one method, and one relationship.

Modify one class from concrete to abstract.

2 Car System
Remove two methods and

modify the direction of a relationship.

3 ATM
Add two classes and refine two classes from one.

Remove this last class.

4 Supply Chain Add two classes and one relationship.

5 Finance

Remove one class and add two methods

to a particular class. Refine two classes

from one and remove the last one.

Remove one relationship.

6
Simulation of

extraction

Modify the direction of five relationships.

Modify the name of two methods.

Table 9: The tasks of the evolution scenarios

The correctness of the model compositions is influenced by the presence (or

not) of inconsistencies in the output composed model. Thus, we attempt to

investigate if the specification-based technique also produces a lower

inconsistency rate than the heuristic-based techniques. The new elaborated

hypotheses are stated in Table 8.

4.1.1.3.
Context and Subject Selection

The subjects used the the traditional algorithms (Section 2.4.1), the IBM

RSA (Section 2.4.2), and Epsilon (Section 2.4.3) to realize six evolution scenarios

(Table 9). They had no previous knowledge about the design models or the

changes. Thus, the evolution scenarios were typical tasks where developers were

not the initial designers of the models. The design models used were fragments of

industrial models captured from different application domains, such as financial

applications and simulation of petrol extraction.

The experiment was conducted with 24 subjects (being 8 students) from

Brazilian companies. All professionals held a Master’s degree, Bachelor’s degree,

or equivalent, and had the required knowledge on software modeling and

programming to participate in the experiment. Students were also invited to

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

95

participate in the experiment because of the recognized importance of students in

empirical studies (Host et al., 2000); they are important to enable us to have

subjects with different levels of experience in the study. They are from two

Master and Doctoral programs in Computer Science at two Brazilian universities:

Pontifical Catholic University of Rio de Janeiro (PUC-Rio) and Federal

University of Bahia (UFBA). These students attended to two courses: “empirical

studies in software engineering” (PUC-Rio) and “software evolution” (UFBA).

The experiments were part of the courses and were performed as practical

laboratory exercises. In all cases, we had to ensure that every participant would

undergo the same learning experiences and had previous experience with software

evolution.

4.1.1.4.
Experimental Design

The experimental design of this study is characterized as a randomized

complete block design with three treatments (Wohlin et al., 2000). The study had

a set of activities that are organized in three phases (Figure 7). The subjects were

randomly assigned and equally distributed to the treatments. The distribution

follows a within-subjects design in which all subjects serve in the three

treatments. This allowed us to compare the data collected. In each treatment, the

subjects used a composition technique to carry out two experimental tasks. As

three composition techniques were used, then six tasks were performed.

Therefore, the experimental design was, by definition, a balanced design.

4.1.1.5.
Operation and Material

Operation. Figure 7 shows through an experimental process how the three

phases were organized. The subjects individually performed all activities to avoid

any threat to the experimental process. The activities are further described as

follows.

Training. All subjects received training to be sure of their familiarity with

both software modeling and model composition techniques. It is important to

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

96

highlight that the subjects were not aware about the research questions (and

hypotheses) of the study in order to avoid biased results.

Apply the techniques. The participants were encouraged to compose MA and

MB based on a document with the evolution descriptions, which define how the

model elements should be changed. This document describes (in a more

elaborated way) the experimental tasks shown in Table 9. The measure of

application effort, video and audio records, and a composed model represent the

results of this activity. Each subject performed it six times (for each task presented

in Table 9). The video and audio records were later used during the qualitative

studies. It is important to point out that a participant (subject x) produced MCM

and in the second phase other (subject n-x) detected and resolved the

inconsistencies in MCM in order to produce MAB.

Detect inconsistencies. Subjects reviewed MCM in order to detect

inconsistencies. For this, they checked if MCM had the changes described in the

evolution descriptions and if the contradicting changes between MA and MB were

correctly solved. As a result, we have the measure of the detection effort, video

and audio records, and a list of inconsistencies identified.

Resolve inconsistencies. The subjects resolved the inconsistencies

previously localized to produce MAB. The resolution effort was also measured and

the video and audios were registered.

Make interview. Subjects reflected on their experiences on model

composition using an in-depth semi-structured interviews. These interviews

enriched the qualitative data collected. For example, it was possible to observe,

for example, some non-verbal communication issues that help us to infer the

study’s findings.

Answer questionnaire. The subjects filled out a questionnaire. This allows

us to collect their background (i.e., their academic background and work

experience) and apply some inquisitive questions.

Material. The subjects used UML class diagrams in the experiment because

they are the most used design models in practice. Each model had approximately

eight classes and seven relationships. We have avoided using large models due to

some reasons. First and more importantly, proper modeling practices determine

that each model should not have much more than seven modular units. Second,

experimental guidelines recommend that artifacts used in experiments should be

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

97

Figure 7: The Experimental process

simple; otherwise, the size and complexity may affect the results in undesirable

ways (Wohlin et al., 2000).

Third, the delta model should be as small as possible; otherwise, the

subjects would have conflict management problems (Mens, 2002). In (Asklund,

1994), Asklund recommends that software changes should be relatively small so

that the number of conflicts is not very high. In (Perry et al., 1998), Perry

confirms this idea from a statistical basis in a large-scale industrial case. As

previously mentioned, the subjects used another material named evolution

description. This file describes the changes that should be performed in MA to

transform it into MAB. Table 9 illustrates the changes.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

98

4.1.1.6.
Instrumentation and Measurement

The independent variable of this study is the choice of composition

techniques. This variable is nominal and assumes two values: specification-based

technique and heuristic technique. We investigate the impact of these independent

variables on the following dependent variables.

 Effort. This variable measures the overall time (in minutes) invested by

subjects to compose the input models (H1-1). This measure is required by

three other variables: effort to apply model compositions (H1-2), effort to

detect inconsistencies (H1-3), and effort to resolve inconsistency (H1-4).

 Correctness. The correctness of a composition (H2-1) is asserted when the

output composed model produced is correct with respect to intended

model that fully satisfies the evolution description (i.e., MCM = MAB).

The composed model produced may be rated as either correct or

incorrect. Note that each composition performed by a subject produces a

dichotomous data (correct or incorrect) defined from the comparison

between MCM and MAB. Therefore, this variable is a categorical one. Note

that a composed model with one of the previously described

inconsistencies (Section 3.3.4) would be deemed as incorrect. To

promote a deeper understanding, we also investigate the inconsistency

rate of the incorrectly composed model. It represents the ratio of the

number of inconsistencies of a composed model divided by its number of

model elements (H2-2). The inconsistencies considered were previously

described in Chapter 3.

4.1.1.7.
Analysis Procedures

Quantitative Analysis. We performed descriptive statistics to analyze its

normal distribution (Kitchenham et al., 2008) and statistical inference to test the

hypotheses. The level of significance of the hypothesis tests was α = 0.05. The

analyses were carried out to test the hypotheses both individually for each

experiment task and across all experiment tasks. To test H1-1 (and its

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

99

subhypotheses) we applied the non-parametric Wilcoxon signed-rank test (Wohlin

et al., 2010) for the six tasks. This test is similar to the t-test, but does not require

two separate sets of independent and identically distributed samples. Note that we

have a same subject design. As a result, our samples are dependent. Moreover, the

non-parametric Friedman ANOVA test (Conover, 1999) was also applied to

reduce some potential threats to the validity of statistical conclusions. To test H2-1

we applied the McNemar's test for marginal homogeneity (Wohlin et al., 2010;

Devore etal., 1999). To test H2-2 we consider the inconsistency rate produced

during the evolution scenarios. As in H1, we also applied the Wilcoxon signed-

rank test and Friedman test.

Qualitative Analysis. Qualitative data were collected from some sources:

questionnaire, audio/video records, and transcriptions, think aloud comments and

interviews. This helped us to potentially obtain some complementary evidence to

explain the quantitative results and then derive the conclusions from a chain of

evidences (Jorgensen, 2005), which are formed from the systematic alignment of

the quantitative and qualitative data.

4.1.2.
Experimental Results

In this section, we present and interpret the experimental results about the

RQ2.1 and RQ2.2. For this, a complete statistical analysis is presented, including

descriptive statistics and statistical inference.

4.1.2.1.
RQ2.1: Effort and Composition Techniques

Descriptive Statistics. The collected data indicate that the developers tend to

spend less effort by using heuristic-based techniques rather than the specification-

based techniques. In fact, they required less effort to-be applied (f), detect

inconsistencies (diff), and resolve inconsistencies (g). Consequently, the general

composition effort was also smaller. The traditional algorithms required less effort

than the IBM RSA, which in turn required less than the Epsilon. This is a very

interesting finding because the common sense would be otherwise i.e., developers

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

100

 Effort f diff g

 TRA RSA EPS TRA RSA EPS TRA RSA EPS TRA RSA EPS

N 46 46 46 46 46 46 46 46 46 46 46 46

Min 5 5 9 2 3 4 1 1 1 0 0 0

25th 7 11 14 4 6 8.7 2 2 3 0 0 0.5

Med 11 14 21 6 8 12 3 4 4.5 0.5 2 3

75th 18 24 34 9 11 17 5.2 8 8.7 4 7 9

Max 31 66 114 25 22 39 11 22 38 9 22 38

Mean 13.3 18.2 29.1 7.2 9.0 14.8 3.9 5.3 7.7 2.1 3.8 6.6

St D. 6.9 11.0 23.3 4.4 4.2 8.8 2.4 4.4 8.2 2.9 5.1 9.1

N: #compositions, Min: minimum, Med: median, Max: maximum,

StD: Standard Deviation, TRA: traditional, RSA: Rational Software Architect, EPS: Epsilon

Table 10: Descriptive statistic for the composition effort

would invest less effort by using the Epsilon and IBM RSA. Table 10 shows

pieces of evidence through descriptive statistics of the collected data.

Regarding the median of the general effort, it grew significantly from 11 to

14 and 21 by using RSA and Epsilon, respectively. This superior effort represents

an increase by about 27.27 and 90.90 percent. This upward trend was not only

observed in the measure of the general effort, but also in the f, diff, and g.

Considering the mean of effort computed, this evidence was still clearer. The

general effort increased from just over 13 minutes in the Traditional algorithms to

18.26 minutes in the IBM RSA, reaching almost 30 minutes in the Epsilon. This

represents a rise of 36.88 and 118.66 percent, respectively. This evidence,

therefore, demonstrate that the developers in fact tend to invest less effort with

heuristic-based techniques than specification-based one. The next step it is to

scrutinize whether this evidence are statistically significant to reject the null

hypotheses (H1-1, H1-2, H1-3 and H1-4) stated in Section 4.1.1.2.

Hypothesis Testing. Since the Shapiro-Wilk test (Sheskin, 2007) indicated

deviations from normality, the Wilcoxon signed-rank test and Friedman test were

applied. While the Wilcoxon test allowed us to realize a pairwise comparison of

the distributions, Friedman test allowed checking if there exist significant

differences among the three techniques under investigation. We test H1 (and its

subhypotheses) to evaluate the RQ2.1 in the six experimental tasks (Table 11).

Table 11 and Table 12 show the p-values for the pairwise comparison. Bold

p-values highlight statistically significant results (i.e., p-value < 0.05). They

indicate the rejection of the respective null hypothesis. The main feature is that the

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

101

 f(MA,MB) diff(MCM,MAB)

task statistics TRA vs RSA TRA vs EPS RSA vs EPS TRA vs RSA TRA vs EPS RSA vs EPS

All
p-value 0.0269 0.0001 0.0003 0.0337 0.0003 0.0891

W -77 -834 -588 -233 -533 -186

1
p-value 0.4294 0.4062 0.3628 0.1438 0.5 0.3981

W -4 5 6 16 -1 4

2
p-value 0.2305 0.0078 0.0342 0.0178 0.2284 0.2303

W -12 -34 -27 -21 -8 8

3
p-value 0.3762 0.0171 0.1548 0.2731 0.0526 0.1250

W -4 -26 -16 -8 -20 8

4
p-value 0.2931 0.0111 0.0171 0.2931 0.0634 0.0369

W -3 -28 -26 3 -19 -22

5
p-value 0.0747 0.0039 0.0177 0.0207 .0.848 0.1982

W -18 -36 -31 -11 -25 -11

6
p-value 0.2188 0.0750 0.1094 0.0672 0.0111 0.1163

W -9 -18 -13 -12 -28 15
W: sum of signed ranks, f: effort to apply the composition technique,
Diff: inconsistency detection effort, RSA: IBM rational software architect, EPS: Epsilon, TRA: traditional algorithm

Table 11: Wilcoxon test results for application and detection effort

general composition effort (f, diff and g) using heuristic-based techniques were

significantly lower than using automated techniques in all cases. Still, by using the

traditional algorithms this significance is higher. Thus, we can reject the H1 null

hypotheses (and its H11-0, H12-0, H13-0 e H14-0). For example, in row 2 of Table

12, for measure Effort, between RSA and EPS, the W is negative (-544) and p-

value is less than 0.05 (p = 0.0015) our selected significance level). This means

that the composition effort by using the IBM RSA is significantly lower than one

using Epsilon. Still in row 2 just a null hypothesis was not rejected in just one

case: the effort to detect inconsistencies considering the IBM RSA and Epsilon (p-

value = 0.0891). This means that the subjects did not spend substantially different

effort to detect inconsistencies in IBM RSA and Epsilon. Therefore, our initial

intuition that the specification-based technique would not reduce the composition

effort is confirmed.

Given this surprising result, we were encouraged to apply the Friedman’s

test to eliminate threats to statistical conclusion validity. This test also confirmed

the above conclusions. The results are shown in Table 13. Again bold p-value

(<0.05) means that there is a significant difference between the mean ranks in

repeated measures of effort. Hence, there is sufficient evidence to reject the null

hypothesis, and conclude that there is a difference between the composition

efforts at the 0.05 level of significance. For example, in row 1, a chi-Square (χ
2)

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

102

 General Effort g(MCM)

task statistics TRA vs RSA TRA vs EPS RSA vs EPS TRA vs RSA TRA vs EPS RSA vs EPS

All
p-value 0.0056 0.0001 0.0015 0.0164 0.0003 0.0422

W -420 -900 -544 -261 -423 -248

1
p-value 0.3349 0.5 0.5 0.4661 0.3989 0.3054

W 6 0 0 -2 -4 -7

2
p-value 0.0149 0.0039 0.1462 0.0828 0.0528 0.2226

W -32 -36 -16 -14 -24 -10

3
p-value 0.2891 0.0156 0.1355 0.2303 0.0625 0.1238

W -8 -21 -14 -8 -10 12

4
p-value 0.5 0.0111 0.0156 0.5 0.0178 0.0445

W -1 -28 -26 0 -21 -17

5
p-value 0.0167 0.0071 0.977 0.2763 0.4326 0.5

W -26 -36 -20 -8 -3 -1

6
p-value 0.0452 0.0313 0.4228 0.0463 0.1250 0.4219

W -21 -23 3 -17 -28 28
W: sum of signed ranks, g: resolution effort, RSA: IBM rational software architect, EPS: Epsilon,

TRA: traditional algorithm

Table 12: Wilcoxon test results for the resolution and general effort

Task Statistics Effort f(MA,MB) diff(MCM,MAB) g(MCM)

all p-value 0.0001 0.0001 0.0048 0.0017

χ
2

26.21 26.64 10.66 12.76

1 p-value 0.7682 0.8135 0.5690 0.3977

χ
2
 0.8571 0.4 1.1515 1.931

2 p-value 0.0048 0.0789 0.0789 0.1495

χ
2
 9.75 5.25 5.12 3.931

3 p-value 0.1916 0.1916 0.4861 0.3046

χ
2
 3.630 3.630 1.68 2.5454

4 p-value 0.0084 0.0036 0.0272 0.0207

χ
2
 8.615 9.333 6.333 7.5238

5 p-value 0.0099 0.0024 0.0024 1

χ
2
 8.968 10.516 10.51 0

6 p-value 0.0854 0.0272 0.0207 0.0003

χ
2
 5.429 6.231 7.6923 12.074

χ
2
: Friedman's Chi-Square, α = 0.05

Table 13: Statistical test for the Friedman Test

value of 26.21 and p = 0.001 (with p<0.05) indicates a statistically significant

difference in the effort measures associated with the three techniques.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

103

4.1.2.2.
RQ2.2: Correctness and Composition Techniques

Descriptive Statistics. Figure 8 shows the correctness of the compositions

generated by using the three techniques: traditional algorithms, Epsilon, and IBM

RSA during the six experimental tasks. The axis-y represents the proportions of

numbers of MAB (the intended model) achieved by the number of compositions

realized in each task using each composition technique, while the axis-x consists

of the experimental tasks. Recall that the composition of MA and MB often MCM

instead of MAB. In this case, we calculate the rate of MAB produced in 46

compositions. Thus, the histogram shows how the correctly composed model

happened throughout the experimental tasks.

The main outstanding feature is the lack of a distribution pattern of the

proportions of correctly composed model in the tasks. For example, in task 1,

TRA produced a lower proportion of correctly composed model than RSA and

EPS. That is, the intended model was generated in 42.86 percent of the cases in

TRA, whereas 57.14 percent of the cases in RSA and EPS. On the other hand, in

task 2, TRA outnumbers RSA and EPS. It produced the intended model in 71.43

percent of the cases, while EPS and RSA produced 28.57 and 57.14 percent of the

cases, respectively. Although TRA has obtained low measures in task 3 in

comparison to task 2 (a decrease from 71.43 to 42.86 percent), it still got a

superior value compared to EPS and RSA — i.e., value by about three times

higher than the measure of EPS and RSA, comparing 42.86 and 14.29 percent.

Moreover, TRA and EPS had an equal proportion of correctly composed

model in task 4, presenting an increase of around 20 percent considering RSA. On

the other hand, in task 6, this superiority was reversed. RSA got double the value

than TRA and EPS, comparing 28.57 and 57.14 percent. In task 5, the superiority

of TRA and RSA considering EPS was evident. Still, subjects obtained the

intended model by using TRA and RSA in all composition cases, while less than

half of the cases in EPS. We have observed that TRA got a higher number of

intended models than RSA and EPS. The subjects produced the intended model in

61.90 percent of the compositions using TRA against 59.52 and 42.86 percent

using the RSA and Epsilon technique, respectively. Two interesting insight were

that (1) the composition techniques require different effort in front of the

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

104

Figure 8: The correctness of the output composed model

categories of evolution changes, and (2) the specification-based technique does

not guarantee superiority in terms of correctness in comparison with the heuristic-

based techniques.

Table 14 shows the descriptive statistics of the inconsistency rate of the

composed models. Our initial expectation was that the specification-based

technique would minimize the inconsistence rate whereas also get lower measures

than the heuristic-based techniques. However, this expectation was not confirmed.

We have observed that, in most cases, the inconsistency rate was similar using

specification-based and heuristic-based techniques. This means that developers

will not produce correctly composed model by using a technique based on

composition specifications. Rather, the output models will have equal (or even

more) inconsistency rate. For example, on average, EPS produced a higher

inconsistency rate than TRA and RSA. Table 14 shows evidence of the superiority

of EPS compared to the TRA. In general, the mean of the inconsistency rate in

Epsilon is two times higher than one TRA and RSA, increasing by about 123 and

176 percent, respectively. Still note that the inconsistence rate in RSA is also

higher than in TRA. In short, the inconsistency rate in EPS is higher than RSA,

which outnumber TRA. This suggests that the inconsistency rate have favored

TRA in comparison with RSA and EPS in most cases. This implies that to some

extent the number of inconsistencies is decreased whenever the composed model

is produced by TRA and RSA. In the next section, we test H5 and H6 to check if

whether the differences observed are substantially significant.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

105

Task Comparison χ
2
 p-value

all

TRA vs RSA 0.27 0.606

TRA vs EPS 0.75 0.387

RSA vs EPS 0 1

χ
2

: Friedman's Chi-Square, α = 0.05

Table 15: McNemar test results for correctness

 N Min 25th Med 75th Max Mean St D.

TRA 46 0 0 0 0.31 1.63 0.26 0.45

RSA 46 0 0 0 0.425 1.22 0.21 0.29

EPS 46 0 0 0.47 0.78 5.22 0.58 0.88

N: #compositions, Min: minimum, Med: median, Max: maximum,

StD: Standard Deviation,

Table 14: Descriptive statistic for the inconsistency rate

Hypothesis Testing. RQ2.2 evaluates if the specification-based techniques

assure a higher number of correctly composed model than the heuristic-based

techniques. We test H21 (and its sub hypothesis H22) to investigate RQ2.1. For

this, we apply the McNemar test. Table 15 shows the chi-square statistic (χ
2) and

p-values for the pairwise comparisons. In all cases, the p-value is large (p > 0.05),

so the null hypothesis of H21-0 cannot be rejected. Although the p-value to the six

tasks is not shown in the table, the p-value took values greater than 0.05 in the six

tasks. This implies that there is no significant difference between the proportions

of correctly composed model of the composition techniques.

We test H22 by applying the Wilcoxon test. Table 16 depicts the pairwise p-

values for each measure. Bold p-values point out statistically significant results.

They also indicate the rejection of the null hypothesis. Note that the sum of signed

ranks (W) shows the direction in which the result is significant. For example, in

row 2, W is negative (-250) and p-value is lower than 0.05 (p = 0.0301) for the

measure between TRA vs EPS. This means that the inconsistency rate for TRA is

significantly lower than in EPS. RSA also obtained an inconsistence rate

significantly lower (p = 0.001) than EPS. For instance, in row 1, the W is negative

(-5) and p-value is higher than 0.05 for the inconsistency rate between TRA vs.

RSA. This means that the inconsistency rate for TRA is lower, but no

significantly lower than RSA.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

106

Task statistic
Inconsistency Rate

TRA vs RSA TRA vs EPS EPS vs RSA

All
p-value 0.4851 0.0301 0.0011

W -5 -250 344

1
p-value 0.2188 0.2188 0.5000

W 7 7 -1

2
p-value 0.3750 0.2188 0.0781

W 2 -9 15

3
p-value 0.2002 0.1094 0.1355

W -9 -16 14

4
p-value 0.5000 0.5000 0.2071

W -1 1 -4

5
p-value 0.5000 0.1875 0.1250

W 1 -6 8

6
p-value 0.1982 0.1094 0.0469

W 9 -16 17
W: sum of signed ranks, g: resolution effort, RSA: IBM rational software architect,

EPS: Epsilon, TRA: traditional algorithm

Table 17: Wilcoxon test results for the corretness

Task Statistics Rate

all p-value 0.0258

χ
2

7.314

1 p-value 0.7682

χ
2
 0.4210

2 p-value 0.0854

χ
2
 4.666

3 p-value 0.4861

χ
2
 1.407

4 p-value 0.7682

χ
2
 0.666

5 p-value 0.4861

χ
2
 2

6 p-value 0.2366

χ
2
 3.3076

χ
2

: Friedman's Chi-Square, α = 0.05

Table 16: Friedman test result for inconsistency rate

These results also encouraged us to apply the Friedman test (Table 17). We

obtained a chi-square value (χ2) of 7.314 with p-value = 0.0258, which is lower

than 0.05 hence is significant. This means that there exists a significant difference

between the inconsistency rate by using TRA, RSA, and EPS. However,

considering each experimental task, the results did not take significance (i.e., p >

0.05). This means that a technique did not significantly outperform the other two

ones. For example, in task 1, the chi-square value (χ2) of 0.4210 with a p-value =

0.7682 indicates that there exist no significant difference between the three

techniques in terms of inconsistency rate.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

107

This finding can be explained based on two reasons captured during the

interviews and analysis of the qualitative data (i.e., video records and audio). First,

the specification-based technique adds a difficulty undesired to match and

compose the input model elements, as it was not particularly challenging for the

subjects write down the compositions. In particular, this was more often observed

in compositions dominated by relations of the type one-to-many (1:N) or many-

to-many (N:N) between the input model elements. The specification-based

technique proved to be a highly intensive manual task and more prone to errors.

Second, the IBM RSA shows the commonalities and differences between the

input models in multiple views. This jeopardizes the subjects create a “big picture

view” of the output intended model. Finally, we summarized three lesson learned

as follows: (1) the model composition techniques should be more intuitive and

flexible to express different categories of changes; (2) the techniques should

represent the conflicts between the input models in more innovative views and

report them soon after they arise; (3) new composition technique should be a

mixture of specification-based and heuristic-based techniques; and (4) the

heuristic-based techniques consumed less effort and were more effective than the

specification-based technique. This suggests that the tools for specification-based

techniques may be very rigid and need more flexibility so that, for example,

developers can adjust the composition specification considering their experience.

4.1.3.
Limitations of Related Work

Model composition techniques have been studied in many research areas

such as merging of state charts (Whittle et al., 2010), composition of software

product lines (Thaker et al., 2007; Jayaraman et al., 2007), composition of aspect-

oriented models (Klein et al., 2006), and mainly composition of UML design

models (Clarke, 2001; Dingel et al., 2008). Such research initiatives focus on

proposing model composition techniques or even creating innovative modeling

languages. However, the evaluation of the developers’ effort on composing design

models using the proposed techniques is still incipient. The lack of quantitative

and qualitative indicators on composition effort hinders mainly the understanding

of side effects peculiar to certain composition techniques.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

108

Current works have notably aimed at evaluating modeling languages, such

as UML in terms of some quality attributes such as comprehensibility (Ricca et

al., 2010) and completeness (Lange et al., 2004). Although UML has been

adopted as the industry standard modeling language, it is just a point of

investigation in empirical studies considering model composition. In general,

most of the research on the interplay of effort and composition techniques rest on

subjective assessment criteria (France & Rumpe, 2007; Mens, 2002; Uhl, 2008;

Farias, 2010a). Mens points out the need for studies aimed at investigating the

effort to integrate software artifacts such as the source code. Uhl also highlights

the superior difficulty of composing models compared to code and reinforce the

need for studies reporting the effort required to compose design models.

Even worse, this has led to depend on feedback’s experts, who have built up

an arsenal of mentally held indicators to analyze the growing complexity of

models and then evaluate the effort on composing them (Farias et al., 2010).

Consequently, developers ultimately rely on feedback from experts to determine

“how well” the compositions were performed. There are many examples of model

composition techniques in the literature such as MATA (Whittle & Jayaraman,

2010), Kompose (Kompose, 2011), Epsilon (Epsilon, 2011), and IBM RSA (IBM

RSA, 2011). Nevertheless, they will only be useful if the quality of the output

composed models (e.g., correctness) is assured and the composition effort

required is low. Unfortunately, these approaches do not offer any insight or

empirical evidence about the effort required to compose design models. As a

matter of fact, the current literature about composition techniques points out the

absence of empirical studies and do highlight the importance of studies reporting

empirical evidence (Farias et al., 2010; France et al, 2007; Whittle et al., 2010;

Apel et al., 2011, Sarma et al., 2011; Mens, 2002; Nejati et al., 2007). To the best

of our knowledge, our results are the first to empirically investigate the topics of

the research questions in a systematic and controlled way.

4.1.4.
Threats to Validity

This section discusses how the internal, statistical conclusion, construct, and

external threats were mitigated.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

109

Internal Validity. The inferences between the independent and dependent

variables are internally valid if a causal relation is demonstrated (Wohlin et al.,

2000; Kitchenham et al., 2008). Our study met the internal validity because: (1)

the temporal precedence criterion was met; (2) the covariation was observed, i.e.,

the dependent variables varied accordingly, when the independent changed; and

(3) there is no clear extra cause for the detected covariation.

Statistical Conclusion Validity. We checked if the independent and

dependent variables were submitted to suitable statistical methods. For this, two

points were analyzed. First, whether the presumed cause and effect covaries. The

study of the normal distribution of the data collected reduced this threat; as it was

possible to verify if parametric or non-parametric statistical methods might be

used (or not). In doing so, the Shapiro-Wilk test (Sheskin, 2007) was used to

determine how likely the collected sample was normally distributed. As the

dataset did not assume a normal distribution, non-parametric statistics were used.

Hence, the assumptions of the test statistics were not violated. Second, how

strongly the inferences covary. The hypotheses were tested at significance level of

0.05 level (p-value ≤ 0.05). In addition, some guidelines (Wohlin et al., 2000;

Shadish et al., 2002; Sjoberg et al., 2002) were followed so that the assumptions

of the statistical test were not violated and the homogeneity of the subjects’

background was assured.

Construct Validity. It concerns the degree to which inferences are warranted

from the observed cause and effect operations included in our study to the

constructs that these instances might represent. That is, it answers the question:

"Are we actually measuring what we think we are measuring?" All variables of

this study were quantified based on previous studies (Farias et al., 2010). Thus,

they were defined and independently validated. Moreover, the concept of effort

used in our study is well known in the literature (Jorsengen, 2005). Therefore, we

are sure that the quantification method used is correct, and the quantification was

accurately done.

External Validity. We analyzed whether the causal relationships investigated

in this study could be held over variations in people, treatments, composition

techniques, and the design models. There are reasons to believe the results

generalize beyond the three techniques used, but leave it to further work to fully

test this.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

110

4.1.5.
Concluding Remarks of the First Study

The previous section represents a first controlled experiment to assess and

compare the specification-based and heuristic-based techniques in terms of effort

and correctness. By controlling these variables, we investigated the effects of

model composition techniques on six quality notions, namely syntactic, semantic,

effort, application, detection, and resolution ones. From the quantitative and

qualitative analyses, we observed some findings.

First, developers tend to have an additional difficulty to match and compose

the input model elements by using specification-based composition techniques,

such as Epsilon. The main reason was that the creation of composition

specifications has often been an effort-consuming task. Developers invested so

much effort to define how the properties of the model elements should be related.

This additional difficulty was converted into a superior effort to compose the

design models. On the other hand, developers invested less effort to compose the

design model by using the heuristic-based composition techniques, such as IBM

RSA. The techniques did not require an extra effort to define the similarity

between the model elements and realize the compositions.

Second, the composition techniques required different amount of effort in

specific composition scenarios. That is, the type of change found in the delta

model affected the composition effort. The compositions whose goal were to only

accommodate new model elements from the delta model into the base model

required similar effort between the heuristic-based and specification-based

composition techniques. On the other hand, composition scenarios in which were

not dominated by additions, the effort invested to compose the models were

different. In particular, this was more often observed in compositions dominated

by relations of the type one-to-many (1:N) or many-to-many (N:N) between the

input model elements. The specification-based technique proved to be a highly

intensive manual task and more prone to errors.

Moreover, we summarized three lessons learned as follows: (i) all the model

composition techniques should be more flexible to express different categories of

changes (Section 4.1.2.1); (ii) the techniques should report conflicts as soon as

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

111

they arise (Section 4.1.2.1); such conflicts between the input models should be

represented in more intuitive views; (iii) new composition technique should be a

mixture of specification-based and heuristic-based techniques as if a set of

adequate composition rules are defined and reused, the specification-based

techniques can present better results compared to the heuristic-based techniques;

and (iv) the heuristic-based techniques consumed less effort and were more

effective than the specification-based technique. The latter finding suggests that

the tools for specification-based techniques are hard to perform model

composition, mainly due to the additional difficulty of manually specifying how

the input models should be composed, given the problem at hand.

In addition, we found that the specification-based techniques neither reduce

the developers’ effort nor guarantee the correctness of the compositions. Even

worse, the traditional composition algorithms outperformed the specification-

based technique to some extent. Given that little is known about the real effort that

developers invest to compose design models, this study might be seen as a first

exploratory study that investigates the effects of the composition techniques on

the effort in a systematic and controlled manner. However, further empirical

studies are still required to better understand if these findings are confirmed or not

in other contexts, considering other design models, having different evolution

scenarios, and evaluating new composition techniques.

4.2.
Analyzing the Effort of Composing Design Models of Large-Scale
Software

As previously mentioned, there has been a significant body of research into

defining model composition techniques in the area of governance and

management of enterprise design models (Norris & Letkeman, 2011), software

configuration management (Perry et al., 2001), composition of software product

lines (Jayaraman et al., 2007; Thaker et al., 2007), aspect-oriented modeling

(Whittle et al., 2009; Klein et al., 2006), and integration of state charts (Whittle &

Jayaraman, 2010).

Unfortunately, both commercial and academic model composition

techniques suffer from the composition conflict problem. That is, models to-be

composed conflict with each other and developers are usually unable to deal with

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

112

the conflicting changes. Hence, these conflicts are transformed into

inconsistencies in the output composed model (Diskin et al., 2010). For example,

two developers concurrently work on a same class diagram, which has two

abstract classes A and B. The first developer creates an inheritance relationship

between the abstract class A and B (i.e., B.superclass = A), while the second

developer modifies the class A from abstract to concrete (i.e., A.isAbstarct =

false). Although these are simple changes, usually the developers are not aware of

these conflicting changes performed in parallel. Hence, the composition of the

partial models produces an inconsistent class diagram i.e., an inheritance

relationship between an abstract class B and a concrete class A. The current

composition techniques cannot automatically resolve these inconsistencies

(Egyed, 2010; Egyed, 2007); because inconsistency resolution relies on an

understanding of what the models actually mean. This semantic information is

typically not included in any formal way in the design models. Consequently,

developers must invest some effort to manually detect and resolve these

inconsistencies. The problem is that high effort compromises the potential

benefits of using model composition techniques, such as gains in productivity.

To date, however, nothing has been done to (1) quantify the composition

effort in key software development activities, including software evolution, and

(2) characterize the influential factors that can affect the developers’ effort in

practice. Hence, developers cannot adopt or assess model composition based on

practical, evidence-based knowledge from experimental studies. Rather, they rely

on diverging feedbacks from evangelists; these feedbacks often diverge.

The goal of this second study, therefore, is to report on five industrial

exploratory case studies that aimed at (1) providing empirical evidence about

model composition effort, and (2) describing the influential factors that affected

the developers’ effort. These studies were performed in the context of the

evolution of design models of five large-scale software systems. During 56 weeks,

297 evolution scenarios were performed, leading to 2.288.393 compositions

between modules, classes, interfaces, and relationships. We draw the conclusions

from quantitative and qualitative investigations including the use of metrics,

interviews, and observational studies. We investigate the composition phenomena

in their context, stressing the use of multiple sources of evidence, and making

clear the boundary between the identified phenomenon and its context. While we

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

113

believe this study is representative of the broader issues, we make no claims about

the generality of our results beyond the composition of UML class and sequence

diagrams of large-scale software.

The following subsections are organized as follows. Section 4.2.1

introduces the main concepts and knowledge that are going to be used and

discussed throughout the thesis. Section 4.2.2 elaborates the composition scenario

that will be used as a frame of reference. Section 4.2.3 describes the research

methodology followed. Section 4.2.4 presents the analysis of composition effort.

Section 4.2.5 contrasts our work with related work. Finally, Section 4.2.6

discusses some concluding remarks and future work.

4.2.1.
Background

Three-way merge algorithm (Mens, 2002) is a well-known method to merge

software artifacts. This method has increasingly been incorporated into the most

popular and robust industrial modeling tools, such as IBM RSA (IBM RSA,

2011). This algorithm refines the specification of model composition cited

previously. Instead of taking into consideration only two input models MA, the

local design model version, and MB, the last design model release located in the

enterprise repository, it also considers MP, the parent of MB. This means that it

takes into account not only the differences between the two input design models

MA and MB to conduct the composition, but also the contrast between them and

MP. For example, in Figure 10(A), the developer, Steve, produces a composed

model, V3, merging the local version, S3, with its parent, V1, and with the last

version of the repository, V2. Note that the more precise the match processes

between the MP, MA, and MB, the better the “best-guess” analysis to generate the

resulting compositions.

Model composition following this algorithm can be represented as

Merge(MP, MA, MB), where MP is the model version from which MA is descent,

MA is the base model, and MB is the delta model. MP is used to better track the

changes between MA and MB. For example, revisiting the example in Section 4.2,

the decision if the class A should be (i.e., A.isAbstract = false) or abstract (i.e.,

A.isAbstract = true) may be supported by considering a previous version, MP. This

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

114

ancestral version will provide some addition information about how the class was

previously. Based on this, developers can make decisions more effectively.

The merging session between MP, MA, and MB is typically executed as soon

as an automated difference analysis between them is done. After identifying the

commonalities and differences between the input models, they are merged so that

a new release can be produced, MAB. This type of composition is applied to

collaborative working environment in order to enable more effective team

collaboration. It is expected that this effectiveness can be transformed into gain of

productivity, and sometimes this is possible because a couple of reasons (Mens,

2002). For example, it requires less user intervention, and in many cases, requires

no intervention at all (depending upon the complexity of the composition). Hence,

the expectation is that developers’ effort invested in parallel increase their

productivity proportionally. On the other hand, even though it has reached a high

level of precision to compose UML design models, the three-way merge still

remains one of the more taxing tasks of any collaborative software development

team . This is due to the prior knowledge that developers should accumulate about

the initial design model, MP, the current version, MA, and the intended changes,

MB.

4.2.2.
Composition Scenario

After describing the main concepts used in our study, we describe the

context where our study was carried out. In the absence of a theory about model

composition (Sjøberg et al., 2008), this description is used as a frame of reference

(Runeson & Höst, 2009) for our study. The goal is to illustrate the real-world

settings in which the case studied happened. To this end, a motivating

composition scenario is presented to carefully highlight the problems faced.

4.2.2.1.
Collaborative Model Evolution

Figure 9 represents an ever-present collaborative software modeling

scenario in our study. We explain three points about this scenario. First,

developers work in parallel to increase productivity. They take part of the system

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

115

functionalities represented in use cases, and then create UML classes, and

sequence diagrams from them. The system functionalities described in these use

cases overlap with each other; hence, the design models become to have some

critical overlapping points. That is, diagrams that share model elements. This is a

critical because if a model element is inconsistent, then all diagrams are affected.

These points are a source of inconsistency propagation and developers are unable

to trace the side effects of all propagations. For example, Peter, Steve and Bill

produce UML class diagrams, named P1, S2 and B3, related to the first, second

and third use case specification, respectively. However, it is by no means obvious

(if not impossible) for the developers to foresee these overlapping points, detect

the possible conflicts, and measure their consequences at modeling time. Steve

cannot predict that changes performed in his model, S2, may give rise to

conflicting changes into the Peter’s model, P1, and Bill’s model, B3. Similarly, it

is an effort-consuming task for Peter to identify and grasp that conflicting changes

between his model and the Steve’s model may propagate into the Bill’s model,

B3, given the problem at hand. Consequently, the developers inevitably end up

creating inconsistent models, since they are unable to effectively deal with a set of

conflicting changes.

Second, to overcome this problem, the developers need to invest effort to

localize and resolve the inconsistencies. For this, developers must understand the

system functionalities and the reasons why the changes happened. For example,

Steve would need to understand the semantics of the system functionalities

described in the first and third use case specifications. This understanding is

required to properly identify and resolve all composition inconsistencies present

in his design models (S2). Finally, given the inherent complexity of composing

design models it is particularly challenging for developers to: (1) objectively

localize these critical overlapping points, (2) quantify the effort variables (f, diff,

and g), (3) overcome the emerging inconsistencies, and (4) grasp which influential

factors affects the effort variables.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

116

4.2.2.2.
Motivating Example

Given the need to evolve enterprise design models (e.g., UML class diagrams)

and the time constraint (only three days), three developers (Peter, Steve, and Bill)

work concurrently to increase the productivity. Firstly, developers check out the last

version of the design model (V1) from the repository (Figure 10(A)). V1 is the

base model represented in Figure 11(A). After that, they perform a set of

modifications over their local versions (i.e., P1, S1, and V1) to evolve them.

Figure 10(B) shows a timeline of the modifications and Figure 11(B) represents

the delta model that brings together the changes. The developers perform four

types of modifications:

(1) Add the stereotype <<MainClass>> to indicate that a class starts up a

use case.

(2) Modify the color of a class from white to gray (and vice-versa) to

indicate that is part of a framework (or not).

(3) Add the stereotypes <<use>> and <<instance>> to relationships to

indicate that a class use and instantiate the other one, respectively.

(4) Add methods to represent that a class implements a new (part of)

functionality.

Figure 9: A real-world collaborative model composition leading to two critical

overlapping points

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

117

(5) Delete some model element.

However, some composition conflicts between the V2 and S3 emerge when

Steve submits its last local version, S3, to the repository. This composition session

can be briefly represented by Merge(V1,V2,S3). These conflicting changes

between the Peter and Steve versions are described as follows:

1) Peter sets correctly the color of the class ApplicationType to gray

(step 1), while Steve sets the color to white (step 2).

2) Peter sets incorrectly the color of the class Application to white

(step 2), while Steve updates the color of it to gray (step 3).

3) Peter adds the stereotype <<use>> to the relationship between the

class MarlimCore and EditPSDiagOptionsAction, while Steve removes this

relationship.

4) Peter removes the class PSElementGroup, while Steve creates an

inheritance relationship between the class PSElementGroup and Production.

5) Peter creates a relationship of association between

PSDiagramOptionsDialog and MarlimInputData, while Peter removes

the attribute status: StatusPanel from the class

PSDiagramOptionsDialog and transform it into a new class, and creates

a relationship of aggregation between the new class StatusPanel and

MarlimInputData.

6) Peter modifies the method execute():void to runEditionPanel,

while Steve modifies the method’s name to executeEdition().

To submit his changes, Steve should know to deal with these contradicting

modifications so that the new model version, V3, can be produced. The problem

is that, in general, the developers are not always able to understand the emerging

conflicts or properly solve them. As a consequence, they realize (or let pass)

some incoherent modifications over the input models.

To illustrate these incoherent actions, let us regard the conflicting change

number one. If Steve does not accept Peter’s changes, then the output composed

model is going to have an unexpected change. That is, the class AppliactionType

of the enterprise framework will have erroneously the color white instead of gray.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

118

Figure 10: A real-world use scenario of model composition (A). The change descriptions

performed by the developers (B).

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

119

 Another example would be the conflicting change five. Peter and Steve

propose two ambiguous modifications to allow the class

PSDiagramOptionsDialog to access objects of the MarlimInputData. However,

usually these ambiguities are neither properly localized nor understood. This leads

the output composed model to have both changes. The result is, therefore, an

output composed model with inconsistencies, which is produced from the local

project to the enterprise repository V3. Even though, these inconsistencies are

usually propagated downward to the developers’ local projects. Peter’s P3 and P4

local version in Figure 10(A), and the Steve’s S4 local version represent this

propagation. Bill follows the same submission procedures performed by Peter and

Steve; then, he produces the composition session (see Figure 10(A)) represented

briefly by Merge(V1,V3, B4) (see Figure 12). The problem is that, in this case, the

output composed model, V4, could not be generated. The chief reasons were: the

size of the delta model, once Peter’s and Steve’s changes are also considered

during the composition session; and the amount and complexity of the conflicting

changes that should be analyzed, since to produce V4 correctly, many semantic

and syntactical issues need to be considered. That is, Bill inevitably needs to grasp

the meanings of each modification accomplished previously by Peter and Steve.

Even worse, this understanding cannot be always acquired. This problematic

evolution scenario is described as follows:

1) Bill assigns correctly the stereotype <<MainClass>> to the class

MarlimCore (B2.step 1), while Peter attaches this stereotype to the class

EditPSDiagOptionsAction (step 1).

2) Bill attaches the stereotype <<instance>> to the dependence

relationship (B2.step 2), while Peter attaches the stereotype <<use>> to this

relationship (step 3) and Steve deletes this relationship (S2.step 4).

3) Bill just creates the dependence relationship between the class

MarlimCore and EditPSDiagOptionsAction (B3.step 1), while Steve correctly

creates this relationship and attaches it to the stereotype <<use>> (S2.steps 7

and 8).

4) Bill correctly transforms the concrete class PSElemenGroup to an

abstract class (B3.step 3), while Peter removes this class (P2.step 4) and Steve

creates an inheritance relationship between the classes PSElemenGroup and

Production. This implies that if the change of Bill is accepted, then the

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

120

(A)

 (B)

Figure 11: The Base Model (A) and the Intended model (B)

change of Steve should be rethought, otherwise we will have a syntactically

incorrect inheritance relationship between the now abstract class

PSElemenGroup and the concrete class Production.

5) Bill modifies correctly the return type of the method

MarlimCore.handleInvalidOutput() from void to Status (B3.step 4), while

Steve modifies it wrongly to String.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

121

Figure 12: The model versions created by Peter (P2) (above) and Steve (S3) (below).

6) Peter attaches the stereotype <<instance>> to the dependence

relationship between the classes ProductionSystem and

EditPSDiagOptionsAction (P2.step 7), while Bill removes this relationship

improperly (B4.step 1) (see Figure 13).

 To resolve properly such conflicts, sometimes the developers must engage

to seek solutions for conflicts that come from different sources. For example, the

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

122

resolution of the second conflicting changes requires handling systematically the

contradicting modifications created by not just one developer (Peter’s changes),

but by two developers (Peters’ and Steve’s changes). Moreover, this manipulation

must necessarily involve the three developers so that semantic and syntactical

issues can be carefully understood.

4.2.3.
Study Methodology

This section presents the study methodology based on practical guidelines

of empirical studies (Runeson & M. Höst, 2009; Wohlin et la., 2000; Kitchenham

et al., 2008).

4.2.3.1.
Objective and Research Questions

This study aims at evaluating the effects of model composition techniques

on six quality notions, namely syntactic, semantic, effort, application, detection,

and resolution ones. In particular, this Chapter focuses on generating practical

knowledge about the values that the composition effort’s variables assume in real-

Figure 13: The model versions created by Bill (B4).

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

123

world settings. To this end, the research question (RQ2) defined in Section 1.3 is

evaluated in this second study. As these variables may be affected by some

influential factors, this work also attempts to understand and characterize these

factors. With this in mind, we formulate two research questions:

 RQ2.3: What is the effort to compose design models?

 RQ2.4: What are the factors that affect composition effort?

4.2.3.2.
Context and Case Studies

We performed five case studies to investigate RQ2.3 and RQ2.4 The context

of the studies was collaborative modeling in industrial projects. Developers used

model composition to evolve and reconcile design models. Table 18 presents a

suite of metrics to characterize the models involved in the studies. Table 19 shows

the collected measures for these metrics. As previously mentioned, during 56

weeks, 297 evolution scenarios were performed leading to 2.288.393

compositions between modules, classes, interfaces, and relationships.

All five cases differ in terms of their size, number of participants, and

application domain. These cases are characterized as holistic case studies

(Runeson & M. Höst, 2009; Wohlin et la., 2000; Kitchenham et al., 2008), where

contemporary phenomena of model composition are studied as a whole in their

real-life context. We present a brief description of the systems used as follows:

 Alope: a system that controls and manages the import and export of

Petroleum (and its derived products).

 Bandeira: a logistics system is responsible for the complement management

of the flow of goods.

 GeoRisco: a system that supports forecast and controls of environmental

catastrophes.

 Marlim: a system that simulates the design and extraction of Petroleum from

deep ocean areas.

 PlanRef: a system that provides decision making support for logistics and

planning processes in Petroleum refineries.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

124

Type Metric Description

Size

NumClass #classes

NumAttr #attributes

NumOps #operations

NumInter #interfaces

Inheritance

DIT the sum of depth of the class in the inheritance
hierarchy.

OpsInh #inherited operations.

AttrInh #inherited attributes.

Coupling Dep_Out #dependencies where the package is the client.

 Dep_In #dependencies where the package is the supplier.

 NumPack #packages

 R #relationships between classes and interfaces.

 H relational cohesion

 Ca #afferent coupling of the packages

 Ce #efferent coupling of the packages

 A # abstractness (or generality) of the packages.

Project

NumWeeks # weeks

NumDev # developers

NumEvol # evolutions scenarios

 #: the number or degree of all

Table 18: Metrics used

Metrics Alope Bandeira GeoRisco Marlim PlanRef

NumClass 316 892 1394 2828 1173

NumAttr 1732 3349 8424 9689 3808

NumOps 3479 7590 10608 23722 9111

NumInter 18 83 143 223 93

DIT 140 216 1109 2528 871

OpsInh 3414 6620 12482 38181 16369

AttrInh 1507 1766 9003 9147 4406

Dep_Out 72 464 61 453 330

Dep_In 65 423 58 418 322

NumPack 34 166 175 345 187

R 1285 1360 3008 4493 2251

H 47.5 216.8 261.9 448.6 282.5

Ca 278 1147 1632 4044 2329

Ce 235 996 1278 2723 1451

A 9.58 50.45 36.9 66.5 51.9

NumWeeks 6 15 8 17 10

NumDev 3 7 2 7 4

NumEvol 6 95 55 64 77

Table 19: The collected measures of the case studies

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

125

These systems are featured as scientific software (Kelly, 2006) because they

require knowledge from multiple application domains, and encompass a broad

class of concepts of physical phenomena, including oil pressure, fluid density,

logistic, temperature scale, dilatation of fluids, temperature, fluid pressure,

geologic risk, and supply chain. They were chosen based on some reasons

presented in the following. First, the cases used robust modeling tool (IBM

Rational Software Architect) allowing developers to merge design models, work

in parallel, and validate the design models. The IBM RSA was used due to: (1) the

implementation robustness of its composition algorithms; (2) the tight integration

with the Eclipse IDE; and (3) the tool had been already adopted in previous

successful projects. In addition, we also required the UML CASE tools to have an

XMI export facility, which will allow us to analyze the design models using

metrics tool. Additionally, all cases used a bug tracking system, i.e., JIRA, with

which it was possible to coordinate the developers’ tasks, specifically during the

creation of the design models and review of the models.

Finally, on average, four professional developers have participated in each

case study, totaling more than 10 developers in all case studies. The advantage of

using experienced professional developers is to avoid one of the main criticisms

of most case studies in software engineering, in especial software modeling,

regarding the degree of realism of the studies. Thus, we believe that the collected

data are representative of developers with industrial skills.

4.2.3.3.
Subjects

The background of the subjects was an ever-present concern in the

experimental design. As the case studies were performed in vivo in a Brazilian

company, the subject selection was based on convenience (Wohlin et al., 2000). In

total, 12 subjects were recruited. Table 20 describes the subjects’ background. We

analyzed the level of theoretical knowledge and practical experience of these

subjects.

Regarding the theoretical knowledge issues, we checked the quality of the

education system that the subjects come from. We observed that this system,

where the subjects were students, is a system that places a high value on

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

126

theoretical issues about the foundational principles of software engineering and

software modeling. Moreover, this educational system provides an academic

formation with much more than 120 hours of courses (lecture and laboratory)

exclusively dedicated to software engineering, object-oriented programming, and

software modeling. This can be seen, in part, as an intensive UML-specific

training. Furthermore, other important courses present in their formation are

operating systems, databases, computer architecture, requirement engineering, and

so on. Therefore, the subjects fulfilled the level of theoretical knowledge required.

Taking into consideration the practical experience of the subjects, we also

observed that there are some even more compelling evidences about the level of

practical experience of them. This knowledge was acquired from previous

software development projects. This was confirmed by the analysis in which

provides background data on the subjects that participated in the case studies. The

data show that the subjects fulfill the requirements in terms of age, education, and

experience. A benefit of the presence of a considerable theoretical and practical

knowledge is that the members of the teamwork can learn from each other in

terms of theoretical and practical issues. The main consequence of this knowledge

Variables Mean SD Min 25th Med 75th Max

Age 25.3 4.47 21 22 24.5 27 38

Degree 2.16 1.06 1 1 2 3 4

Graduation

year
2006.4 4.8 1992 2005.25 2006.5 2010 2010

Years of study

at university
5.75 2.8 3 3 5 7.5 12

YOEW UML 1 1.4 1 1.25 3 4.75 5

YOEW Java 4.5 1.84 2 2.5 4 6.75 7

Used IBM RSA

(1 or 0)
1 1 1 1 1 1 1

YOEW soft.

development
5 3.6 2 2.25 4.5 5.75 16

Hours of software

modeling
98.33 40.38 60 60 90 120 180

Hours of OO

programming
156.66 89 80 80 130 225 360

Hours of

software design
130 53.85 80 80 120 190 220

Degree: 1 = Student, 2 = Bachelors, 3 = Masters, 4 = Ph.D.

YOEW = Year of Experience with, Med: Median

SD = Standard Deviation, 25
th
 = lower quartile, 75

th
 = upper quartile

Table 20: Descriptive Statistics: Subjects’ Background

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

127

sharing between team members is that the emerging problems can be solved more

quickly and properly. If, for example, well-formedness rules of the design models

are challenged, the subjects can work together to get it solved. Another point that

is essential to emphasize is that, in all cases, the subjects were familiar with the

software modeling tool they had to use, IBM RSA, and all subjects received

training about merging design models. Lastly, based on this information

(summarized in Table 20), we deemed that the subjects had the required training,

theoretical knowledge and practical experience to perform the software modeling

and merging tasks properly.

4.2.3.4.
Study Design and Evaluation Procedures

Having presented the context of our studies and subjects, the next step is to

describe precisely how the case studies were conducted.

4.2.3.4.1.
Operation

The procedures of the study can be grouped into two phases: creation and

review. In the first phase, the developers collaboratively created the design

models. In the latter, they detected and resolved inconsistencies in the output

composed models. Note that the intended model was produced after executing

these two phases. Moreover, it is also important to emphasize that the effort

variables (f, diff, and g) are incrementally measured as the phases are performed.

Figure 14 summarizes the procedures associated with both the production of

the intended models and the measurement of the effort variables. Activities are

represented using rounded rectangles, and the arrows indicate transitions between

the activities. The diamonds are decisions (conditional branch), and the arrows

connected to them are marked with the conditions. The initial state in an activity

diagram is indicated by the black circle, while the final state is the encircled black

circle. Following the simplest path of the procedure, issues are first submitted and

examined (issue refers to general activities registered during the modeling

project). Each issue is assigned to a developer. After opening the issue, the

developer may execute three possible activities: creation of the design model,

detection of inconsistencies, and resolution of inconsistencies. As these activities

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

128

were carried out, the effort variables were quantified. Developers closed the issue

after it has been validated.

Creation of the Design Models. First, the developers created a UML class

diagram for each use case specification. In addition, sequence diagrams were

created for the most important use cases, which represent around 30 percent of the

full system specification. This percentage and the choice of the use cases were not

made in an arbitrary manner, but based on the policies of the company. After that,

the developers made use of the model composition technique to submit the created

model to the repository. It is important to emphasize that developers created

sequence diagrams only after its corresponding class diagram had been created

and validated. To calculate the developer’s effort to compose the local model with

the repository version, the members of the team were stimulated to make a record

of all composition sessions by using the software Camtasia Studio Pro (Camtasia,

2011). The generated videos were essentials to further analyses.

Detection of Inconsistencies. The developers reviewed the composed

models in order to detect syntactic and semantic inconsistencies. For this, they

performed a double checked model reviews by using the IBM RSA’s model

validation mechanism and by manually inspecting the models. During each

review, the developers could read the use case specifications to check whether (or

not) the generated models fulfill the requirements described in the specification. It

is important to point out that a developer reviewed the models created by other

developers, never the model created by him. Since the IBM RSA’s validation

mechanism can report false positive and false negative inconsistencies

(Altmanninger et al., 2009), the teamwork members were encouraged to check if

the reported inconsistencies were posing, in fact, a problem.

Inconsistency Resolution. Having identified the inconsistencies, the

developers invested some effort to revolve them. In practical terms, they added,

removed, or modified some existing model elements to solve them. After

addressing the model inconsistencies, the developers submitted the intended

model to the repository. Thus, the compositions were executed in two moments:

after the original creation of the models and after the inconsistency resolutions.

All model versions were registered in a version controlling control system,

thereby allowing a systematic analysis of the history of the generated model

versions.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

129

4.2.3.4.2.
Design Model Versions and Releases

The design models are semantically rich, have been evolving over the long

term, can be checked for consistency. These features were carefully analyzed and

elected as pre-requirements to perform the case studies. We feel, therefore,

confident that the model releases are going to promote (1) more reliability and

accuracy of our results, and (2) chiefly suitable conditions for yielding lessons

about driving composition effort variables. Consequently, this enables us to grasp

as the composition effort variables (f, diff and g) turn up in real-world settings,

and identify and understand the factors that affect the production of the desired

releases during the composition session.

Deriving the Design Model Releases. Given the collaborative environment

work, the subjects incrementally created the releases using the IBM RSA’s

composition technique throughout the evolution scenarios. The creation steps are

presented as follows. First, from a reverse engineering process, the team leader

generates a set of elementary model elements, which will be used by other

Figure 14: The flow of activities during the studies

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

130

developers to create the design models. Note that this derivation of the model

elements is indispensable in real-world settings; since the size of systems is

considerably large (see Table 20).

Next, the developers make use of these elements to manually generate the

design models. For example, the developers define which model elements should

be inserted into the UML class diagram and what their relationships are. This

decision is made from the information collected from the use case specification

and the code. This creation process of the models is not only marked by intensive

discussion among the members of the development team, but also by the constant

submission of new model release increments to the repository so that the changes

can be broadcasted to the other developers. To control the changes of the models

and to facilitate collaboration, the version control system was intensively used

during all case studies.

Model Releases and Composition Specification. For each evolution

scenario, a new release was created. For each new release, the previous release

was modified in order to incrementally accommodate the changes. To implement a

new evolution scenario, a model composition specification can remove, add,

derive, or modify the entities present in the previous release. During the design of

all releases, a main concern was to follow the best practices of modeling and

carefully realize the requirements described in the use case specifications.

4.2.3.4.3.
Variables and Quantification Method

This section defines as the three effort variables (f, diff, and g) were

quantified and their unit of measurement (time in minutes). Our analysis and

quantification, therefore, rely on three effort measures described as follows.

Application Effort Measure (f). This measure represents the required time

(in minutes) to match the input model element, resolve the conflicting changes,

and submit the evolving changes to the repository. That is, the effort invested by

developers to apply the model composition technique. This measurement only

quantifies the effort to produce the composed model (f(MA,MB)) rather than the

effort to detect (diff(MCM,MAB)) and resolve inconsistencies (g(MCM)). This effort

was calculated from recorded movies created by own developers, which were

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

131

stimulated to record these videos throughout the case studies.

Detection Effort Measure (diff). The detection effort consists of the time

needed to localize inconsistencies in the composed model for a given output

composed model. Subjects were responsible for registering the time. This

detection can be characterized as a semi-automated process; as developers make

use of the IBM RSA’s model validation mechanisms and manually go through the

model to identify semantic problems. We consider all syntactic inconsistencies

can be automatically detected. On the other hand, given that it is impossible to

count all semantics inconsistencies automatically, we count only semantic

inconsistencies that can be manually spotted. For example, relationships (e.g.,

association and inheritance) between model elements that no longer exist or a

stereotype attached improperly. Usually these inconsistencies are not detected by

tools upfront, but are visually by developers.

Resolution Effort Measure (g). It represents the time required to perform a

set of activities (creations, removals, and modifications) needed to transform MCM

into MAB. Again, subjects were the responsible for registering the time.

4.2.3.4.4.
Analysis Procedures

The analysis of the collected data was conducted with quantitative and

qualitative methods. While the quantitative data concerns the measurements

involving the study variables, objects, and units of the analysis, the qualitative

data deals with the diagrams (pictures), descriptions, transcripts from interviews,

and annotations. The goal of using a combination of qualitative and quantitative

data is to exclusively provide a better understanding of the studied phenomena in

their context.

a. Quantitative Analysis

The descriptive statistic is used so that the outstanding trends might be

pinpointed. Box-plot graphically illustrates these trends. The presence of patterns

in the data distribution, and lack thereof acted as a driver for further investigation

allowing a deeper understanding. Note that we are not concerned with any

correlation analysis or probabilistic formulation. Rather, our focus is only to

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

132

describe and graphically present interesting aspects of the data. Further, these

statistics were important to analyze and possibly remove outliers from the data.

Outliers are extreme values of the measured variables that may influence the

study’s conclusions. To analyze the outliers we made use of box-plot. According

to Wohlin (Wohlin et al, 2000), we should verify whether “the outliers are caused

by extraordinary exceptions (unlikely to happen again), or whether their cause can

be expected to happen again. For the first case, we should remove the outliers, and

for the latter we should not remove the outliers.” In our study, some outliers were

identified. However, they did not represent any extraordinary exceptions, since

they were expected to happen again. Consequently, they were not removed, as

they did not compromise the results.

b. Qualitative Analysis

The qualitative analyses were concentrated on interviews, observational

study, and archival data. Hence, the RQs were investigated from different

viewpoints, subjects, artifacts, and projects.

Interviews. A semi-structured interview approach was performed following

a funnel model (Runeson & Host, 2009), in which one initial open question is told

and then directed towards to more specific one. It was organized in topics with

open and closed questions (Runeson & Host, 2009). They were organized in such

a way that research questions (f, diff, and g) could be exploited. An interview

guide was created based on the authors’ experience in model composition and on

previous studies, together with the research questions of the study. The author of

this thesis conducted the interviews. The interviews were recorded and transcribed

into text; this was done by one else than the authors. Experienced subjects were

selected for the interviews from the involved company and other Brazilian

companies. That is, the interviewees (8) were not only developers that participated

in the case studies, but also with other developers with different experiences of

other companies. The selection was based on the interviewees’ different

experience in terms of model composition rather than their similarities. It was also

assured that only anonymous data would be presented externally. Each interview

lasted from 30 to 55 minutes, depending on how talkative the subjects were.

Observational Study. In order to investigate how model composition was

performed in practice extensive observations were conducted through three

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

133

different approaches. First, one of the authors worked in the modeling projects

during the case studies taking part in everyday activities. This allowed a more

effective observation. Secondly, the model composition tasks were recorded, and

after analyzed. This allowed monitoring the task of the subjects. Thirdly, to obtain

a feedback of the subjects about the task performed, they encouraged to “think

aloud” by asking questions like “What is the key difficult to resolve the

inconsistencies?”, “What is your strategy to deal with conflicting changes?”, and

“What do you do to reduce composition effort?”. In summary, data collected

consisted of field notes, audio recordings of interviews and their transcriptions,

videos, screenshots, and copies of artifacts.

Archival Data. The company’s repository was an important source of data,

since it enables us to access the different versions (specifically the evolution

track) of the design models. The developers were encouraged to describe the

evolution changes performed before executing the compositions. This description

helped us to understand how the compositions were performed and reasons why

the inconsistencies arose. For example, in the motivating example (Section

4.2.2.2), the developers, Peter, Steve, and Bill, should necessarily describe the

changes performed by them. In total, more than 240 descriptions were created and

the information stored in the repository. The comments were expressed in a free-

text field, in which the subjects could report anything they thought might be

relevant in explaining the changes that were being done. In addition, the

developers were well aware the importance of these descriptions to understand the

evolutions and the results obtained on each evolution scenario. For example, the

comments helped us to identify when the composition had success (i.e., MCM =

MAB) or failed (i.e., MCM ≠ MAB), and grasp the rational what the developers

thought at the time of composition session.

4.2.4.
Study Results

In this section, we interpret the results about the RQ2.3 and RQ2.4. For this,

we present and analyze quantitatively and qualitatively the collected data about the

composition effort variables (Section 4.2.4.1) and explains the factors that

influence these variables in practice (Section 4.2.4.2).

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

134

Cases N Mean SD Min 25th Med 75th Max

Marlim 40 4.73 4.52 0.25 2 3.2 6.79 22

Bandeira 69 3.29 1.93 0.83 2 3 4 14.25

N = number of compositions, SD = standard deviation, Min = minimum, 25th = first quartile;

Med = median, 75th: third quartile, Max: maximum.

Table 21: Descriptive statistics for application effort

4.2.4.1.
RQ2.3: Composition Effort Analysis

The composition effort analysis involves the examination across cases of a

single variable, focusing on three characteristics: the distribution, the central

tendency, and the dispersion.

Application Effort (f)

This section investigates the variable concerning the effort to apply the

composition technique. Table 21 shows a descriptive statistic about the application

effort. These statistics will help us to pinpoint the central tendency and spread of

values around it. A tally of 40 and 69 (N) compositions was registered in the

Marlim and Bandeira project, respectively. The central tendency was calculated

using the two most-used statistics: the mean and the median. The most interesting

feature was that the composition of the large-scale industrial models used in our

study required by about 4 minutes.

More specifically, the results indicate that effort to compose models was, on

average, 3.17 minutes and 4.43 minutes in Bandeira and Marlim projects,

respectively. Given the complexity and the size of the design models in question

(Table 19), these central tendency measures are in fact low values. For example, a

developer spent just around 4 minutes to submit the most complex evolving

changes to the repository in the Marlim project. In addition, the median measures

accompany these measures: 3 minutes and 3.12 minutes in the Bandeira and Marlim

project, respectively. Thus, this implies that the required effort to apply the semi-

automated model composition technique is low. Consequently, it is possible to

advocate it as appropriate to collaborative software modeling in which resources

and time are usually tight.

http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Median
DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

135

To understand the dispersion of the data around this tendency, not only the

standard deviation, 25th and 75th percentiles were computed, but also the minimal

and maximum values. Developers’ effort tends to concentrate by around the central

tendency rather than spreading out over a large range of values. Indeed, with 1.55

and 1.58 minutes, the standard deviation measures indicate that in the majority of

the composition sessions the developers spend an effort near 3.17 minutes or 4.43

minutes. This information can help modeling mangers to: (1) systematically

propose the effort estimation rather than essentially based on their judgment; and

(2) check if the effort spent by developers is an expected value (or not), since it

falls inside (or outside), these ranges of statistics that is expected to occur.

Consequently, it is possible to improve the effort estimation, and hence a typical

UML-based development, for example. Finally, this measure can be seen as the first

step to overcome the lack of empirical evidence about the impact of model

composition techniques on developers’ effort in real-world settings.

To deepen our understanding about the application effort, Figure 15

distributes the collected sample in six effort ranges. These ranges in the histogram

systematically group the application effort cases. The y-axis of the histogram

represents the counts of merging, while the x-axis consists of the ranges of effort.

The main outstanding feature is that: the presence of a distribution pattern of the

application effort through the ranges of effort. The low-effort categories (i.e., t <

2, 2 ≤ t < 4, and 4 ≤ t < 6) represents the most likely range of effort that

developers invest to compose the input models. The number of cases is equal to

29 (in Marlim) and 64 (in Bandeira), representing 72.5 percent and 92.75 percent

of the composition cases, respectively. On the other hand, the number of cases in

the high-effort categories (i.e., 6 ≤ t < 8, 8 ≤ t < 10 and 10 ≤ t) is equal to 12 (in

Marlin) and 5 (in Bandeira), comprising 17.39 percent and 12.5 percent of the

cases respectively. Thus, the number of composition cases in the low-effort

categories outnumbers the amount of cases in the high-effort categories,

comprising more than 70 percent and 90 percent of the cases in the Marlim and

Bandeira project, respectively. On the other hand, the number of cases in the high-

effort categories was by around 30 percent (in Marlin) and 7.25 percent (in

Bandeira). In practice, this means that developers spent less than 6 minutes in

85.32 percent of the whole composition cases, and just 14.68 percent of the cases

required more than 6 minutes.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

136

Figure 15: Histogram of the application effort measures

Another even more compelling feature is that: there is a changing pattern

among the effort categories. Although the changing pattern of the measures from a

category to another one happens in different forms, it comes about with the same

type of change in the most of the cases.

 There are five changes in the number of counts of merging from one

category to another being three of them similar as follows. From the first to the

second category, the count of compositions had a gradual rise from nine to 13 (in

Marlim) and from 10 to 33 (Bandeira). This means a growth of 44 percent and

230 percent, respectively. On the other hand, observing the third category, the

count had a significant drop compared to the previous category.

The distribution of merging fell back from 13 to 6 and from 33 to 21 in the

Marlim and Bandeira project, respectively. This implies into a significant drop of

53.84 and 36.3 percent. Following this same drop pattern, in the fifth category, the

number of cases decreased abruptly from 7 to 1 (Marlim) and 3 to 1 (Bandeira),

comprising a fall of 85.71 percent and 66.67 percent, respectively. However, the

transitions from the third category to the fourth one as well as from the fifth

category to the sixth one had different changing pattern. In the fourth category, the

count kept stable (seven cases) in Marlim project and a decrease of 85.71 percent

in Bandeira project was observed, from 21 to 3. In the sixth category, the count

did not change, stagnating in 1 (Marlim), and, however, quadruplicated its value

from 1 to 4 in the Bandeira project. This implies, therefore, that there is to some

extent a particular behavior of change between the ranges of effort.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

137

With these two previous features in mind, an important finding was observed:

the application effort tends to reduce as developers become more familiar with

technical issues rather than application domain issues. This finding is supported by

the fact that developers invested more effort in Marlim project than in Bandeira

project. After a careful analysis, the main reason was that the developers were

more familiar with composition issues. That is, 30 percent of the cases had effort

higher than 6 minutes, rather than the 7.24 percent ones in the Bandeira project. It

is important to point out that: (1) both projects had a similar level of complexity;

(2) the members of the development team had a similar level of knowledge about

the meaning of application domain elements; and (3) the teamwork was the same

throughout the both projects. Therefore, the application effort tends to decrease as

the developers gained experience with the activities considering key steps to apply

the composition technique, i.e., match the input models, resolve the conflicting

changes, and then combine the input model elements.

Detection Effort (diff)

This section investigates the variable concerning the effort to detect the

inconsistencies of the output composed model. Table 22 shows a descriptive

statistic about the effort spent to detect inconsistencies. A careful analysis indicated

that some interesting features were happing. First, the more experienced developers

in both modeling and IBM RSA spend 23.2 percent less effort to detect

inconsistencies than less experienced developers. This observation was derived

from the comparison of the medians in the Marlim and Bandeira cases. This

finding was possible to reach because the same development team firstly worked

in the Marlim project and after this in the Bandeira. Observing the values of the

mean computed this affirmation is still reasserted. In this case, the more

experienced developers invested 38.57 percent less effort to detect inconsistency

than less experienced developers, compared 7.57 and 4.65.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

138

Second, the higher the number of teamwork members, the higher the effort

to localize inconsistencies. This outstanding finding is supported by the

comparison of the medians of the projects with high versus low number of

developers. Comparing the number of teamwork members of the projects, we

could observe that the developers of the Marlim and Bandeira project, both with 7

developers, invested a higher amount of effort to detect inconsistencies than the

developers of the GeoRisc and PlanRef (with 2 and 4 developers, respectively).

For example, the developers spent 49.46 percent more effort to detect

inconsistencies in the Marlim project than in GeoRisc project, compared the

medians 6.55 and 3.31, respectively. This striking observation was also reinforced

when we compared the Marlim and PlanRef. That is, Marlim’s developers spent

64.27 percent more effort to localize the inconsistencies, compared the medians

6.55 and 2.34, respectively. Therefore, the projects with a higher number of

developers had to invest the double of effort to localize the inconsistencies.

Third, a remarkable finding is that the higher the number of inconsistencies in

behavioral models, the higher the effort to detect inconsistencies. Even though, the

Alope project had a low number of developers, a considerable number of

inconsistencies were concentrated in behavioral models like sequence diagrams.

The chief problem highlighted by developers was that the behavioral models

require an additional effort to go through the flows of execution. For example, an

association in a structural model (e.g., class diagram) represents essentially one

relationship between two classes. On the other hand, in a behavioral model (e.g.,

sequence diagram) that represents the interaction between the instances of these

classes; this simple association may be represented by n interactions (i.e., messages

Cases N Mean SD Min 25th Med 75th Max

Marlim 63 7.57 5.1 0.54 2.45 6.55 12.49 16.54

Bandeira 86 4.65 2.39 0.36 2.37 5.03 6.38 9.21

GeoRisc 24 3.66 1.52 1.32 2.67 3.31 4.16 7.39

PlanRef 44 2.91 1.75 1.04 1.39 2.34 4.12 7.15

Alope 6 12.37 4.2 5.26 8.25 13.15 16.36 17.37

 N = number of compositions, SD = standard deviation, Min = minimum, 25th = first quartile;

Med = median, 75th: third quartile, Max: maximum.

Table 22: Descriptive statistics for detection effort

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

139

exchanged between the objects). The problem is that developers must check each

interaction. This problem is enlarged with the need to check the consistencies

between the class diagram and the sequence diagram. For example, there is a

message from an object A to an object B in the sequence diagram, but there is no

relationship between the class A and B in the class diagram. Even worse, sometimes

the method corresponding to such message does not even exist in the class B.

Another typical inconsistency is that a concrete class A becomes abstract, however,

its instance remains represented in the sequence diagram. Thus, developers had an

additional effort to examine the consistency between the structural and behavioral

model.

Another observation is that the higher the distribution of inconsistencies in

different modules, the higher the effort to identify them. In the case studies, the

systems were strongly decomposed in conceptual areas. This unit of modularization

brings together application domain concepts in a same space. The problem arises

when the inconsistencies in a conceptual area give rise to an abundance of

inconsistencies, and hence affecting many other model elements located in other

conceptual areas as a ripple effect. This propagation is inevitable as there are

usually some relationships between these units of modularization. Hence,

developers must be able to identify inconsistencies in model elements of conceptual

areas that they do not know. Note that during the case studies the developers created

diagrams related to a specific functionality of the system (specified in case uses),

and these diagrams were grouped in a conceptual are (something like a package).

Thus, the lack of knowledge about the model elements in unknown conceptual area

led developers to invest an extra effort to pinpoint the inconsistencies.

Resolution Effort (g)

This section investigates the variable concerning the effort to resolve the

inconsistencies in the output composed model. Table 23 shows a descriptive

statistic of the inconsistency resolution effort. The main outstanding feature is that

the developers invest more effort to resolve inconsistencies rather than to both

apply the model composition technique and detect the inconsistencies. This can be

explained based on some evidences.

First, in Marlim project, for example, the teamwork members spent 64.91

percent more effort resolving inconsistencies than applying the model

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

140

composition technique. This difference comprises the comparison between the

medians 3.2 (application) and 9.12 (resolution). This difference becomes more

explicit when we consider the values of the mean. This evidence is reinforced in

Bandeira project. The resolution of inconsistencies consumes 80.31 percent more

effort than the application of the composition technique, compared the medians

3.2 (application) and 9.12 (resolution). The difference between the application and

resolution effort becomes stronger when we consider the value of the mean i.e.,

jumping significantly their values from 64.91 percent to 88.40 percent (in Marlim)

and from 80.31 percent to 88.35 percent (in Bandeira).

Second, in Marlim project, the inconsistency resolution consumed 28.17

percent more effort than the inconsistency detection. This comprises the

difference between the medians 6.55 and 9.12. The results in Bandeira project

followed the same trend. Developers spent 66.99 percent more effort with

inconsistency resolution than with inconsistency detection, compared the medians

5.03 and 15.24. Considering the mean, this difference of effort becomes more

evident, leaping abruptly from 28.17 percent to 81.44 percent (in Marlim) and

from 66.99 percent to 83.42 percent (in Bandeira). Analyzing the collected data

from the GeoRisc and Alope project, this observation is confirmed. For example,

the resolution effort is 82.98 percent and 54.96 percent higher than the detection

effort in GeoRisc and Alope, respectively. On the other hand, in Alope project, the

resolution and detection effort were practically equal. Therefore, the collected

data suggest that teamwork members tend to spend more effort resolving

inconsistency rather than applying the model composition technique and detecting

inconsistencies.

Another striking feature is that the experience acquired by the developers did

not help to minimize the inconsistency resolution effort. Although more

experienced developers have invested less effort to compose the input models and

detect inconsistencies, their additional experience did not help significantly to

minimize the inconsistency resolution effort. For example, in Bandeira project,

more experienced developers spent 40.15 percent more effort to resolve

inconsistency than less experienced developers from Marlim project, compared

the medians 9.12 and 15.24. The main reason is that more experienced developers

tend to be more cautious than less experienced ones, and hence they tend to invest

more time analyzing the impact of the resolution of each inconsistency.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

141

4.2.4.2.
RQ2.4: Influential Factors on Composition Effort

Some factors influence the effort of composing large-scale design models in

real-world settings. This section analyzes the side effects of these factors on the

composition effort variables.

4.2.4.2.1.
The Effects of Conflicting Changes

A careful analysis of the results pointed out that the production of the

intended model is affected by the presence of different types of change categories

in the delta model. These changes would be the addition, removal, modification,

and derivation of model elements. The current composition algorithms are not

able to effectively accommodate these into a base model; mainly, when these

changes occur simultaneously. We described the most common categories of

changes identified throughout the study and after analyzing their effects:

 Addition: model elements are inserted into base model; for example, a

stereotype <<instance>> was added to the directed relationship between the

ProductionSystem and EditPSDialogOptionsAction.

 Removal: a model element in the base model is removed; for example,

the class PSElementGroup is removed;

 Modification: a model element has some properties modified; for

instance, the class PSElementGroup becomes abstract. For this, the property

isAbstract has its value modified from false to true.

Cases N Mean SD Min 25th Med 75th Max

Marlim 31 40.79 74.79 3.09 4.13 9.12 11.33 246.25

Bandeira 8 28.06 28.04 5.55 8.17 15.24 41.44 95.44

GeoRisc 16 25.86 13.75 5.12 17.70 19.45 42.5 53.33

PlanRef 44 2.86 1.92 1.2 2.03 2.33 2.52 10.41

Alope 5 31.04 12.75 16.21 16.21 29.20 46.8 55.4

 N = number of compositions, SD = standard deviation, Min = minimum, 25th = first quartile;

Med = median, 75th: third quartile, Max: maximum.

Table 23: Descriptive statistics for resolution effort

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

142

Derivation: model elements are refined to accommodate new changes

and/or moved to other ones. For example, the class ProductionSystem is refined

into two new classes: ProductionAction and ProductionPanel. The method

ProductionSystem.runProduction() is inserted into ProductionAction. The

attribute ProductionSystem.productionTime is inserted into ProductionPanel. This

type of modification can be seen as a 1:N modification.

Developers and researchers recognize that evaluable software should adhere

to the Open-Closed principle (Meyer, 1997) as evolutions become easier. This

principle states “software should be open for extensions, but closed for

modifications.” However, this observation did not occur in all the cases as

modifications and derivations of model elements happened as well. In our study,

the open-closed principle was more closely adhered by the evolutions dominated

by additions rather than any other one. In this case, developers invested low effort

compared to other cases. This suggests that the closer to the Open-Closed

principle the change is, the lower the composition effort.

On the other hand, evolution scenarios that do not follow the Open-Closed

principle required more effort to produce the intended model, MAB. This finding

was identified when the change categories simultaneously occur in the delta model;

hence, compromising the composition for some extent. This extra effort was due to

the incapability of the matching algorithm to identify the similarities between the

input model elements given the presence of widely scoped changes. In the Marlim

project, for example, the composition techniques were not able to execute the

compositions by about 17 percent (11/64) of the evolution scenarios. This required

developers to recreate the models manually. In the Bandeira project, by about 10

percent (10/95) of the composition cases did not produce an output model as well,

or the composed model produced had to be thrown away due to the high amount

of inconsistencies.

In particular, we also observed that the refinement (1:N) of model elements

in the delta model caused severe problems. A practical example of this refinement

encompassed the direct relationship between PSDiagramOptionsDialog and

MarlimInputData, named as input. This relationship was decomposed into (1) a

direct relationship between PSDiagramOptionsDialog and StatusPanel, (2) the

class StatusPanel; and (3) the aggregation between StatusPanel and

MarlimInputData. In this case, the relationship (1:3) was not identified. This

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

143

problematic scenario was also noticed during the refinement of some classes

belonging to the MVC (Model-View-Controller) architecture style into a set of

more specialized ones. In both cases, the name-based, structural model

comparison was unable to recognize the 1:N composition relations between the

input model elements. However, we have observed these conflicts do not only

happen when developers perform modifications, removals, or refinements in

parallel, but also when developers insert new model elements. This finding was

noted from the fact that although evolutions following the Open-Closed principle

had reduced the developers’ effort, they still caused too frequent undetected

inconsistencies.

Developers were often unable to localize inconsistencies that did not affect

the model elements created by them. Even worse, the composition algorithms

were unable to identify that overlapping changes might cause “cross-semantic

inconsistency.” That is, the semantic attributed to a model element conflict with

another one assigned to the same (other) element. A very concrete example of

semantic inconsistencies in our case studies was when UML stereotypes used to

attribute new semantic to the model elements conflict with each other. The

illustrative example shows two typical inconsistencies in our studies. For

example, Steve attaches the stereotype <<MainClass>> to the class

EditPSDiagOptionAction, while Bill attaches this attribute to MarlimCore. Hence,

the algorithm does not detect that only one class can be defined as the main class.

We have noted that these problems are more challenging to be detected

when they occur in multi-valued properties defined in the UML metamodel such as

Class.ownedOperation: Operation [*], which defines the methods of a class, or

Class.extension: Extension [*], which specifies the stereotypes applied to a class.

For example, Bill attaches the stereotype <<instance>> to the directed relationship

(B2.step 2) from MarlimCore to EditPSDiagOptionsAction, while Peter attaches

the stereotype <<use>> to this relationship (P2.step 3). As these stereotypes are

not present in ancestor version (V1), the algorithm incorrectly brings both to the

new version (V4). One of the reasons for this is that the meaning of the

stereotypes are often not taken into account during compositions―either because

the semantics of these stereotypes are rarely represented or either because the

composition algorithms are unable to infer that the stereotypes <<instance>> and

<<use>> are semantically contradicting. However, developers must tame this

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

144

problem.

Still considering the conflicting changes between Bill and Peter, whatever

the change accepted — if the class PSElemenGroup is transformed into an

abstract class, or if it is removed ― inconsistencies will emerge when the Steve’s

changes are applied to PSElemenGroup. For example, Steve creates an inheritance

relationship between the classes PSElemenGroup and Production (a concrete

class). If the class PSElemenGroup is abstract, then a semantic inconsistency

emerges because PSElemenGroup has an inheritance relationship with a concrete

class Production. Note that this inconsistency is not related to the modeling

language as the UML metamodel hinder inheritance relationship from the abstract

class to concrete one. This inconsistency is because object-oriented programming

like Java does not permit this type of relationships. On the other hand, if the class

PSElemenGroup is removed, then a static semantic inconsistency arises because

the inheritance relationship refers to a class that no longer exists.

Thus, we have observed that the current state-of-the practice composition

techniques superficially support the evolution categories. For accuracy reasons,

this implies that developers need innovative techniques supporting restructuring

changes and identifying the ripple effects of the semantic added to the model

elements. Moreover, developers know that these problems (from structural to

semantic inconsistencies) may happen in practice. However, they neither know

their side effects nor grasp the meaning of the changes. To demonstrate this

distinct side effect more clearly, let us take a closer look at the illustrative example

in Figure 11, Figure 12, and Figure 13. As a prerequisite to produce the composed

model, it is necessary to match the input model elements, which are suffering the

effects of the changes performed by Peter, Steve, and Bill. For this, the

composition technique identifies the similarities between the model elements.

With addition based evolutions, the conflicting changes are identified because of

the superimposition of changes: the composition algorithm detects that two

contradicting values were attributed to a particular property defined in the

language metamodel (e.g., isAbstract or isDerived). For example, Bill modifies

the value of the property return type of the method

MarlimCore.handleInvalidOutput() from void to Status (B3.step 4), while Steve

modifies it to String. Similarly, Bill transforms the concrete class PSElemenGroup

into an abstract class (B3.step 3), while Peter removes this class (P2.step 4).

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

145

Therefore, although the composition algorithm is effective to detect the

changes, it is unable to identify whether the differences are caused by a simple (or

multiple) modification, removal, or even refinement of model elements. Having

more semantically richer information about the type of the changes, developers

might detect and earlier resolve the conflicts. This would increase the number of

correctly composed models as this semantic information aided those developers in

making better-informed decisions.

With this in mind, to alleviate these problems would be necessary to grasp

the actual meaning of the model elements (in the base model and delta model) and

the impact of the change categories on their quality issues (e.g., comprehensibility

and correctness). However, the current name-based, structural model comparison

strategy has demonstrated to be ineffective to recognize intricate equivalence

relationships between the model elements. The meaning of the model elements is

rarely represented in a formal way. Hence, the definition of the correspondence

between the input model elements is essentially based on a signature-based

approach (Reddy et al., 2005). In doing so, the developers have to address some

false positives and false-negative definitions of correspondence between the input

model elements. However, the problem is rarely resolved without causing any

negative effects on the developers’ effort and expected characteristics of the

design models e.g., correctness (Table 4).

Consequently, it was particularly challenging for developers to perform the

compositions, or even for modeling managers, authorize the execution of the

compositions. The developers are reluctant to compose the input models, and

hence all potential benefits (e.g., gains in productivity) of the use composition in

collaborative software modeling are compromised. In these cases, the current

composition techniques are not effective to compose design models in

collaborative model evolution.

4.2.4.2.2.
Conflict Management

The detection of all possible semantic conflicts between two versions of a

model is an undecidable problem (Mens, 2002), as many false positive conflicts

can appear. To reduce this problem, some previous works have recommended

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

146

reducing the size of the delta model in order to reduce the number conflicts (Perry

et al., 2001). However, this approach does not ameliorate in fact the complexity of

the changes. That is, the problem is not essentially the number of conflicts that the

size of the delta can cause, but the complexity of the conflicts. To alleviate the

effort to resolve the conflicts, we narrowed down the scope of the conflicts. For

this, the delta model became to represent one or two functionalities of a use case

in particular. Hence, the conflicts became more manageable and reasonable.

Following this strategy, we were able to reduce the number and complexity of the

conflicts. In practical terms, this complexity was minimized by reducing the

number of functionalities implemented in the delta model. That is, the

compositions had a smaller scope.

On the other hand, sometimes the changes with broader scope were

inevitable in the delta model. This was, for example, the case when the models

(e.g., class and sequence diagrams) were reviewed and meliorated for reasons of

quality assurance. Unfortunately, this results in a decreased precision of the

compositions due to the presence of non-trivial compositions. It is known that the

domain independent composition algorithms cannot rely on the detailed semantics

of the models being composed or on the meaning of changes. Instead of being

able to identify all possible conflicts, the algorithms detect as many conflicts as

possible, assuming an approximate approach. Consequently, developers need to

deal with many false positive conflicts.

In practice, we noted that if the composition generates many conflicts,

developers prefer throwing the models away (and investing more effort to recreate

it after) to resolving all conflicts. Although the composition algorithm detects the

conflicting changes created by developers in parallel, developers are unable to

understand and proactively resolve these conflicts generated from non-trivial

compositions. This can be explained by two reasons. First, the complexity of the

conflicts affected the model elements. Second, the difficulty of understanding the

meaning of the changes performed by other developers. More importantly,

developers were unable to foresee the ripple effects of their actions.

This is linked to two very interesting findings. First, developers have a tacit

assumption that the models to-be-composed will not conflict with each other, and

a common expectation is that little effort must be spent to integrate models.

Hence, developers tend to invest low effort to check whether the composition

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

147

produced inconsistencies or not. Therefore, we can conclude that the need to

throw the model away in order to recreate it after demonstrates the complexity of

the problem.

We have observed that the developers spend more effort when inconsistency

propagation occurs. Although it is well known that the spread of the

inconsistencies lead developers to spend some additional time to detect and

resolve them, we have observed that this extra effort is due to, in part, the

developers produce the inconsistencies are not the same to detect and resolve

them. Note that in general inconsistencies are produced from the conflict

resolution process performed incorrectly. This can be explained based on some

reasons.

First, it is not always clear for developers that any inconsistency was

produced. This perception is only realized along the project when the

inconsistencies have already been resolved. Second, the inconsistencies tend to

“keep alive” during the project because developers do not always detect and

resolve the inconsistencies when they appear―either because they do not know

which models are affected by the inconsistencies or either because the

inconsistencies do not affect the use purpose of the models created by them.

In the first case, developers are concerned with the models under their

responsibility i.e., models that they must produce. However, they feel comfortable

to resolve inconsistencies localized in models that they are not under their

responsibility. The main reason is that developers need to understand use cases (or

scenarios) describing the functionalities represented in the diagrams. For a perfect

understanding, developers should often grasp business rules and design rules,

which define the domain elements and their constraints. That is, developers should

know about the company business before resolving the inconsistencies. This

represents one of the impairments to resolve the inconsistencies when they are

detected. Another finding is that to resolve the inconsistencies, developers need

sometimes to grasp the reasons why a composition was realized in one way and

not in an expected manner.

In the second case, developers obligatorily spend effort to resolve

inconsistencies that compromise the main purpose of use of the design models

e.g., communication, but rarely to solve the inconsistencies that damage

secondary purpose e.g., prediction. Developers do not solve all inconsistencies

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

148

due to time constraint. Consequently, they live with inconsistencies in practice. In

our case studies, the models were used for improving the communication between

the developers. Although other inconsistencies might be resolved, only the

inconsistencies that jeopardize the comprehensibility of the models were

necessarily solved. For example, the layout of the models was an ever-present

concern during the modeling. This means that developers invested time to arrange

the elements in the model to ensure a good understanding of the features.

Therefore, all inconsistencies that affect this layout must be resolved; otherwise,

the purpose of use of the model is compromised. We can conclude that, although

it is desired to keep models without inconsistencies only the inconsistencies that

affect the purpose of use of the models are resolved.

4.2.4.2.3.
Social Factors

The reputation of the developers influences the resolution of conflicting

changes. We observed this finding during the observational study, interviews, and

analyzing the change history in the repository. Recall that a developer can accept

and reject a change of a second developer. This situation can be illustrated in turns

of our motivating example. The developers Peter and Bill have distinct levels of

experience. Peter is less experienced than Steve. Thus, if Peter performs a change

that conflicts with another carried out by Steve (and he is not sure about how to

resolve them) then he accepts the changes performed by Steve. That is, given that

Peter is indecisive, he relies on the Steve’s reputation.

Reputation can be seen as the opinion (or a social evaluation) of a member

of the development team toward other developer. We have identified two types of

reputation: technical and social.

Technical reputation refers to the level of knowledge considering issues

related to the technology and tools used in the company such as the composition

tool, IDEs, CASE tools, and version control systems. This type of reputation is

mainly acquired solving daily problems. Social reputation refers to the position

held by the members of the development team (e.g., senior developer). More

experienced teamwork members (e.g., senior ones) influence less experienced

members (e.g., novice ones). This happens mainly because the experienced ones

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

149

are the human face of the development projects, making important project

decisions, and coordinating teams.

Knowing that the reputation of the developers might affect the conflict

resolution, we investigated which reputation would cause more influence. For

this, eight developers were interviewed. The data collected suggests that technical

knowledge causes more influence on decision making than social reputation.

More specifically, 75 percent of the developers (6/8) reported that the technical

reputation would influence more developers’ decisions than social one.

4.2.5.
Limitations of Related Work

We contrast this work with previous studies considering empirical studies,

development effort, composition techniques, and modeling language as follows.

Empirical Studies. It is well known that empirical studies in model

composition are severely lacking (Uhl, 2008; France & Rumpe, 2007). Some

authors have contributed toward clarifying how conflicts emerge and how they are

tamed in artificial scenarios. For the most part, these works have considered

limited composition scenarios compared to the scenarios evaluated in this work.

Still, the most of them do not consider effort as the investigation variable.

The observational study in (Perry et al., 2001), for example, investigates the

change history of a legacy system to delineate the boundaries of (and to

understand the nature of) the problems considering the software development in

parallel. The authors considered only one observational study and all work was

concentrated in level of code. Another example would be the experimental report

in (Altmanninger et al., 2009). That study analyzes the challenges in merging

different versions of one model, proposes an initial categorization of typical

changes, and identifies resulting conflicts from the compositions. Although

interesting, the current empirical studies do not evaluate composition effort. Still,

the findings are normally collected from artificial and limited case tests rather

from realistic composition scenarios. Finally, some previous works (Mens, 2002;

Whittle & Jayaraman, 2010; Dingel et al., 2008) reinforce the need for empirical

studies in model composition.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

150

Considering two empirical studies in model-driven development

(Hutchinson et al., 2011a; Hutchinson et al., 2011b), Hutchinson and colleagues

presents some initial results from a twelve-month empirical research study of

model driven engineering (MDE). More specifically, they document a set of

technical, organizational, and social factors that apparently influence

organizational responses to MDE (Hutchinson et al., 2011a). In (Hutchinson et al.,

2011b), they describe the practices of three commercial organizations concerning

MDE approach to their software development. The main contribution is a range of

lessons learned, reporting the importance of social factors instead of technical

factors on the relative success, or failure, of the adoption of MDE in practice. The

authors do not mention any problem concerning model composition during these

qualitative studies. This does not mean it is not a problem in practice since they

take a much broader view and ask questions that are more general about the role

and effectiveness of MDE.

On the other hand, in (Uhl, 2008), Uhl points out that composition of

enterprise artefacts is not a trivial issue. Most because it requires the composition

of graphical views, forms, dialogs, and depends on “friendly” views to tame all

conflicts between the multiple models. Hence, developers end up avoiding model

composition and adopting pessimistic locking of design models. Therefore, our

results can be seen as the first to empirically investigate RQ2.3 and RQ2.4 using

the state-of-the-practice composition technique in industry.

Development Effort. A major contribution of our work is the investigation of

composition effort as a critical factor for the acceptance of the composition

techniques in practice. Some previous works have also demonstrated that the

effort is a critical factor during the software development (Jorgensen, 2005).

Usually the effort is based on ad hoc estimation (Farias et al., 2011; Jorgensen,

2005). Jorgensen (Jorgensen, 2005) highlights that effort estimation is still a real,

open problem due to the lack of empirical evidences about the effort required to

perform development tasks. In fact, estimating effort based on the expert

judgment is the most common approach today. Even worse, these feedbacks are

often diverging or overoptimistic. When we consider this problematic in the

context of composition, the problem is aggravated. However, little has been done

to investigate this problem.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

151

Composition Techniques. Model composition is a very active research field

in many research areas such as synthesis of state charts (Ellis & Gibbs, 1989),

weaving of aspect-oriented models (Whittle et al., 2009; Klein et al., 2006;

Whittle & Jayaraman, 2010), governance and management of enterprise design

models (Norris & Letkeman, 2011), software configuration management

(Whitehead, 2007), composition of software product lines (Jayaraman et al.,

2007), and composition of design models (Nejati et al., 2007; Epsilon, 2011). For

this reason, several academic and industrial composition techniques have been

proposed such as MATA (Whittle et al., 2009), Kompose (Kompose, 2011),

Epsilon (Epsilon, 2011), IBM RSA (IBM, 2011), and so on. With this in mind,

some observations can be done.

First, these initiatives focus only on proposing the techniques instead of also

demonstrate their effectiveness. Consequently, qualitative and quantitative

indicators considering these techniques are still incipient. In addition, the situation

is accentuated considering effort indicators. This lack hinders mainly the

understanding of their side effects. Second, their chief motivation is to provide a

systematic algorithm. Unfortunately, these approaches do not offer any insights or

empirical evidences whether developers might reach the potential benefits claimed

by using composition techniques in practice. Although some techniques are

interesting approaches, they are fundamentally flawed because of the large

number of false positives that will be produced for large-scale systems.

Nevertheless, the effort required for the user to understand and correct

composition inconsistencies will ultimately prove to be too great. The current

study takes a different approach. It aims to provide a precise assessment of

composition effort in real life context, quantifying effort and identifying the

influential effort.

Next, current works tend to investigate on the proactive detection and earlier

resolution of conflicts. Most recently, Brun (Brun et al., 2011a) proposes an

approach, namely Crystal, to help developers identify and resolve conflicts early.

The key contributions are that conflicts are more common than would be

expected, appearing overlapping textual edits but also as subsequent build, and

test failures. In a similar way, Sarma (Sarma et al., 2011) proposes a new

approach, named Palantír, based on the perception of workspace awareness, on

the detection and earlier resolution of a larger number of conflicts. Based on two

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

152

laboratory experiments, the authors confirmed that the use of the Palantír reduced

of the number of unresolved conflicts. Although these two approaches are

interesting studies, the earlier detection does alleviate the problem of model

composition. The problem is the same, but is only reported more quickly. In

addition, they appear to be overly restrictive to the code, not leading to broader

generalizations at modeling level. Lastly, they neither make consideration about

the effort to compose the artefacts used nor investigate the research questions in

vivo case studies.

Modeling Language. There has been more research on evaluating the use of

UML models (and its extensions) rather than the effort of composing them. These

studies notably aimed at evaluating modeling languages in terms of some quality

attributes such as comprehensibility (Lange & Chaudron, 2006), interpretation

(Nugroho et al., 2008), and maintainability (Dzidek et al., 2008) rather than the

composition effort. Additionally, most existing works have focused attention on

exploring different quality issues considering UML models and understanding its

appropriateness in mainly artificial scenarios. However, none of them attempt to

understand how these quality issues may be affected during compositions and to

examine a set of wider issues about the effort on composing these models in real-

life scenarios. Some these issues include: are these quality issues of the UML

models affected during the composition? In which composition tasks should the

developer invest more effort? What is the trade-off between the composition tasks

in practice? What are the characteristics of the UML models that help developers

to compose them?

To sum up, there has been very limited empirical research evaluating the

effort of composing large-scale design models in literature. Even worse, nothing

has been done to both understand and describe the influential factors that can

jeopardize the potential benefits of using composition techniques in industry. In

particular, there are four critical gaps in current understanding. Firstly, the lack of

practical knowledge on the effort of applying composition techniques, detecting

and resolving inconsistencies in practice. More importantly, the lack of a trade-off

analysis about three effort variables (Section 4.2.3.4.3). Secondly, a precise

understanding about the influential factors of composition effort is lacking. Next,

the lack of understanding of how technical and social factors can affect

composition effort. Last, the absence of evaluation of important aspects in model

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

153

composition beyond modeling languages and composition techniques. Some of

these aspects would be such as the potential benefits of good practice of software

modeling, merging in pair (two or more developers work together to compose the

input models), inconsistency management, and strategies to allocate tasks to

minimize the composition effort.

4.2.6.
Concluding Remarks of the Second Study

Model composition is a key mechanism to support the evolution of design

models in large-scale software projects. In particular, this mechanism is essential

to promote collaborative work of separate development teams whereas increasing

their productivity. Thus, developers naturally become concerned about the quality

of the software evolutions produced (i.e., the composed models) and the effort

invested by the teamwork members. However, there is a lack of empirical studies

evaluating model composition effort in practice. This means that little empirical

findings can be converted into practical knowledge to the industry. Developers

have no guidance on how to reduce model composition effort and the number of

emerging model inconsistencies.

This study represents the first in vivo exploratory study to evaluate the effort

that developers invest to compose design models (RQ2.3) and to identify and

analyze the factors that affect developers’ effort (RQ2.4). In our study, a best-of-

breed model composition technique was applied to evolve industrial design

models along 297 evolution scenarios. Developers conducted the work during 56

weeks, which resulted in more than 2 million compositions of model elements.

We investigated the composition effort in this sample, and analyzed the side

effects of key factors that affected the effort of applying the composition

technique as well as detecting and resolving inconsistencies. All conclusions from

RQ2.3 and RQ2.4 were drawn from quantitative and qualitative analyses based on

the use of metrics, interviews, and observational studies.

We summarize the findings related to RQ2.3 as follows: (1) the application

effort measures do not follow an ad hoc distribution and, rather, it assumed a

distribution pattern; (2) the application effort tends to reduce as developers

become more familiar with technical issues rather than application domain issues;

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

154

(3) the more experienced developers spend 23.2 percent less effort to detect

inconsistencies than less experienced developers; and (4) the higher the number of

inconsistencies in behavioral models, the higher the effort to detect

inconsistencies. Additionally, we also present four findings with respect to RQ2.4

as follows: (1) the production of the intended model is strictly affected by the

presence of different types of change categories in the delta model; (2) the closer

to the Open-Closed principle the change is, the lower is the composition effort; (3)

evolution scenarios that do not follow the Open-Closed principle required more

effort to produce the intended model; and (4) the refinement (1:N) of model

elements in the delta model caused severe composition problems and hence

increased the composition effort.

Although there is a significant amount of quantitative and qualitative

evidence supporting our findings previously mentioned, further empirical studies

are still required to check whether they are observed in other contexts with

different subjects. For example, we need to better understand if the composition

effort is alleviated when developers compose well-modularized input models.

There is some expectation that design models with an improved modularization

can aid the composition techniques to accommodate the changes in the base

model. Another two interesting investigation points would be: (1) Do developers

invest more effort to compose behavioral models (e.g., sequence diagrams) than

structural models (e.g., component diagrams)? (2) Do developers invest more

effort to resolve semantic inconsistencies than syntactic ones? It is by no means

obvious that, for example, developers invest less effort to resolve inconsistencies

related to the well-formedness rules of the language metamodel than to resolve

inconsistencies considering the meaning of the model elements.

Finally, we hope that the issues outlined throughout the thesis encourage

other researchers to replicate our study in the future under different circumstances.

Moreover, we also hope that this work represents a first step in a more ambitious

agenda on better supporting the model composition tasks.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

