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4 
Effort on the Application of Composition Techniques 

The goal of this Chapter is to evaluate the effects of model composition 

techniques on the developers’ effort. To this end, two studies are performed. The 

first study investigates the effort that developers invest to compose design models 

based on a controlled experiment. The second study evaluates the effort to 

compose design models from industrial case studies. 

 

4.1.  
Effects of Composition Techniques on the Composition Effort 

Model composition techniques can be classified in two categories (Chapter 

2): (i) specification-based techniques, such as Epsilon (Epsilon, 2011) and MATA 

(Whittle & Jayaraman, 2010), and (ii) heuristic-based techniques, such as merge 

and override (Clarke, 2001; Clarke & Walker, 2001) and the three-way merge 

algorithm (Mens, 2002). The manual model composition is expected to be error-

prone and time consuming. Then, developers apply model composition techniques 

with the aims of reducing the composition effort and improving the correctness of 

the composed model. The techniques in the first category primarily aim at 

producing correctly composed models, but it is questionable if they necessarily 

reduce composition effort. On the other hand, the second category aims at 

alleviating the developers’ effort. However, its positive impact on the correctness 

of the composed models is expected to be worse than the first category. 

By using the specification-based techniques, developers explicitly specify 

the correspondence and composition relations between the input model elements 

MA and MB to produce MAB (Section 2.4). On the other hand, by using the 

heuristic-based techniques developers apply a set of predefined heuristics, which 

“guess” the relations between model elements before composing MA and MB. 

Specification-based techniques provide a systematic way to specify the relations 

between the input model elements, instead of trying to “guess” them. It is 

expected that these techniques  not only alleviate the composition effort, but also 
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assure a higher rate of correctly composed models when compared to the heuristic 

techniques (Epsilon, 2011; Whittle & Jayaraman, 2010).  

To date, however, there is little empirical evidence to confirm (or not) if 

these expectations hold; mainly, when developers try to: (1) select and apply the 

model composition techniques; (2) detect syntactic and semantic inconsistencies; 

and (3) resolve the identified inconsistencies in realistic settings. As described in 

Chapter 3, these three composition activities are required to obtain the intended 

model MAB. Empirical studies in model composition are lacking, mainly ones 

considering the impact of the composition techniques on the following quality 

notions described in our quality model: effort, application, detection, resolution, 

syntactic, and semantic notions. In fact, the literature fails to provide such 

empirical evidence to software developers. As a result, developers are left without 

any practical knowledge to answer questions such as “what are the effects of 

specification-based and heuristic-based techniques on the developers’ effort and 

the correctness of the composed models?” It is important to answer this question 

because, before adopting any composition technique in realistic settings, it is 

necessary to have practical knowledge about the effects of model composition 

techniques. 

In fact, to date, both specification-based and heuristic-based techniques have 

been used without any empirical evidence. Currently developers rely on diverging 

feedbacks (Norris & Letkeman, 2011) from evangelists to evaluate how good 

techniques can be, rather than on practical, evidence-based knowledge derived 

from experimental studies. The practical knowledge about these effects (or even a 

trade-off analysis) can be viewed as the main impairment to the wide application 

of composition techniques in practice where resources and time are tight. Note 

that if a composition technique reduces effort but does not favor model 

correctness (or vice-versa), it is quite questionable whether it can be applied in 

industry. On the other hand, if the composition effort is high, the potential benefits 

of using composition techniques (e.g., gains in productivity) can be compromised. 

The literature in model composition fails to provide assessments of model 

composition techniques  (Apel et al., 2011; Sarma et al., 2011; Shao et al., 2011; 

Brun et al., 2011; Whittle et al., 2009; Klein et al., 2006). Apel (Apel et al., 2011). 

Mens (Mens, 2002) also reinforces the need for more empirical and experimental 

research. Burn and colleagues (Brun et al., 2011b) evaluate the composition of 
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code in the context of a retrospective, quantitative study of the evolution of nine 

open-source systems. They concluded that inconsistencies in code are the norm 

rather than the exception, and that 16% of all merges required human effort to 

resolve them. However, even this kind of primary empirical analysis is lacking in 

the context of model composition. 

With this in mind, this Chapter reports a controlled experiment performed 

with 24 subjects, which used Epsilon, IBM RSA and traditional composition 

algorithms to evolve design models. The techniques are investigated in 144 

evolution scenarios and by about 2304 compositions of model elements (such as 

classes and relationships). The main results, supported by a complete statistical 

and qualitative analysis, are: (1) the IBM RSA and traditional composition 

algorithms require less effort to produce the intended model than Epsilon, and (2) 

there is no significant difference in the correctness of the output composed models 

generated by these techniques. Additionally, in some cases, the number of 

inconsistencies produced by Epsilon was significantly higher than one generated 

by IBM RSA and traditional composition algorithms. The techniques investigated 

are robust and representative and there are reasons to believe the results will 

generalize to broader scenarios. However, we do not claim generalization beyond 

these techniques and their use on other types of design models, in particular class 

and sequence diagrams. 

The remainder of the chapter is organized as follows. Section 4.1.1 presents 

the experiment planning. Section 4.1.2 analyzes the results. Section 4.1.3 contrasts 

our work with related work. Section 4.1.4 presents the threats to validity. Finally, 

Section 4.1.5 describes some concluding remarks. 

 

4.1.1. 
Experiment Planning 

This section presents the experiment planning followed to carry out a 

controlled experiment. This planning is based on practical and conventional 

guidelines of empirical studies such as (Wohlin et al., 2000; Kitchenham et al., 

2008; Shadish et al., 2002; Sjober et al., 2002). We have opted to conduct a 

controlled experiment to investigate the hypotheses formulated in Section 4.1.1.2 

due to a number of reasons (Basili et al., 2007). First, it allows us to conduct well-
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defined, focused studies, with the potential for gathering statistically significant 

results, which is not possible with non-controlled case studies. Moreover, it helps 

to formulate hypotheses by forcing us to clearly state the question being studied 

and allow us to maximize the number of questions being asked.  

Second, as controlled experiments require well-formulated dependent and 

independent variables as well as null and alternative hypotheses, it also allows us 

to understand the relations of specific variables and measures.  

Third, by running a controlled experiment, we are forced to state clearly 

what questions the investigation is intended to address and how we will address 

them, even if the study is exploratory (Basili, 2007). Moreover, we can create a 

study design in such a way that maximizes the chance for replication of the study 

in order to test the hypotheses in different contexts and by independent 

researchers. 

Fourth, controlled empirical studies can better investigate the cause-effect 

relationships between variables, allowing us to understand, for example, the 

effects of the independent variables on the dependent variables. Additionally, a 

controlled study provides insight into why relationships and results do and do not 

occur. It also forces us to analyze the threats to validity, leading to the 

identification of where replications or alternate studies are needed and where 

variations might show different effects. It also allows us to build a body of 

knowledge in model composition that helps researchers to build theories 

supported by clear empirical evidence.  

 

4.1.1.1. 
Experiment Definition 

This study aims at evaluating the effects of model composition techniques 

on six quality notions, namely syntactic, semantic, effort, application, detection, 

and resolution ones. For this, we control two variables: the effort to compose 

design models and the correctness of the output models. Correctness is also 

controlled, as the evaluation of effort needs to be put in the perspective of the 

quality of the produced models. Otherwise, the cost-effective analysis cannot be 

fully drawn. These effects are investigated through a controlled experiment in 

which developers use specification-based and heuristic-based techniques to evolve 
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design models. With this in mind, the objective of this study is stated based on the 

GQM template (Basili et al., 1994) as follows: 

Analyze composition techniques 

for the purpose of investigating their effects 

with respect to effort and correctness 

from the perspective of developers 

in the context of the evolution of design models. 

Therefore, this controlled experiment addresses the research question RQ2, 

as stated in Section 1.3. 

 RQ2: What is the relative effort of composing design models with 

specification-based composition techniques and heuristic-based 

composition techniques?  

Based on this, we further decompose the RQ2 into two research 

subquestions described below: 

 RQ2.1: What is the relative effort of composing two input models by using 

specification-based composition techniques with respect to heuristic-based 

composition techniques? 

 RQ2.2: Is the number of correctly composed models higher with 

specification-based techniques than with heuristic techniques? 

 

4.1.1.2. 
Hypothesis Formulation 

Table 8 describes the hypotheses for testing the effects of composition 

techniques on effort and correctness. These hypotheses are elaborated throughout 

this section. 

Hypothesis 1. The first hypothesis of this section is that, although the 

specification-based composition technique provides a more systematic way to 

compose the input models, it does not reduce the composition effort. Our 

expectation is that developers invest more effort to write down the specifications 

rather than using the heuristic-based composition techniques. This can be 

explained based on the expectation that they are not intuitive or flexible enough to 

express the change requests. Moreover, the presence of inconsistencies in the 

output composed model may have a detrimental effect on the composition effort. 
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As developers should examine all points in the input models (affected by the 

specifications) or even “guess” which input model elements are incorrectly 

combined. Consequently, this additional effort may increase the composition 

effort rather than minimize it. However, it is by no means obvious that this 

hypothesis holds. It may be, for example, that they help developers to match and 

then compose the input models more quickly. With this in mind, the null 

hypothesis states that the specification-based technique requires less (or equal) 

effort to compose the input models than the heuristic-base technique. On the other 

hand, the alternative hypothesis states that the effort is significantly higher. These 

hypotheses are summarized as follows. Note that our expectation has a specific 

direction, which  leads, in turn, to the definition of one-tailed hypotheses. 

Null Hypothesis 1, H1-0: The specification-based composition 

techniques require less (or equal) effort than the heuristic-based 

composition techniques to produce MAB from MA and MB. 

H1-0: Effort(MA,MB)Specification ≤ Effort(MA,MB)Heuristic  

Alternative Hypothesis 1, H1-1: The specification-based composition 

techniques require more effort than the heuristic-based composition 

techniques to produce MAB from MA and MB. 

H1-1: Effort(MA,MB)Specification > Effort(MA,MB)Heuristic 

 

For a more detailed investigation, we break this hypothesis in three 

subhypotheses (H12, H13, and H14). The goal is to evaluate the relative efforts (f, 

diff, and g) defined in the composition effort equation (see Figure 3). A complete 

formulation of these hypotheses can be seen in Table 8. 

Hypothesis 2. The second hypothesis is that the use of specification-based 

composition techniques increases the number of correctly composed models. This 

is because developers can explicitly specify the composition relations between the 

input models. However, it is not clear whether this manner of realizing model 

composition promotes higher correctness of the output model. The need to 

explicitly take into consideration each of the models’ properties (such as 

isAbstract), when specifying the relations, may cause difficulties to properly write 

down the specifications. If this is confirmed, then inconsistencies are inserted into 

the output composed model, compromising its correctness (i.e., MCM ≠ MAB). 

With this in mind, the null hypothesis assumes that the specification-based 
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Null Hypothesis Alternative Hypothesis 

H11-0: Effort(MA,MB)S ≤ Effort(MA,MB)H  H11-1: f(MA,MB)S > f(MA,MB)H 

H12-0: f(MA,MB)S ≤ f(MA,MB)H H12-1: f(MA,MB)S > f(MA,MB)H 

H13-0: diff(MCM,MAB)S ≤ diff(MCM,MAB)H H13-1: diff(MCM,MAB)S > diff(MCM,MAB)H 

H14-0: g(MCM)S  ≤ g(MCM)H H14-1: g(MCM)S > g(MCM)H 

H21-0: Cor(MCM)S ≤ Cor(MCM)H H21-1: Cor(MCM)S > Cor(MCM)H 

H22-0: Rate(MCM)S  ≥ Rate(MCM)H H22-1: Rate(MCM)S < Rate(MCM)H 

Dependent Variables 

Effort: Effort to compose the input models (RQ3.1) 

f: Effort to apply the composition techniques (RQ3.1) 

diff: Effort to detect inconsistencies (RQ3.1) 

g: Effort to resolve the inconsistencies (RQ3.1) 

Cor: Correcteness of  the composition (RQ3.2) 

Rate: Inconsistency rate of the composed model (RQ3.2) 

  

     Table 8: Tested hypotheses 

composition technique produces a lower (or equal) number of correctly composed 

models than the heuristic-based composition technique. On the other hand, the 

alternative hypothesis states that the specification-based technique produces a 

higher number of correctly composed models than the heuristic-based technique. 

In other words, the correctness (Cor) of the output composed models is usually 

assured when they are produced by the specification-based techniques. These 

hypotheses are presented as follows: 

Null Hypothesis 2, H2-0: Specification-based techniques produce a 

lower (or equal) number of correctly composed models than the 

heuristic-based techniques. 

H2-0: Cor(MCM)Specification ≤ Cor(MCM)Heuristic  

Alternative Hypothesis 2, H2-1: Specification-based techniques 

produce a higher number of correctly composed models than  

heuristic-based techniques. 

H2-1: Cor(MCM)Specification > Cor(MCM)Heuristics 
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Task Models Required Changes to the Base Model 

1 Oil Extraction 
Add one class, one method, and one relationship.  

Modify one class from concrete to abstract. 

2 Car System 
Remove two methods and  

modify the direction of a relationship. 

3 ATM 
Add two classes and refine two classes from one.  

Remove this last class. 

4 Supply Chain Add two classes and one relationship. 

5 Finance 

Remove one class and add two methods 

to a particular class. Refine two classes  

from one and remove the last one.  

Remove one relationship. 

6 
Simulation of 

extraction 

Modify the direction of five relationships.  

Modify the name of two methods. 

 

Table 9: The tasks of the evolution scenarios  

The correctness of the model compositions is influenced by the presence (or 

not) of inconsistencies in the output composed model. Thus, we attempt to 

investigate if the specification-based technique also produces a lower 

inconsistency rate than the heuristic-based techniques. The new elaborated 

hypotheses are stated in Table 8. 

 

4.1.1.3. 
Context and Subject Selection 

The subjects used the the traditional algorithms (Section 2.4.1), the IBM 

RSA (Section 2.4.2), and Epsilon (Section 2.4.3) to realize six evolution scenarios 

(Table 9). They had no previous knowledge about the design models or the 

changes. Thus, the evolution scenarios were typical tasks where developers were 

not the initial designers of the models. The design models used were fragments of 

industrial models captured from different application domains, such as financial 

applications and simulation of petrol extraction.  

The experiment was conducted with 24 subjects (being 8 students) from 

Brazilian companies. All professionals held a Master’s degree, Bachelor’s degree, 

or equivalent, and had the required knowledge on software modeling and 

programming to participate in the experiment. Students were also invited to 
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participate in the experiment because of the recognized importance of students in 

empirical studies (Host et al., 2000); they are important to enable us to have 

subjects with different levels of experience in the study. They are from two 

Master and Doctoral programs in Computer Science at two Brazilian universities: 

Pontifical Catholic University of Rio de Janeiro (PUC-Rio) and Federal 

University of Bahia (UFBA). These students attended to two courses: “empirical 

studies in software engineering” (PUC-Rio) and “software evolution” (UFBA). 

The experiments were part of the courses and were performed as practical 

laboratory exercises. In all cases, we had to ensure that every participant would 

undergo the same learning experiences and had previous experience with software 

evolution.  

 

4.1.1.4. 
Experimental Design 

The experimental design of this study is characterized as a randomized 

complete block design with three treatments (Wohlin et al., 2000). The study had 

a set of activities that are organized in three phases (Figure 7). The subjects were 

randomly assigned and equally distributed to the treatments. The distribution 

follows a within-subjects design in which all subjects serve in the three 

treatments. This allowed us to compare the data collected. In each treatment, the 

subjects used a composition technique to carry out two experimental tasks. As 

three composition techniques were used, then six tasks were performed. 

Therefore, the experimental design was, by definition, a balanced design.  

  

4.1.1.5. 
Operation and Material 

Operation. Figure 7 shows through an experimental process how the three 

phases were organized. The subjects individually performed all activities to avoid 

any threat to the experimental process. The activities are further described as 

follows.  

Training. All subjects received training to be sure of their familiarity with 

both software modeling and model composition techniques. It is important to 
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highlight that the subjects were not aware about the research questions (and 

hypotheses) of the study in order to avoid biased results. 

Apply the techniques. The participants were encouraged to compose MA and 

MB based on a document with the evolution descriptions, which define how the 

model elements should be changed. This document describes (in a more 

elaborated way) the experimental tasks shown in Table 9. The measure of 

application effort, video and audio records, and a composed model represent the 

results of this activity. Each subject performed it six times (for each task presented 

in Table 9). The video and audio records were later used during the qualitative 

studies. It is important to point out that a participant (subject x) produced MCM 

and in the second phase other (subject n-x) detected and resolved the 

inconsistencies in MCM in order to produce MAB.  

Detect inconsistencies. Subjects reviewed MCM in order to detect 

inconsistencies. For this, they checked if MCM had the changes described in the 

evolution descriptions and if the contradicting changes between MA and MB were 

correctly solved. As a result, we have the measure of the detection effort, video 

and audio records, and a list of inconsistencies identified.  

Resolve inconsistencies. The subjects resolved the inconsistencies 

previously localized to produce MAB. The resolution effort was also measured and 

the video and audios were registered.  

Make interview. Subjects reflected on their experiences on model 

composition using an in-depth semi-structured interviews. These interviews 

enriched the qualitative data collected. For example, it was possible to observe, 

for example, some non-verbal communication issues that help us to infer the 

study’s findings.   

Answer questionnaire. The subjects filled out a questionnaire. This allows 

us to collect their background (i.e., their academic background and work 

experience) and apply some inquisitive questions. 

Material. The subjects used UML class diagrams in the experiment because 

they are the most used design models in practice. Each model had approximately 

eight classes and seven relationships. We have avoided using large models due to 

some reasons. First and more importantly, proper modeling practices determine 

that each model should not have much more than seven modular units. Second, 

experimental guidelines recommend that artifacts used in experiments should be 
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Figure 7: The Experimental process 

simple; otherwise, the size and complexity may affect the results in undesirable 

ways (Wohlin et al., 2000). 

 

 

Third, the delta model should be as small as possible; otherwise, the 

subjects would have conflict management problems (Mens, 2002). In (Asklund, 

1994), Asklund recommends that software changes should be relatively small so 

that the number of conflicts is not very high. In (Perry et al., 1998), Perry 

confirms this idea from a statistical basis in a large-scale industrial case. As 

previously mentioned, the subjects used another material named evolution 

description. This file describes the changes that should be performed in MA to 

transform it into MAB. Table 9 illustrates the changes. 
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4.1.1.6. 
Instrumentation and Measurement 

The independent variable of this study is the choice of composition 

techniques. This variable is nominal and assumes two values: specification-based 

technique and heuristic technique. We investigate the impact of these independent 

variables on the following dependent variables. 

 Effort. This variable measures the overall time (in minutes) invested by 

subjects to compose the input models (H1-1). This measure is required by 

three other variables: effort to apply model compositions (H1-2), effort to 

detect inconsistencies (H1-3), and effort to resolve inconsistency (H1-4). 

 Correctness. The correctness of a composition (H2-1) is asserted when the 

output composed model produced is correct with respect to intended 

model that fully satisfies the evolution description (i.e., MCM = MAB). 

The composed model produced may be rated as either correct or 

incorrect. Note that each composition performed by a subject produces a 

dichotomous data (correct or incorrect) defined from the comparison 

between MCM and MAB. Therefore, this variable is a categorical one. Note 

that a composed model with one of the previously described 

inconsistencies (Section 3.3.4) would be deemed as incorrect. To 

promote a deeper understanding, we also investigate the inconsistency 

rate of the incorrectly composed model. It represents the ratio of the 

number of inconsistencies of a composed model divided by its number of 

model elements (H2-2). The inconsistencies considered were previously 

described in Chapter 3. 

 

4.1.1.7. 
Analysis Procedures 

Quantitative Analysis. We performed descriptive statistics to analyze its 

normal distribution (Kitchenham et al., 2008) and statistical inference to test the 

hypotheses. The level of significance of the hypothesis tests was α = 0.05. The 

analyses were carried out to test the hypotheses both individually for each 

experiment task and across all experiment tasks. To test H1-1 (and its 
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subhypotheses) we applied the non-parametric Wilcoxon signed-rank test (Wohlin 

et al., 2010) for the six tasks. This test is similar to the t-test, but does not require 

two separate sets of independent and identically distributed samples. Note that we 

have a same subject design. As a result, our samples are dependent. Moreover, the 

non-parametric Friedman ANOVA test (Conover, 1999) was also applied to 

reduce some potential threats to the validity of statistical conclusions. To test H2-1 

we applied the McNemar's test for marginal homogeneity (Wohlin et al., 2010; 

Devore etal., 1999). To test H2-2 we consider the inconsistency rate produced 

during the evolution scenarios. As in H1, we also applied the Wilcoxon signed-

rank test and Friedman test. 

Qualitative Analysis. Qualitative data were collected from some sources: 

questionnaire, audio/video records, and transcriptions, think aloud comments and 

interviews. This helped us to potentially obtain some complementary evidence to 

explain the quantitative results and then derive the conclusions from a chain of 

evidences (Jorgensen, 2005), which are formed from the systematic alignment of 

the quantitative and qualitative data.   

 

4.1.2. 
Experimental Results  

In this section, we present and interpret the experimental results about the 

RQ2.1 and RQ2.2. For this, a complete statistical analysis is presented, including 

descriptive statistics and statistical inference. 

 

4.1.2.1. 
RQ2.1: Effort and Composition Techniques 

Descriptive Statistics. The collected data indicate that the developers tend to 

spend less effort by using heuristic-based techniques rather than the specification-

based techniques. In fact, they required less effort to-be applied (f), detect 

inconsistencies (diff), and resolve inconsistencies (g). Consequently, the general 

composition effort was also smaller. The traditional algorithms required less effort 

than the IBM RSA, which in turn required less than the Epsilon. This is a very 

interesting finding because the common sense would be otherwise i.e., developers 
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 Effort f diff g 

 TRA RSA EPS TRA RSA EPS TRA RSA EPS TRA RSA EPS 

N 46 46 46 46 46 46 46 46 46 46 46 46 

Min 5 5 9 2 3 4 1 1 1 0 0 0 

25th 7 11 14 4 6 8.7 2 2 3 0 0 0.5 

Med 11 14 21 6 8 12 3 4 4.5 0.5 2 3 

75th 18 24 34 9 11 17 5.2 8 8.7 4 7 9 

Max 31 66 114 25 22 39 11 22 38 9 22 38 

Mean 13.3 18.2 29.1 7.2 9.0 14.8 3.9 5.3 7.7 2.1 3.8 6.6 

St D. 6.9 11.0 23.3 4.4 4.2 8.8 2.4 4.4 8.2 2.9 5.1 9.1 

N: #compositions, Min: minimum, Med: median, Max: maximum,  

StD: Standard Deviation, TRA: traditional, RSA: Rational Software Architect, EPS: Epsilon 

 

Table 10: Descriptive statistic for the composition effort 

would invest less effort by using the Epsilon and IBM RSA. Table 10 shows 

pieces of evidence through descriptive statistics of the collected data.  

Regarding the median of the general effort, it grew significantly from 11 to 

14 and 21 by using RSA and Epsilon, respectively. This superior effort represents 

an increase by about 27.27 and 90.90 percent. This upward trend was not only 

observed in the measure of the general effort, but also in the f, diff, and g. 

Considering the mean of effort computed, this evidence was still clearer. The 

general effort increased from just over 13 minutes in the Traditional algorithms to 

18.26 minutes in the IBM RSA, reaching almost 30 minutes in the Epsilon. This 

represents a rise of 36.88 and 118.66 percent, respectively. This evidence, 

therefore, demonstrate that the developers in fact tend to invest less effort with 

heuristic-based techniques than specification-based one. The next step it is to 

scrutinize whether this evidence are statistically significant to reject the null 

hypotheses (H1-1, H1-2, H1-3 and H1-4) stated in Section 4.1.1.2.  

Hypothesis Testing. Since the Shapiro-Wilk test (Sheskin, 2007) indicated 

deviations from normality, the Wilcoxon signed-rank test and Friedman test were 

applied. While the Wilcoxon test allowed us to realize a pairwise comparison of 

the distributions, Friedman test allowed checking if there exist significant 

differences among the three techniques under investigation. We test H1 (and its 

subhypotheses) to evaluate the RQ2.1 in the six experimental tasks (Table 11).  

Table 11 and Table 12 show the p-values for the pairwise comparison. Bold 

p-values highlight statistically significant results (i.e., p-value < 0.05). They 

indicate the rejection of the respective null hypothesis. The main feature is that the 
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  f(MA,MB) diff(MCM,MAB) 

task statistics TRA vs RSA TRA vs EPS RSA vs EPS TRA vs RSA TRA vs EPS RSA vs EPS 

All 
p-value 0.0269 0.0001 0.0003 0.0337 0.0003 0.0891 

W -77 -834 -588 -233 -533 -186 

1 
p-value 0.4294 0.4062 0.3628 0.1438 0.5 0.3981 

W -4 5 6 16 -1 4 

2 
p-value 0.2305 0.0078 0.0342 0.0178 0.2284 0.2303 

W -12 -34 -27 -21 -8 8 

3 
p-value 0.3762 0.0171 0.1548 0.2731 0.0526 0.1250 

W -4 -26 -16 -8 -20 8 

4 
p-value 0.2931 0.0111 0.0171 0.2931 0.0634 0.0369 

W -3 -28 -26 3 -19 -22 

5 
p-value 0.0747 0.0039 0.0177 0.0207 .0.848 0.1982 

W -18 -36 -31 -11 -25 -11 

6 
p-value 0.2188 0.0750 0.1094 0.0672 0.0111 0.1163 

W -9 -18 -13 -12 -28 15 
W: sum of signed ranks, f: effort to apply the composition technique,  
Diff: inconsistency detection effort, RSA: IBM rational software architect, EPS: Epsilon, TRA: traditional algorithm 

 

Table 11: Wilcoxon test results for application and detection effort 

 

general composition effort (f, diff and g) using heuristic-based techniques were 

significantly lower than using automated techniques in all cases. Still, by using the 

traditional algorithms this significance is higher. Thus, we can reject the H1 null 

hypotheses (and its H11-0, H12-0, H13-0 e H14-0). For example, in row 2 of Table 

12, for measure Effort, between RSA and EPS, the W is negative (-544) and p-

value is less than 0.05 (p = 0.0015) our selected significance level). This means 

that the composition effort by using the IBM RSA is significantly lower than one 

using Epsilon. Still in row 2 just a null hypothesis was not rejected in just one 

case: the effort to detect inconsistencies considering the IBM RSA and Epsilon (p-

value = 0.0891). This means that the subjects did not spend substantially different 

effort to detect inconsistencies in IBM RSA and Epsilon. Therefore, our initial 

intuition that the specification-based technique would not reduce the composition 

effort is confirmed.  

Given this surprising result, we were encouraged to apply the Friedman’s 

test to eliminate threats to statistical conclusion validity. This test also confirmed 

the above conclusions. The results are shown in Table 13. Again bold p-value 

(<0.05) means that there is a significant difference between the mean ranks in 

repeated measures of effort. Hence, there is sufficient evidence to reject the null 

hypothesis, and conclude that there is a difference between the composition 

efforts at the 0.05 level of significance. For example, in row 1, a chi-Square (χ
2) 
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  General Effort g(MCM) 

task statistics TRA vs RSA TRA vs EPS RSA vs EPS TRA vs RSA TRA vs EPS RSA vs EPS 

All 
p-value 0.0056 0.0001 0.0015 0.0164 0.0003 0.0422 

W -420 -900 -544 -261 -423 -248 

1 
p-value 0.3349 0.5 0.5 0.4661 0.3989 0.3054 

W 6 0 0 -2 -4 -7 

2 
p-value 0.0149 0.0039 0.1462 0.0828 0.0528 0.2226 

W -32 -36 -16 -14 -24 -10 

3 
p-value 0.2891 0.0156 0.1355 0.2303 0.0625 0.1238 

W -8 -21 -14 -8 -10 12 

4 
p-value 0.5 0.0111 0.0156 0.5 0.0178 0.0445 

W -1 -28 -26 0 -21 -17 

5 
p-value 0.0167 0.0071 0.977 0.2763 0.4326 0.5 

W -26 -36 -20 -8 -3 -1 

6 
p-value 0.0452 0.0313 0.4228 0.0463 0.1250 0.4219 

W -21 -23 3 -17 -28 28 
W: sum of signed ranks, g: resolution effort, RSA: IBM rational software architect, EPS: Epsilon,  

TRA: traditional algorithm 

 

Table 12: Wilcoxon test results for the resolution and general effort 

 

Task Statistics Effort f(MA,MB) diff(MCM,MAB) g(MCM) 

all p-value 0.0001 0.0001 0.0048 0.0017 

χ
2 

26.21 26.64 10.66 12.76 

1 p-value 0.7682 0.8135 0.5690 0.3977 

χ
2
 0.8571 0.4 1.1515 1.931 

2 p-value 0.0048 0.0789 0.0789 0.1495 

χ
2
 9.75 5.25 5.12 3.931 

3 p-value 0.1916 0.1916 0.4861 0.3046 

χ
2
 3.630 3.630 1.68 2.5454 

4 p-value 0.0084 0.0036 0.0272 0.0207 

χ
2
 8.615 9.333 6.333 7.5238 

5 p-value 0.0099 0.0024 0.0024 1 

χ
2
 8.968 10.516 10.51 0 

6 p-value 0.0854 0.0272 0.0207 0.0003 

χ
2
 5.429 6.231 7.6923 12.074 

χ
2
:  Friedman's Chi-Square, α = 0.05 

 

Table 13:  Statistical test for the Friedman Test 

value of 26.21 and p = 0.001 (with p<0.05) indicates a statistically significant 

difference in the effort measures associated with the three techniques. 
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4.1.2.2. 
RQ2.2: Correctness and Composition Techniques 

Descriptive Statistics. Figure 8 shows the correctness of the compositions 

generated by using the three techniques: traditional algorithms, Epsilon, and IBM 

RSA during the six experimental tasks. The axis-y represents the proportions of 

numbers of MAB (the intended model) achieved by the number of compositions 

realized in each task using each composition technique, while the axis-x consists 

of the experimental tasks. Recall that the composition of MA and MB often MCM 

instead of MAB. In this case, we calculate the rate of MAB produced in 46 

compositions. Thus, the histogram shows how the correctly composed model 

happened throughout the experimental tasks.  

The main outstanding feature is the lack of a distribution pattern of the 

proportions of correctly composed model in the tasks. For example, in task 1, 

TRA produced a lower proportion of correctly composed model than RSA and 

EPS. That is, the intended model was generated in 42.86 percent of the cases in 

TRA, whereas 57.14 percent of the cases in RSA and EPS. On the other hand, in 

task 2, TRA outnumbers RSA and EPS. It produced the intended model in 71.43 

percent of the cases, while EPS and RSA produced 28.57 and 57.14 percent of the 

cases, respectively. Although TRA has obtained low measures in task 3 in 

comparison to task 2 (a decrease from 71.43 to 42.86 percent), it still got a 

superior value compared to EPS and RSA — i.e., value by about three times 

higher than the measure of EPS and RSA, comparing 42.86 and 14.29 percent.  

Moreover, TRA and EPS had an equal proportion of correctly composed 

model in task 4, presenting an increase of around 20 percent considering RSA. On 

the other hand, in task 6, this superiority was reversed. RSA got double the value 

than TRA and EPS, comparing 28.57 and 57.14 percent. In task 5, the superiority 

of TRA and RSA considering EPS was evident. Still, subjects obtained the 

intended model by using TRA and RSA in all composition cases, while less than 

half of the cases in EPS. We have observed that TRA got a higher number of 

intended models than RSA and EPS. The subjects produced the intended model in 

61.90 percent of the compositions using TRA against 59.52 and 42.86 percent 

using the RSA and Epsilon technique, respectively. Two interesting insight were 

that (1) the composition techniques require different effort in front of the 
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Figure 8: The correctness of the output composed model 

 

categories of evolution changes, and (2) the specification-based technique does 

not guarantee superiority in terms of correctness in comparison with the heuristic-

based techniques. 

Table 14 shows the descriptive statistics of the inconsistency rate of the 

composed models. Our initial expectation was that the specification-based 

technique would minimize the inconsistence rate whereas also get lower measures 

than the heuristic-based techniques. However, this expectation was not confirmed. 

We have observed that, in most cases, the inconsistency rate was similar using 

specification-based and heuristic-based techniques. This means that developers 

will not produce correctly composed model by using a technique based on 

composition specifications. Rather, the output models will have equal (or even 

more) inconsistency rate. For example, on average, EPS produced a higher 

inconsistency rate than TRA and RSA. Table 14 shows evidence of the superiority 

of EPS compared to the TRA. In general, the mean of the inconsistency rate in 

Epsilon is two times higher than one TRA and RSA, increasing by about 123 and 

176 percent, respectively. Still note that the inconsistence rate in RSA is also 

higher than in TRA. In short, the inconsistency rate in EPS is higher than RSA, 

which outnumber TRA. This suggests that the inconsistency rate have favored 

TRA in comparison with RSA and EPS in most cases. This implies that to some 

extent the number of inconsistencies is decreased whenever the composed model 

is produced by TRA and RSA. In the next section, we test H5 and H6 to check if 

whether the differences observed are substantially significant. 
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Task Comparison χ
2
 p-value 

all 

TRA vs RSA 0.27 0.606 

TRA vs EPS 0.75 0.387 

RSA vs EPS 0 1 

χ
2

:  Friedman's Chi-Square, α = 0.05 

 

Table 15: McNemar test results for correctness 

 N Min 25th Med 75th Max Mean St D. 

TRA 46 0 0 0 0.31 1.63 0.26 0.45 

RSA 46 0 0 0 0.425 1.22 0.21 0.29 

EPS 46 0 0 0.47 0.78 5.22 0.58 0.88 

N: #compositions, Min: minimum, Med: median, Max: maximum,  

StD: Standard  Deviation,  

 

Table 14: Descriptive statistic for the inconsistency rate 

Hypothesis Testing. RQ2.2 evaluates if the specification-based techniques 

assure a higher number of correctly composed model than the heuristic-based 

techniques. We test H21 (and its sub hypothesis H22) to investigate RQ2.1. For 

this, we apply the McNemar test. Table 15 shows the chi-square statistic (χ
2) and 

p-values for the pairwise comparisons. In all cases, the p-value is large (p > 0.05), 

so the null hypothesis of H21-0 cannot be rejected. Although the p-value to the six 

tasks is not shown in the table, the p-value took values greater than 0.05 in the six 

tasks. This implies that there is no significant difference between the proportions 

of correctly composed model of the composition techniques.  

We test H22 by applying the Wilcoxon test. Table 16 depicts the pairwise p-

values for each measure. Bold p-values point out statistically significant results. 

They also indicate the rejection of the null hypothesis. Note that the sum of signed 

ranks (W) shows the direction in which the result is significant. For example, in 

row 2, W is negative (-250) and p-value is lower than 0.05 (p = 0.0301) for the 

measure between TRA vs EPS. This means that the inconsistency rate for TRA is 

significantly lower than in EPS. RSA also obtained an inconsistence rate 

significantly lower (p = 0.001) than EPS. For instance, in row 1, the W is negative 

(-5) and p-value is higher than 0.05 for the inconsistency rate between TRA vs. 

RSA. This means that the inconsistency rate for TRA is lower, but no 

significantly lower than RSA.  
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Task statistic 
Inconsistency Rate 

TRA vs RSA TRA vs EPS EPS vs RSA 

All 
p-value 0.4851 0.0301 0.0011 

W -5 -250 344 

1 
p-value 0.2188 0.2188 0.5000 

W 7 7 -1 

2 
p-value 0.3750 0.2188 0.0781 

W 2 -9 15 

3 
p-value 0.2002 0.1094 0.1355 

W -9 -16 14 

4 
p-value 0.5000 0.5000 0.2071 

W -1 1 -4 

5 
p-value 0.5000 0.1875 0.1250 

W 1 -6 8 

6 
p-value 0.1982 0.1094 0.0469 

W 9 -16 17 
W: sum of signed ranks, g: resolution effort, RSA: IBM rational software architect, 

EPS: Epsilon,  TRA: traditional algorithm 

 

Table 17: Wilcoxon test results for the corretness 

Task Statistics Rate 

all p-value 0.0258 

χ
2 

7.314 

1 p-value 0.7682 

χ
2
 0.4210 

2 p-value 0.0854 

χ
2
 4.666 

3 p-value 0.4861 

χ
2
 1.407 

4 p-value 0.7682 

χ
2
 0.666 

5 p-value 0.4861 

χ
2
 2 

6 p-value 0.2366 

χ
2
 3.3076 

χ
2

:  Friedman's Chi-Square, α = 0.05 

 

Table 16: Friedman test result for inconsistency rate 

These results also encouraged us to apply the Friedman test (Table 17). We 

obtained a chi-square value (χ2) of 7.314 with p-value = 0.0258, which is lower 

than 0.05 hence is significant. This means that there exists a significant difference 

between the inconsistency rate by using TRA, RSA, and EPS. However, 

considering each experimental task, the results did not take significance (i.e., p > 

0.05). This means that a technique did not significantly outperform the other two 

ones. For example, in task 1, the chi-square value (χ2) of 0.4210 with a p-value = 

0.7682 indicates that there exist no significant difference between the three 

techniques in terms of inconsistency rate.  
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This finding can be explained based on two reasons captured during the 

interviews and analysis of the qualitative data (i.e., video records and audio). First, 

the specification-based technique adds a difficulty undesired to match and 

compose the input model elements, as it was not particularly challenging for the 

subjects write down the compositions. In particular, this was more often observed 

in compositions dominated by relations of the type one-to-many (1:N) or many-

to-many (N:N) between the input model elements. The specification-based 

technique proved to be a highly intensive manual task and more prone to errors. 

Second, the IBM RSA shows the commonalities and differences between the 

input models in multiple views. This jeopardizes the subjects create a “big picture 

view” of the output intended model. Finally, we summarized three lesson learned 

as follows: (1) the model composition techniques should be more intuitive and 

flexible to express different categories of changes; (2) the techniques should 

represent the conflicts between the input models in more innovative views and 

report them soon after they arise; (3) new composition technique should be a 

mixture of specification-based and heuristic-based techniques; and (4) the 

heuristic-based techniques consumed less effort and were more effective than the 

specification-based technique.  This suggests that the tools for specification-based 

techniques may be very rigid and need more flexibility so that, for example, 

developers can adjust the composition specification considering their experience. 

 

4.1.3.    
Limitations of Related Work 

Model composition techniques have been studied in many research areas 

such as merging of state charts (Whittle et al., 2010), composition of software 

product lines (Thaker et al., 2007; Jayaraman et al., 2007), composition of aspect-

oriented models (Klein et al., 2006), and mainly composition of UML design 

models (Clarke, 2001; Dingel et al., 2008). Such research initiatives focus on 

proposing model composition techniques or even creating innovative modeling 

languages. However, the evaluation of the developers’ effort on composing design 

models using the proposed techniques is still incipient. The lack of quantitative 

and qualitative indicators on composition effort hinders mainly the understanding 

of side effects peculiar to certain composition techniques. 
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Current works have notably aimed at evaluating modeling languages, such 

as UML in terms of some quality attributes such as comprehensibility (Ricca et 

al., 2010) and completeness (Lange et al., 2004). Although UML has been 

adopted as the industry standard modeling language, it is just a point of 

investigation in empirical studies considering model composition. In general, 

most of the research on the interplay of effort and composition techniques rest on 

subjective assessment criteria (France & Rumpe, 2007; Mens, 2002; Uhl, 2008; 

Farias, 2010a). Mens points out the need for studies aimed at investigating the 

effort to integrate software artifacts such as the source code. Uhl also highlights 

the superior difficulty of composing models compared to code and reinforce the 

need for studies reporting the effort required to compose design models. 

Even worse, this has led to depend on feedback’s experts, who have built up 

an arsenal of mentally held indicators to analyze the growing complexity of 

models and then evaluate the effort on composing them (Farias et al., 2010). 

Consequently, developers ultimately rely on feedback from experts to determine 

“how well” the compositions were performed. There are many examples of model 

composition techniques in the literature such as MATA (Whittle & Jayaraman, 

2010), Kompose (Kompose, 2011), Epsilon (Epsilon, 2011), and IBM RSA (IBM 

RSA, 2011). Nevertheless, they will only be useful if the quality of the output 

composed models (e.g., correctness) is assured and the composition effort 

required is low. Unfortunately, these approaches do not offer any insight or 

empirical evidence about the effort required to compose design models. As a 

matter of fact, the current literature about composition techniques points out the 

absence of empirical studies and do highlight the importance of studies reporting 

empirical evidence (Farias et al., 2010; France et al, 2007; Whittle et al., 2010; 

Apel et al., 2011, Sarma et al., 2011; Mens, 2002; Nejati et al., 2007). To the best 

of our knowledge, our results are the first to empirically investigate the topics of 

the research questions in a systematic and controlled way.  

 

4.1.4. 
Threats to Validity 

This section discusses how the internal, statistical conclusion, construct, and 

external threats were mitigated. 
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Internal Validity. The inferences between the independent and dependent 

variables are internally valid if a causal relation is demonstrated (Wohlin et al., 

2000; Kitchenham et al., 2008). Our study met the internal validity because: (1) 

the temporal precedence criterion was met; (2) the covariation was observed, i.e., 

the dependent variables varied accordingly, when the independent changed; and 

(3) there is no clear extra cause for the detected covariation.  

Statistical Conclusion Validity. We checked if the independent and 

dependent variables were submitted to suitable statistical methods. For this, two 

points were analyzed. First, whether the presumed cause and effect covaries. The 

study of the normal distribution of the data collected reduced this threat; as it was 

possible to verify if parametric or non-parametric statistical methods might be 

used (or not). In doing so, the Shapiro-Wilk test (Sheskin, 2007) was used to 

determine how likely the collected sample was normally distributed. As the 

dataset did not assume a normal distribution, non-parametric statistics were used. 

Hence, the assumptions of the test statistics were not violated. Second, how 

strongly the inferences covary. The hypotheses were tested at significance level of 

0.05 level (p-value ≤ 0.05). In addition, some guidelines (Wohlin et al., 2000; 

Shadish et al., 2002; Sjoberg et al., 2002) were followed so that the assumptions 

of the statistical test were not violated and the homogeneity of the subjects’ 

background was assured. 

Construct Validity. It concerns the degree to which inferences are warranted 

from the observed cause and effect operations included in our study to the 

constructs that these instances might represent. That is, it answers the question: 

"Are we actually measuring what we think we are measuring?" All variables of 

this study were quantified based on previous studies (Farias et al., 2010). Thus, 

they were defined and independently validated. Moreover, the concept of effort 

used in our study is well known in the literature (Jorsengen, 2005). Therefore, we 

are sure that the quantification method used is correct, and the quantification was 

accurately done. 

External Validity. We analyzed whether the causal relationships investigated 

in this study could be held over variations in people, treatments, composition 

techniques, and the design models. There are reasons to believe the results 

generalize beyond the three techniques used, but leave it to further work to fully 

test this. 
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4.1.5. 
Concluding Remarks of the First Study 

The previous section represents a first controlled experiment to assess and 

compare the specification-based and heuristic-based techniques in terms of effort 

and correctness. By controlling these variables, we investigated the effects of 

model composition techniques on six quality notions, namely syntactic, semantic, 

effort, application, detection, and resolution ones. From the quantitative and 

qualitative analyses, we observed some findings.  

First, developers tend to have an additional difficulty to match and compose 

the input model elements by using specification-based composition techniques, 

such as Epsilon. The main reason was that the creation of composition 

specifications has often been an effort-consuming task. Developers invested so 

much effort to define how the properties of the model elements should be related. 

This additional difficulty was converted into a superior effort to compose the 

design models. On the other hand, developers invested less effort to compose the 

design model by using the heuristic-based composition techniques, such as IBM 

RSA. The techniques did not require an extra effort to define the similarity 

between the model elements and realize the compositions.  

Second, the composition techniques required different amount of effort in 

specific composition scenarios. That is, the type of change found in the delta 

model affected the composition effort. The compositions whose goal were to only 

accommodate new model elements from the delta model into the base model 

required similar effort between the heuristic-based and specification-based 

composition techniques. On the other hand, composition scenarios in which were 

not dominated by additions, the effort invested to compose the models were 

different. In particular, this was more often observed in compositions dominated 

by relations of the type one-to-many (1:N) or many-to-many (N:N) between the 

input model elements. The specification-based technique proved to be a highly 

intensive manual task and more prone to errors.  

Moreover, we summarized three lessons learned as follows: (i) all the model 

composition techniques should be more flexible to express different categories of 

changes (Section 4.1.2.1); (ii) the techniques should report conflicts as soon as 

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA



111 
 

they arise (Section 4.1.2.1); such conflicts between the input models should be 

represented in more intuitive views; (iii) new composition technique should be a 

mixture of specification-based and heuristic-based techniques as if a set of 

adequate composition rules are defined and reused, the specification-based 

techniques can present better results compared to the heuristic-based techniques; 

and (iv) the heuristic-based techniques consumed less effort and were more 

effective than the specification-based technique.  The latter finding suggests that 

the tools for specification-based techniques are hard to perform model 

composition, mainly due to the additional difficulty of manually specifying how 

the input models should be composed, given the problem at hand. 

In addition, we found that the specification-based techniques neither reduce 

the developers’ effort nor guarantee the correctness of the compositions. Even 

worse, the traditional composition algorithms outperformed the specification-

based technique to some extent. Given that little is known about the real effort that 

developers invest to compose design models, this study might be seen as a first 

exploratory study that investigates the effects of the composition techniques on 

the effort in a systematic and controlled manner. However, further empirical 

studies are still required to better understand if these findings are confirmed or not 

in other contexts, considering other design models, having different evolution 

scenarios, and evaluating new composition techniques. 

 

4.2. 
Analyzing the Effort of Composing Design Models of Large-Scale 
Software 

As previously mentioned, there has been a significant body of research into 

defining model composition techniques in the area of governance and 

management of enterprise design models (Norris & Letkeman, 2011), software 

configuration management (Perry et al., 2001), composition of software product 

lines (Jayaraman et al., 2007; Thaker et al., 2007), aspect-oriented modeling 

(Whittle et al., 2009; Klein et al., 2006), and integration of state charts (Whittle & 

Jayaraman, 2010). 

Unfortunately, both commercial and academic model composition 

techniques suffer from the composition conflict problem. That is, models to-be 

composed conflict with each other and developers are usually unable to deal with 
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the conflicting changes. Hence, these conflicts are transformed into 

inconsistencies in the output composed model (Diskin et al., 2010). For example, 

two developers concurrently work on a same class diagram, which has two 

abstract classes A and B. The first developer creates an inheritance relationship 

between the abstract class A and B (i.e., B.superclass = A), while the second 

developer modifies the class A from abstract to concrete (i.e., A.isAbstarct = 

false). Although these are simple changes, usually the developers are not aware of 

these conflicting changes performed in parallel. Hence, the composition of the 

partial models produces an inconsistent class diagram i.e., an inheritance 

relationship between an abstract class B and a concrete class A. The current 

composition techniques cannot automatically resolve these inconsistencies 

(Egyed, 2010; Egyed, 2007); because inconsistency resolution relies on an 

understanding of what the models actually mean. This semantic information is 

typically not included in any formal way in the design models. Consequently, 

developers must invest some effort to manually detect and resolve these 

inconsistencies. The problem is that high effort compromises the potential 

benefits of using model composition techniques, such as gains in productivity. 

To date, however, nothing has been done to (1) quantify the composition 

effort in key software development activities, including software evolution, and 

(2) characterize the influential factors that can affect the developers’ effort in 

practice. Hence, developers cannot adopt or assess model composition based on 

practical, evidence-based knowledge from experimental studies. Rather, they rely 

on diverging feedbacks from evangelists; these feedbacks often diverge. 

The goal of this second study, therefore, is to report on five industrial 

exploratory case studies that aimed at (1) providing empirical evidence about 

model composition effort, and (2) describing the influential factors that affected 

the developers’ effort. These studies were performed in the context of the 

evolution of design models of five large-scale software systems. During 56 weeks, 

297 evolution scenarios were performed, leading to 2.288.393 compositions 

between modules, classes, interfaces, and relationships. We draw the conclusions 

from quantitative and qualitative investigations including the use of metrics, 

interviews, and observational studies. We investigate the composition phenomena 

in their context, stressing the use of multiple sources of evidence, and making 

clear the boundary between the identified phenomenon and its context. While we 
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believe this study is representative of the broader issues, we make no claims about 

the generality of our results beyond the composition of UML class and sequence 

diagrams of large-scale software. 

The following subsections are organized as follows. Section 4.2.1 

introduces the main concepts and knowledge that are going to be used and 

discussed throughout the thesis. Section 4.2.2 elaborates the composition scenario 

that will be used as a frame of reference. Section 4.2.3 describes the research 

methodology followed. Section 4.2.4 presents the analysis of composition effort. 

Section 4.2.5 contrasts our work with related work. Finally, Section 4.2.6 

discusses some concluding remarks and future work. 

 

4.2.1. 
Background  

Three-way merge algorithm (Mens, 2002) is a well-known method to merge 

software artifacts. This method has increasingly been incorporated into the most 

popular and robust industrial modeling tools, such as IBM RSA (IBM RSA, 

2011). This algorithm refines the specification of model composition cited 

previously. Instead of taking into consideration only two input models MA, the 

local design model version, and MB, the last design model release located in the 

enterprise repository, it also considers MP, the parent of MB. This means that it 

takes into account not only the differences between the two input design models 

MA and MB to conduct the composition, but also the contrast between them and 

MP. For example, in Figure 10(A), the developer, Steve, produces a composed 

model, V3, merging the local version, S3, with its parent, V1, and with the last 

version of the repository, V2. Note that the more precise the match processes 

between the MP, MA, and MB, the better the “best-guess” analysis to generate the 

resulting compositions.  

Model composition following this algorithm can be represented as 

Merge(MP, MA, MB), where MP is the model version from which MA is descent, 

MA is the base model, and MB is the delta model. MP is used to better track the 

changes between MA and MB. For example, revisiting the example in Section 4.2, 

the decision if the class A should be (i.e., A.isAbstract = false) or abstract (i.e., 

A.isAbstract = true) may be supported by considering a previous version, MP. This 
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ancestral version will provide some addition information about how the class was 

previously. Based on this, developers can make decisions more effectively. 

The merging session between MP, MA, and MB is typically executed as soon 

as an automated difference analysis between them is done. After identifying the 

commonalities and differences between the input models, they are merged so that 

a new release can be produced, MAB. This type of composition is applied to 

collaborative working environment in order to enable more effective team 

collaboration. It is expected that this effectiveness can be transformed into gain of 

productivity, and sometimes this is possible because a couple of reasons (Mens, 

2002). For example, it requires less user intervention, and in many cases, requires 

no intervention at all (depending upon the complexity of the composition). Hence, 

the expectation is that developers’ effort invested in parallel increase their 

productivity proportionally. On the other hand, even though it has reached a high 

level of precision to compose UML design models, the three-way merge still 

remains one of the more taxing tasks of any collaborative software development 

team . This is due to the prior knowledge that developers should accumulate about 

the initial design model, MP, the current version, MA, and the intended changes, 

MB.  

 

4.2.2. 
Composition Scenario 

After describing the main concepts used in our study, we describe the 

context where our study was carried out. In the absence of a theory about model 

composition (Sjøberg et al., 2008), this description is used as a frame of reference 

(Runeson & Höst, 2009) for our study. The goal is to illustrate the real-world 

settings in which the case studied happened. To this end, a motivating 

composition scenario is presented to carefully highlight the problems faced. 

 

4.2.2.1. 
Collaborative Model Evolution 

Figure 9 represents an ever-present collaborative software modeling 

scenario in our study. We explain three points about this scenario. First, 

developers work in parallel to increase productivity. They take part of the system 
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functionalities represented in use cases, and then create UML classes, and 

sequence diagrams from them. The system functionalities described in these use 

cases overlap with each other; hence, the design models become to have some 

critical overlapping points. That is, diagrams that share model elements. This is a 

critical because if a model element is inconsistent, then all diagrams are affected. 

These points are a source of inconsistency propagation and developers are unable 

to trace the side effects of all propagations. For example, Peter, Steve and Bill 

produce UML class diagrams, named P1, S2 and B3, related to the first, second 

and third use case specification, respectively. However, it is by no means obvious 

(if not impossible) for the developers to foresee these overlapping points, detect 

the possible conflicts, and measure their consequences at modeling time. Steve 

cannot predict that changes performed in his model, S2, may give rise to 

conflicting changes into the Peter’s model, P1, and Bill’s model, B3. Similarly, it 

is an effort-consuming task for Peter to identify and grasp that conflicting changes 

between his model and the Steve’s model may propagate into the Bill’s model, 

B3, given the problem at hand. Consequently, the developers inevitably end up 

creating inconsistent models, since they are unable to effectively deal with a set of 

conflicting changes.  

Second, to overcome this problem, the developers need to invest effort to 

localize and resolve the inconsistencies. For this, developers must understand the 

system functionalities and the reasons why the changes happened. For example, 

Steve would need to understand the semantics of the system functionalities 

described in the first and third use case specifications. This understanding is 

required to properly identify and resolve all composition inconsistencies present 

in his design models (S2). Finally, given the inherent complexity of composing 

design models it is particularly challenging for developers to: (1) objectively 

localize these critical overlapping points, (2) quantify the effort variables (f, diff, 

and g), (3) overcome the emerging inconsistencies, and (4) grasp which influential 

factors affects the effort variables.  
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4.2.2.2. 
Motivating Example 

Given the need to evolve enterprise design models (e.g., UML class diagrams) 

and the time constraint (only three days), three developers (Peter, Steve, and Bill) 

work concurrently to increase the productivity. Firstly, developers check out the last 

version of the design model (V1) from the repository (Figure 10(A)). V1 is the 

base model represented in Figure 11(A). After that, they perform a set of 

modifications over their local versions (i.e., P1, S1, and V1) to evolve them. 

Figure 10(B) shows a timeline of the modifications and Figure 11(B) represents 

the delta model that brings together the changes. The developers perform four 

types of modifications: 

(1) Add the stereotype <<MainClass>> to indicate that a class starts up a 

use case. 

(2) Modify the color of a class from white to gray (and vice-versa) to 

indicate that is part of a framework (or not). 

(3) Add the stereotypes <<use>> and <<instance>> to relationships to 

indicate that a class use and instantiate the other one, respectively. 

(4) Add methods to represent that a class implements a new (part of) 

functionality. 

 

 

Figure 9: A real-world collaborative model composition leading to two critical 

overlapping points 
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(5) Delete some model element. 

However, some composition conflicts between the V2 and S3 emerge when 

Steve submits its last local version, S3, to the repository. This composition session 

can be briefly represented by Merge(V1,V2,S3). These conflicting changes 

between the Peter and Steve versions are described as follows: 

1) Peter sets correctly the color of the class ApplicationType to gray 

(step 1), while Steve sets the color to white (step 2). 

2) Peter sets incorrectly the color of the class Application to white 

(step 2), while Steve updates the color of it to gray (step 3).  

3) Peter adds the stereotype <<use>> to the relationship between the 

class MarlimCore and EditPSDiagOptionsAction, while Steve removes this 

relationship.  

4) Peter removes the class PSElementGroup, while Steve creates an 

inheritance relationship between the class PSElementGroup and Production. 

5) Peter creates a relationship of association between 

PSDiagramOptionsDialog and MarlimInputData, while Peter removes 

the attribute status: StatusPanel from the class 

PSDiagramOptionsDialog and transform it into a new class, and creates 

a relationship of aggregation between the new class StatusPanel and 

MarlimInputData. 

6) Peter modifies the method execute():void to runEditionPanel, 

while Steve modifies the method’s name to executeEdition(). 

To submit his changes, Steve should know to deal with these contradicting 

modifications so that the new model version, V3, can be produced. The problem 

is that, in general, the developers are not always able to understand the emerging 

conflicts or properly solve them. As a consequence, they realize (or let pass) 

some incoherent modifications over the input models. 

To illustrate these incoherent actions, let us regard the conflicting change 

number one. If Steve does not accept Peter’s changes, then the output composed 

model is going to have an unexpected change. That is, the class AppliactionType 

of the enterprise framework will have erroneously the color white instead of gray.  
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Figure 10: A real-world use scenario of model composition (A). The change descriptions 

performed by the developers (B).  

  

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA



119 
 

 Another example would be the conflicting change five. Peter and Steve 

propose two ambiguous modifications to allow the class 

PSDiagramOptionsDialog to access objects of the MarlimInputData. However, 

usually these ambiguities are neither properly localized nor understood. This leads 

the output composed model to have both changes. The result is, therefore, an 

output composed model with inconsistencies, which is produced from the local 

project to the enterprise repository V3. Even though, these inconsistencies are 

usually propagated downward to the developers’ local projects. Peter’s P3 and P4 

local version in Figure 10(A), and the Steve’s S4 local version represent this 

propagation. Bill follows the same submission procedures performed by Peter and 

Steve; then, he produces the composition session (see Figure 10(A)) represented 

briefly by Merge(V1,V3, B4) (see Figure 12). The problem is that, in this case, the 

output composed model, V4, could not be generated. The chief reasons were: the 

size of the delta model, once Peter’s and Steve’s changes are also considered 

during the composition session; and the amount and complexity of the conflicting 

changes that should be analyzed, since to produce V4 correctly, many semantic 

and syntactical issues need to be considered. That is, Bill inevitably needs to grasp 

the meanings of each modification accomplished previously by Peter and Steve. 

Even worse, this understanding cannot be always acquired. This problematic 

evolution scenario is described as follows: 

1) Bill assigns correctly the stereotype <<MainClass>> to the class 

MarlimCore (B2.step 1), while Peter attaches this stereotype to the class 

EditPSDiagOptionsAction (step 1). 

2) Bill attaches the stereotype <<instance>> to the dependence 

relationship (B2.step 2), while Peter attaches the stereotype <<use>> to this 

relationship (step 3) and Steve deletes this relationship (S2.step 4). 

3) Bill just creates the dependence relationship between the class 

MarlimCore and EditPSDiagOptionsAction (B3.step 1), while Steve correctly 

creates this relationship and attaches it to the stereotype <<use>> (S2.steps 7 

and 8). 

4) Bill correctly transforms the concrete class PSElemenGroup to an 

abstract class (B3.step 3), while Peter removes this class (P2.step 4) and Steve 

creates an inheritance relationship between the classes PSElemenGroup and 

Production. This implies that if the change of Bill is accepted, then the 
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(A) 

 

                                                                (B)     

Figure 11: The Base Model (A) and the Intended model (B) 

 

change of Steve should be rethought, otherwise we will have a syntactically 

incorrect inheritance relationship between the now abstract class 

PSElemenGroup and the concrete class Production. 

5) Bill modifies correctly the return type of the method 

MarlimCore.handleInvalidOutput() from void to Status (B3.step 4), while 

Steve modifies it wrongly to String. 
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Figure 12: The model versions created by Peter (P2) (above) and Steve (S3) (below). 

 

 

6) Peter attaches the stereotype <<instance>> to the dependence 

relationship between the classes ProductionSystem and 

EditPSDiagOptionsAction (P2.step 7), while Bill removes this relationship 

improperly (B4.step 1) (see Figure 13). 

  To resolve properly such conflicts, sometimes the developers must engage 

to seek solutions for conflicts that come from different sources. For example, the 
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resolution of the second conflicting changes requires handling systematically the 

contradicting modifications created by not just one developer (Peter’s changes), 

but by two developers (Peters’ and Steve’s changes). Moreover, this manipulation 

must necessarily involve the three developers so that semantic and syntactical 

issues can be carefully understood. 

 

4.2.3. 
Study Methodology 

This section presents the study methodology based on practical guidelines 

of empirical studies (Runeson & M. Höst, 2009; Wohlin et la., 2000; Kitchenham 

et al., 2008). 

 

4.2.3.1. 
Objective and Research Questions 

This study aims at evaluating the effects of model composition techniques 

on six quality notions, namely syntactic, semantic, effort, application, detection, 

and resolution ones. In particular, this Chapter focuses on generating practical 

knowledge about the values that the composition effort’s variables assume in real-

 

 

Figure 13: The model versions created by Bill (B4). 
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world settings. To this end, the research question (RQ2) defined in Section 1.3 is 

evaluated in this second study. As these variables may be affected by some 

influential factors, this work also attempts to understand and characterize these 

factors. With this in mind, we formulate two research questions: 

 RQ2.3: What is the effort to compose design models? 

 RQ2.4: What are the factors that affect composition effort?  

 

4.2.3.2. 
Context and Case Studies 

We performed five case studies to investigate RQ2.3 and RQ2.4 The context 

of the studies was collaborative modeling in industrial projects. Developers used 

model composition to evolve and reconcile design models. Table 18 presents a 

suite of metrics to characterize the models involved in the studies. Table 19 shows 

the collected measures for these metrics. As previously mentioned, during 56 

weeks, 297 evolution scenarios were performed leading to 2.288.393 

compositions between modules, classes, interfaces, and relationships. 

All five cases differ in terms of their size, number of participants, and 

application domain. These cases are characterized as holistic case studies 

(Runeson & M. Höst, 2009; Wohlin et la., 2000; Kitchenham et al., 2008), where 

contemporary phenomena of model composition are studied as a whole in their 

real-life context. We present a brief description of the systems used as follows: 

 Alope: a system that controls and manages the import and export of 

Petroleum (and its derived products). 

 Bandeira: a logistics system is responsible for the complement management 

of the flow of goods. 

 GeoRisco: a system that supports forecast and controls of environmental 

catastrophes. 

 Marlim: a system that simulates the design and extraction of Petroleum from 

deep ocean areas. 

 PlanRef: a system that provides decision making support for logistics and 

planning processes in Petroleum refineries. 
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Type Metric Description 

Size 

NumClass #classes 

NumAttr #attributes 

NumOps #operations 

NumInter #interfaces 

Inheritance 

DIT the sum of depth of the class in the inheritance 
hierarchy. 

OpsInh #inherited operations. 

AttrInh #inherited attributes. 

Coupling Dep_Out #dependencies where the package is the client. 

 Dep_In #dependencies where the package is the supplier. 

 NumPack #packages 

 R #relationships between classes and interfaces. 

 H relational cohesion 

 Ca #afferent coupling of the packages 

 Ce #efferent coupling of the packages 

 A # abstractness (or generality) of the packages. 

 

Project 

NumWeeks # weeks 

NumDev # developers 

NumEvol # evolutions scenarios 

 #: the number or degree of all 

 

Table 18: Metrics used 

 

Metrics Alope Bandeira GeoRisco Marlim PlanRef 

NumClass 316 892 1394 2828 1173 

NumAttr 1732 3349 8424 9689 3808 

NumOps 3479 7590 10608 23722 9111 

NumInter 18 83 143 223 93 

DIT 140 216 1109 2528 871 

OpsInh 3414 6620 12482 38181 16369 

AttrInh 1507 1766 9003 9147 4406 

Dep_Out 72 464 61 453 330 

Dep_In 65 423 58 418 322 

NumPack 34 166 175 345 187 

R 1285 1360 3008 4493 2251 

H 47.5 216.8 261.9 448.6 282.5 

Ca 278 1147 1632 4044 2329 

Ce 235 996 1278 2723 1451 

A 9.58 50.45 36.9 66.5 51.9 

NumWeeks 6 15 8 17 10 

NumDev 3 7 2 7 4 

NumEvol 6 95 55 64 77 

 

Table 19: The collected measures of the case studies 
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These systems are featured as scientific software (Kelly, 2006) because they 

require knowledge from multiple application domains, and encompass a broad 

class of concepts of physical phenomena, including oil pressure, fluid density, 

logistic, temperature scale, dilatation of fluids, temperature, fluid pressure, 

geologic risk, and supply chain. They were chosen based on some reasons 

presented in the following. First, the cases used robust modeling tool (IBM 

Rational Software Architect) allowing developers to merge design models, work 

in parallel, and validate the design models. The IBM RSA was used due to: (1) the 

implementation robustness of its composition algorithms; (2) the tight integration 

with the Eclipse IDE; and (3) the tool had been already adopted in previous 

successful projects. In addition, we also required the UML CASE tools to have an 

XMI export facility, which will allow us to analyze the design models using 

metrics tool. Additionally, all cases used a bug tracking system, i.e., JIRA, with 

which it was possible to coordinate the developers’ tasks, specifically during the 

creation of the design models and review of the models. 

Finally, on average, four professional developers have participated in each 

case study, totaling more than 10 developers in all case studies. The advantage of 

using experienced professional developers is to avoid one of the main criticisms 

of most case studies in software engineering, in especial software modeling, 

regarding the degree of realism of the studies. Thus, we believe that the collected 

data are representative of developers with industrial skills. 

  

4.2.3.3. 
Subjects 

The background of the subjects was an ever-present concern in the 

experimental design. As the case studies were performed in vivo in a Brazilian 

company, the subject selection was based on convenience (Wohlin et al., 2000). In 

total, 12 subjects were recruited. Table 20 describes the subjects’ background. We 

analyzed the level of theoretical knowledge and practical experience of these 

subjects. 

Regarding the theoretical knowledge issues, we checked the quality of the 

education system that the subjects come from. We observed that this system, 

where the subjects were students, is a system that places a high value on 
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theoretical issues about the foundational principles of software engineering and 

software modeling. Moreover, this educational system provides an academic 

formation with much more than 120 hours of courses (lecture and laboratory) 

exclusively dedicated to software engineering, object-oriented programming, and 

software modeling. This can be seen, in part, as an intensive UML-specific 

training. Furthermore, other important courses present in their formation are 

operating systems, databases, computer architecture, requirement engineering, and 

so on. Therefore, the subjects fulfilled the level of theoretical knowledge required. 

Taking into consideration the practical experience of the subjects, we also 

observed that there are some even more compelling evidences about the level of 

practical experience of them. This knowledge was acquired from previous 

software development projects. This was confirmed by the analysis in which 

provides background data on the subjects that participated in the case studies. The 

data show that the subjects fulfill the requirements in terms of age, education, and 

experience. A benefit of the presence of a considerable theoretical and practical 

knowledge is that the members of the teamwork can learn from each other in 

terms of theoretical and practical issues. The main consequence of this knowledge 

Variables Mean SD Min 25th Med 75th Max 

Age 25.3 4.47 21 22 24.5 27 38 

Degree 2.16 1.06 1 1 2 3 4 

Graduation 

year 
2006.4 4.8 1992 2005.25 2006.5 2010 2010 

Years of study 

at university 
5.75 2.8 3 3 5 7.5 12 

YOEW UML 1 1.4 1 1.25 3 4.75 5 

YOEW Java 4.5 1.84 2 2.5 4 6.75 7 

Used IBM RSA 

(1 or 0) 
1 1 1 1 1 1 1 

YOEW soft. 

development 
5 3.6 2 2.25 4.5 5.75 16 

Hours of software 

modeling 
98.33 40.38 60 60 90 120 180 

Hours of OO 

programming 
156.66 89 80 80 130 225 360 

Hours of 

software design 
130 53.85 80 80 120 190 220 

 

Degree: 1 = Student, 2 = Bachelors, 3 = Masters, 4 = Ph.D. 

YOEW = Year of Experience with, Med: Median 

SD = Standard Deviation, 25
th
 = lower quartile, 75

th
 = upper quartile  

 
Table 20: Descriptive Statistics: Subjects’ Background 

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA



127 
 

sharing between team members is that the emerging problems can be solved more 

quickly and properly. If, for example, well-formedness rules of the design models 

are challenged, the subjects can work together to get it solved. Another point that 

is essential to emphasize is that, in all cases, the subjects were familiar with the 

software modeling tool they had to use, IBM RSA, and all subjects received 

training about merging design models. Lastly, based on this information 

(summarized in Table 20), we deemed that the subjects had the required training, 

theoretical knowledge and practical experience to perform the software modeling 

and merging tasks properly.  

 

4.2.3.4. 
Study Design and Evaluation Procedures 

Having presented the context of our studies and subjects, the next step is to 

describe precisely how the case studies were conducted.  

 

4.2.3.4.1. 
Operation 

The procedures of the study can be grouped into two phases: creation and 

review. In the first phase, the developers collaboratively created the design 

models. In the latter, they detected and resolved inconsistencies in the output 

composed models. Note that the intended model was produced after executing 

these two phases. Moreover, it is also important to emphasize that the effort 

variables (f, diff, and g) are incrementally measured as the phases are performed.  

Figure 14 summarizes the procedures associated with both the production of 

the intended models and the measurement of the effort variables. Activities are 

represented using rounded rectangles, and the arrows indicate transitions between 

the activities. The diamonds are decisions (conditional branch), and the arrows 

connected to them are marked with the conditions. The initial state in an activity 

diagram is indicated by the black circle, while the final state is the encircled black 

circle. Following the simplest path of the procedure, issues are first submitted and 

examined (issue refers to general activities registered during the modeling 

project). Each issue is assigned to a developer. After opening the issue, the 

developer may execute three possible activities: creation of the design model, 

detection of inconsistencies, and resolution of inconsistencies. As these activities 
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were carried out, the effort variables were quantified. Developers closed the issue 

after it has been validated.  

Creation of the Design Models. First, the developers created a UML class 

diagram for each use case specification. In addition, sequence diagrams were 

created for the most important use cases, which represent around 30 percent of the 

full system specification. This percentage and the choice of the use cases were not 

made in an arbitrary manner, but based on the policies of the company. After that, 

the developers made use of the model composition technique to submit the created 

model to the repository. It is important to emphasize that developers created 

sequence diagrams only after its corresponding class diagram had been created 

and validated. To calculate the developer’s effort to compose the local model with 

the repository version, the members of the team were stimulated to make a record 

of all composition sessions by using the software Camtasia Studio Pro (Camtasia, 

2011). The generated videos were essentials to further analyses. 

Detection of Inconsistencies. The developers reviewed the composed 

models in order to detect syntactic and semantic inconsistencies. For this, they 

performed a double checked model reviews by using the IBM RSA’s model 

validation mechanism and by manually inspecting the models. During each 

review, the developers could read the use case specifications to check whether (or 

not) the generated models fulfill the requirements described in the specification. It 

is important to point out that a developer reviewed the models created by other 

developers, never the model created by him. Since the IBM RSA’s validation 

mechanism can report false positive and false negative inconsistencies 

(Altmanninger et al., 2009), the teamwork members were encouraged to check if 

the reported inconsistencies were posing, in fact, a problem.  

Inconsistency Resolution. Having identified the inconsistencies, the 

developers invested some effort to revolve them. In practical terms, they added, 

removed, or modified some existing model elements to solve them. After 

addressing the model inconsistencies, the developers submitted the intended 

model to the repository. Thus, the compositions were executed in two moments: 

after the original creation of the models and after the inconsistency resolutions. 

All model versions were registered in a version controlling control system, 

thereby allowing a systematic analysis of the history of the generated model 

versions.  
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4.2.3.4.2. 
Design Model Versions and Releases   

The design models are semantically rich, have been evolving over the long 

term, can be checked for consistency. These features were carefully analyzed and 

elected as pre-requirements to perform the case studies. We feel, therefore, 

confident that the model releases are going to promote (1) more reliability and 

accuracy of our results, and (2) chiefly suitable conditions for yielding lessons 

about driving composition effort variables. Consequently, this enables us to grasp 

as the composition effort variables (f, diff and g) turn up in real-world settings, 

and identify and understand the factors that affect the production of the desired 

releases during the composition session. 

Deriving the Design Model Releases. Given the collaborative environment 

work, the subjects incrementally created the releases using the IBM RSA’s 

composition technique throughout the evolution scenarios. The creation steps are 

presented as follows. First, from a reverse engineering process, the team leader 

generates a set of elementary model elements, which will be used by other 

 

Figure 14: The flow of activities during the studies  

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA



130 
 

developers to create the design models. Note that this derivation of the model 

elements is indispensable in real-world settings; since the size of systems is 

considerably large (see Table 20).  

Next, the developers make use of these elements to manually generate the 

design models. For example, the developers define which model elements should 

be inserted into the UML class diagram and what their relationships are. This 

decision is made from the information collected from the use case specification 

and the code. This creation process of the models is not only marked by intensive 

discussion among the members of the development team, but also by the constant 

submission of new model release increments to the repository so that the changes 

can be broadcasted to the other developers. To control the changes of the models 

and to facilitate collaboration, the version control system was intensively used 

during all case studies. 

Model Releases and Composition Specification. For each evolution 

scenario, a new release was created. For each new release, the previous release 

was modified in order to incrementally accommodate the changes. To implement a 

new evolution scenario, a model composition specification can remove, add, 

derive, or modify the entities present in the previous release. During the design of 

all releases, a main concern was to follow the best practices of modeling and 

carefully realize the requirements described in the use case specifications. 

 

4.2.3.4.3. 
Variables and Quantification Method 

This section defines as the three effort variables (f, diff, and g) were 

quantified and their unit of measurement (time in minutes). Our analysis and 

quantification, therefore, rely on three effort measures described as follows. 

Application Effort Measure (f). This measure represents the required time 

(in minutes) to match the input model element, resolve the conflicting changes, 

and submit the evolving changes to the repository. That is, the effort invested by 

developers to apply the model composition technique. This measurement only 

quantifies the effort to produce the composed model (f(MA,MB)) rather than the 

effort to detect (diff(MCM,MAB)) and resolve inconsistencies (g(MCM)). This effort 

was calculated from recorded movies created by own developers, which were 
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stimulated to record these videos throughout the case studies.  

Detection Effort Measure (diff). The detection effort consists of the time 

needed to localize inconsistencies in the composed model for a given output 

composed model. Subjects were responsible for registering the time. This 

detection can be characterized as a semi-automated process; as developers make 

use of the IBM RSA’s model validation mechanisms and manually go through the 

model to identify semantic problems. We consider all syntactic inconsistencies 

can be automatically detected. On the other hand, given that it is impossible to 

count all semantics inconsistencies automatically, we count only semantic 

inconsistencies that can be manually spotted. For example, relationships (e.g., 

association and inheritance) between model elements that no longer exist or a 

stereotype attached improperly. Usually these inconsistencies are not detected by 

tools upfront, but are visually by developers. 

Resolution Effort Measure (g). It represents the time required to perform a 

set of activities (creations, removals, and modifications) needed to transform MCM 

into MAB. Again, subjects were the responsible for registering the time. 

 

4.2.3.4.4. 
Analysis Procedures 

The analysis of the collected data was conducted with quantitative and 

qualitative methods. While the quantitative data concerns the measurements 

involving the study variables, objects, and units of the analysis, the qualitative 

data deals with the diagrams (pictures), descriptions, transcripts from interviews, 

and annotations. The goal of using a combination of qualitative and quantitative 

data is to exclusively provide a better understanding of the studied phenomena in 

their context.   

a. Quantitative Analysis 

The descriptive statistic is used so that the outstanding trends might be 

pinpointed. Box-plot graphically illustrates these trends. The presence of patterns 

in the data distribution, and lack thereof acted as a driver for further investigation 

allowing a deeper understanding. Note that we are not concerned with any 

correlation analysis or probabilistic formulation. Rather, our focus is only to 
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describe and graphically present interesting aspects of the data. Further, these 

statistics were important to analyze and possibly remove outliers from the data. 

Outliers are extreme values of the measured variables that may influence the 

study’s conclusions. To analyze the outliers we made use of box-plot. According 

to Wohlin (Wohlin et al, 2000), we should verify whether “the outliers are caused 

by extraordinary exceptions (unlikely to happen again), or whether their cause can 

be expected to happen again. For the first case, we should remove the outliers, and 

for the latter we should not remove the outliers.” In our study, some outliers were 

identified. However, they did not represent any extraordinary exceptions, since 

they were expected to happen again. Consequently, they were not removed, as 

they did not compromise the results. 

b. Qualitative Analysis 

The qualitative analyses were concentrated on interviews, observational 

study, and archival data. Hence, the RQs were investigated from different 

viewpoints, subjects, artifacts, and projects. 

Interviews. A semi-structured interview approach was performed following 

a funnel model (Runeson & Host, 2009), in which one initial open question is told 

and then directed towards to more specific one. It was organized in topics with 

open and closed questions (Runeson & Host, 2009). They were organized in such 

a way that research questions (f, diff, and g) could be exploited. An interview 

guide was created based on the authors’ experience in model composition and on 

previous studies, together with the research questions of the study. The author of 

this thesis conducted the interviews. The interviews were recorded and transcribed 

into text; this was done by one else than the authors. Experienced subjects were 

selected for the interviews from the involved company and other Brazilian 

companies. That is, the interviewees (8) were not only developers that participated 

in the case studies, but also with other developers with different experiences of 

other companies. The selection was based on the interviewees’ different 

experience in terms of model composition rather than their similarities. It was also 

assured that only anonymous data would be presented externally. Each interview 

lasted from 30 to 55 minutes, depending on how talkative the subjects were. 

Observational Study. In order to investigate how model composition was 

performed in practice extensive observations were conducted through three 
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different approaches. First, one of the authors worked in the modeling projects 

during the case studies taking part in everyday activities. This allowed a more 

effective observation. Secondly, the model composition tasks were recorded, and 

after analyzed. This allowed monitoring the task of the subjects. Thirdly, to obtain 

a feedback of the subjects about the task performed, they encouraged to “think 

aloud” by asking questions like “What is the key difficult to resolve the 

inconsistencies?”, “What is your strategy to deal with conflicting changes?”, and 

“What do you do to reduce composition effort?”. In summary, data collected 

consisted of field notes, audio recordings of interviews and their transcriptions, 

videos, screenshots, and copies of artifacts. 

Archival Data. The company’s repository was an important source of data, 

since it enables us to access the different versions (specifically the evolution 

track) of the design models. The developers were encouraged to describe the 

evolution changes performed before executing the compositions. This description 

helped us to understand how the compositions were performed and reasons why 

the inconsistencies arose. For example, in the motivating example (Section 

4.2.2.2), the developers, Peter, Steve, and Bill, should necessarily describe the 

changes performed by them. In total, more than 240 descriptions were created and 

the information stored in the repository. The comments were expressed in a free-

text field, in which the subjects could report anything they thought might be 

relevant in explaining the changes that were being done. In addition, the 

developers were well aware the importance of these descriptions to understand the 

evolutions and the results obtained on each evolution scenario. For example, the 

comments helped us to identify when the composition had success (i.e., MCM = 

MAB) or failed (i.e., MCM ≠ MAB), and grasp the rational what the developers 

thought at the time of composition session. 

 

4.2.4. 
Study Results  

In this section, we interpret the results about the RQ2.3 and RQ2.4. For this, 

we present and analyze quantitatively and qualitatively the collected data about the 

composition effort variables (Section 4.2.4.1) and explains the factors that 

influence these variables in practice (Section 4.2.4.2). 
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Cases N Mean SD Min 25th Med 75th Max 

Marlim 40 4.73 4.52 0.25 2 3.2 6.79 22 

Bandeira 69 3.29 1.93 0.83 2 3 4 14.25 

 

N = number of compositions, SD = standard deviation, Min = minimum, 25th = first quartile; 

Med = median, 75th: third quartile, Max: maximum. 

 

Table 21: Descriptive statistics for application effort 

 

4.2.4.1. 
RQ2.3: Composition Effort Analysis 

The composition effort analysis involves the examination across cases of a 

single variable, focusing on three characteristics: the distribution, the central 

tendency, and the dispersion. 

Application Effort  (f) 

This section investigates the variable concerning the effort to apply the 

composition technique. Table 21 shows a descriptive statistic about the application 

effort. These statistics will help us to pinpoint the central tendency and spread of 

values around it. A tally of 40 and 69 (N) compositions was registered in the 

Marlim and Bandeira project, respectively. The central tendency was calculated 

using the two most-used statistics: the mean and the median. The most interesting 

feature was that the composition of the large-scale industrial models used in our 

study required by about 4 minutes.  

More specifically, the results indicate that effort to compose models was, on 

average, 3.17 minutes and 4.43 minutes in Bandeira and Marlim projects, 

respectively. Given the complexity and the size of the design models in question 

(Table 19), these central tendency measures are in fact low values. For example, a 

developer spent just around 4 minutes to submit the most complex evolving 

changes to the repository in the Marlim project. In addition, the median measures 

accompany these measures: 3 minutes and 3.12 minutes in the Bandeira and Marlim 

project, respectively. Thus, this implies that the required effort to apply the semi-

automated model composition technique is low. Consequently, it is possible to 

advocate it as appropriate to collaborative software modeling in which resources 

and time are usually tight.  

http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Median
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To understand the dispersion of the data around this tendency, not only the 

standard deviation, 25th and 75th percentiles were computed, but also the minimal 

and maximum values. Developers’ effort tends to concentrate by around the central 

tendency rather than spreading out over a large range of values. Indeed, with 1.55 

and 1.58 minutes, the standard deviation measures indicate that in the majority of 

the composition sessions the developers spend an effort near 3.17 minutes or 4.43 

minutes. This information can help modeling mangers to: (1) systematically 

propose the effort estimation rather than essentially based on their judgment; and 

(2) check if the effort spent by developers is an expected value (or not), since it 

falls inside (or outside), these ranges of statistics that is expected to occur. 

Consequently, it is possible to improve the effort estimation, and hence a typical 

UML-based development, for example. Finally, this measure can be seen as the first 

step to overcome the lack of empirical evidence about the impact of model 

composition techniques on developers’ effort in real-world settings. 

To deepen our understanding about the application effort, Figure 15 

distributes the collected sample in six effort ranges. These ranges in the histogram 

systematically group the application effort cases. The y-axis of the histogram 

represents the counts of merging, while the x-axis consists of the ranges of effort. 

The main outstanding feature is that: the presence of a distribution pattern of the 

application effort through the ranges of effort. The low-effort categories (i.e., t < 

2, 2 ≤ t < 4, and 4 ≤ t < 6) represents the most likely range of effort that 

developers invest to compose the input models. The number of cases is equal to 

29 (in Marlim) and 64 (in Bandeira), representing 72.5 percent and 92.75 percent 

of the composition cases, respectively. On the other hand, the number of cases in 

the high-effort categories (i.e., 6 ≤ t < 8, 8 ≤ t < 10 and 10 ≤ t) is equal to 12 (in 

Marlin)  and 5 (in Bandeira), comprising 17.39 percent and 12.5 percent of the 

cases respectively. Thus, the number of composition cases in the low-effort 

categories outnumbers the amount of cases in the high-effort categories, 

comprising more than 70 percent and 90 percent of the cases in the Marlim and 

Bandeira project, respectively. On the other hand, the number of cases in the high-

effort categories was by around 30 percent (in Marlin) and 7.25 percent (in 

Bandeira). In practice, this means that developers spent less than 6 minutes in 

85.32 percent of the whole composition cases, and just 14.68 percent of the cases 

required more than 6 minutes.  
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Figure 15: Histogram of the application effort measures 

Another even more compelling feature is that: there is a changing pattern 

among the effort categories. Although the changing pattern of the measures from a 

category to another one happens in different forms, it comes about with the same 

type of change in the most of the cases. 

 There are five changes in the number of counts of merging from one 

category to another being three of them similar as follows. From the first to the 

second category, the count of compositions had a gradual rise from nine to 13 (in 

Marlim) and from 10 to 33 (Bandeira). This means a growth of 44 percent and 

230 percent, respectively. On the other hand, observing the third category, the 

count had a significant drop compared to the previous category.  

The distribution of merging fell back from 13 to 6 and from 33 to 21 in the 

Marlim and Bandeira project, respectively. This implies into a significant drop of 

53.84 and 36.3 percent. Following this same drop pattern, in the fifth category, the 

number of cases decreased abruptly from 7 to 1 (Marlim) and 3 to 1 (Bandeira), 

comprising a fall of 85.71 percent and 66.67 percent, respectively. However, the 

transitions from the third category to the fourth one as well as from the fifth 

category to the sixth one had different changing pattern. In the fourth category, the 

count kept stable (seven cases) in Marlim project and a decrease of 85.71 percent 

in Bandeira project was observed, from 21 to 3. In the sixth category, the count 

did not change, stagnating in 1 (Marlim), and, however, quadruplicated its value 

from 1 to 4 in the Bandeira project. This implies, therefore, that there is to some 

extent a particular behavior of change between the ranges of effort. 
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With these two previous features in mind, an important finding was observed: 

the application effort tends to reduce as developers become more familiar with 

technical issues rather than application domain issues. This finding is supported by 

the fact that developers invested more effort in Marlim project than in Bandeira 

project. After a careful analysis, the main reason was that the developers were 

more familiar with composition issues. That is, 30 percent of the cases had effort 

higher than 6 minutes, rather than the 7.24 percent ones in the Bandeira project. It 

is important to point out that: (1) both projects had a similar level of complexity; 

(2) the members of the development team had a similar level of knowledge about 

the meaning of application domain elements; and (3) the teamwork was the same 

throughout the both projects. Therefore, the application effort tends to decrease as 

the developers gained experience with the activities considering key steps to apply 

the composition technique, i.e., match the input models, resolve the conflicting 

changes, and then combine the input model elements.  

 

Detection Effort (diff) 

This section investigates the variable concerning the effort to detect the 

inconsistencies of the output composed model. Table 22 shows a descriptive 

statistic about the effort spent to detect inconsistencies. A careful analysis indicated 

that some interesting features were happing. First, the more experienced developers 

in both modeling and IBM RSA spend 23.2 percent less effort to detect 

inconsistencies than less experienced developers. This observation was derived 

from the comparison of the medians in the Marlim and Bandeira cases. This 

finding was possible to reach because the same development team firstly worked 

in the Marlim project and after this in the Bandeira. Observing the values of the 

mean computed this affirmation is still reasserted. In this case, the more 

experienced developers invested 38.57 percent less effort to detect inconsistency 

than less experienced developers, compared 7.57 and 4.65.  
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Second, the higher the number of teamwork members, the higher the effort 

to localize inconsistencies. This outstanding finding is supported by the 

comparison of the medians of the projects with high versus low number of 

developers. Comparing the number of teamwork members of the projects, we 

could observe that the developers of the Marlim and Bandeira project, both with 7 

developers, invested a higher amount of effort to detect inconsistencies than the 

developers of the GeoRisc and PlanRef (with 2 and 4 developers, respectively). 

For example, the developers spent 49.46 percent more effort to detect 

inconsistencies in the Marlim project than in GeoRisc project, compared the 

medians 6.55 and 3.31, respectively. This striking observation was also reinforced 

when we compared the Marlim and PlanRef. That is, Marlim’s developers spent 

64.27 percent more effort to localize the inconsistencies, compared the medians 

6.55 and 2.34, respectively. Therefore, the projects with a higher number of 

developers had to invest the double of effort to localize the inconsistencies. 

Third, a remarkable finding is that the higher the number of inconsistencies in 

behavioral models, the higher the effort to detect inconsistencies. Even though, the 

Alope project had a low number of developers, a considerable number of 

inconsistencies were concentrated in behavioral models like sequence diagrams. 

The chief problem highlighted by developers was that the behavioral models 

require an additional effort to go through the flows of execution. For example, an 

association in a structural model (e.g., class diagram) represents essentially one 

relationship between two classes. On the other hand, in a behavioral model (e.g., 

sequence diagram) that represents the interaction between the instances of these 

classes; this simple association may be represented by n interactions (i.e., messages 

 

Cases N Mean SD Min 25th Med 75th Max 

Marlim 63 7.57 5.1 0.54 2.45 6.55 12.49 16.54 

Bandeira 86 4.65 2.39 0.36 2.37 5.03 6.38 9.21 

GeoRisc 24 3.66 1.52 1.32 2.67 3.31 4.16 7.39 

PlanRef 44 2.91 1.75 1.04 1.39 2.34 4.12 7.15 

Alope 6 12.37 4.2 5.26 8.25 13.15 16.36 17.37 

 

 N = number of compositions, SD = standard deviation, Min = minimum, 25th = first quartile; 

Med = median, 75th: third quartile, Max: maximum. 

 

Table 22: Descriptive statistics for detection effort 
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exchanged between the objects). The problem is that developers must check each 

interaction. This problem is enlarged with the need to check the consistencies 

between the class diagram and the sequence diagram. For example, there is a 

message from an object A to an object B in the sequence diagram, but there is no 

relationship between the class A and B in the class diagram. Even worse, sometimes 

the method corresponding to such message does not even exist in the class B. 

Another typical inconsistency is that a concrete class A becomes abstract, however, 

its instance remains represented in the sequence diagram. Thus, developers had an 

additional effort to examine the consistency between the structural and behavioral 

model.  

Another observation is that the higher the distribution of inconsistencies in 

different modules, the higher the effort to identify them. In the case studies, the 

systems were strongly decomposed in conceptual areas. This unit of modularization 

brings together application domain concepts in a same space. The problem arises 

when the inconsistencies in a conceptual area give rise to an abundance of 

inconsistencies, and hence affecting many other model elements located in other 

conceptual areas as a ripple effect. This propagation is inevitable as there are 

usually some relationships between these units of modularization. Hence, 

developers must be able to identify inconsistencies in model elements of conceptual 

areas that they do not know. Note that during the case studies the developers created 

diagrams related to a specific functionality of the system (specified in case uses), 

and these diagrams were grouped in a conceptual are (something like a package). 

Thus, the lack of knowledge about the model elements in unknown conceptual area 

led developers to invest an extra effort to pinpoint the inconsistencies. 

 

Resolution Effort (g) 

This section investigates the variable concerning the effort to resolve the 

inconsistencies in the output composed model. Table 23 shows a descriptive 

statistic of the inconsistency resolution effort. The main outstanding feature is that 

the developers invest more effort to resolve inconsistencies rather than to both 

apply the model composition technique and detect the inconsistencies. This can be 

explained based on some evidences. 

First, in Marlim project, for example, the teamwork members spent 64.91 

percent more effort resolving inconsistencies than applying the model 
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composition technique. This difference comprises the comparison between the 

medians 3.2 (application) and 9.12 (resolution). This difference becomes more 

explicit when we consider the values of the mean. This evidence is reinforced in 

Bandeira project. The resolution of inconsistencies consumes 80.31 percent more 

effort than the application of the composition technique, compared the medians 

3.2 (application) and 9.12 (resolution). The difference between the application and 

resolution effort becomes stronger when we consider the value of the mean i.e., 

jumping significantly their values from 64.91 percent to 88.40 percent (in Marlim) 

and from 80.31 percent to 88.35 percent (in Bandeira). 

Second, in Marlim project, the inconsistency resolution consumed 28.17 

percent more effort than the inconsistency detection. This comprises the 

difference between the medians 6.55 and 9.12. The results in Bandeira project 

followed the same trend. Developers spent 66.99 percent more effort with 

inconsistency resolution than with inconsistency detection, compared the medians 

5.03 and 15.24. Considering the mean, this difference of effort becomes more 

evident, leaping abruptly from 28.17 percent to 81.44 percent (in Marlim) and 

from 66.99 percent to 83.42 percent (in Bandeira). Analyzing the collected data 

from the GeoRisc and Alope project, this observation is confirmed. For example, 

the resolution effort is 82.98 percent and 54.96 percent higher than the detection 

effort in GeoRisc and Alope, respectively. On the other hand, in Alope project, the 

resolution and detection effort were practically equal. Therefore, the collected 

data suggest that teamwork members tend to spend more effort resolving 

inconsistency rather than applying the model composition technique and detecting 

inconsistencies. 

Another striking feature is that the experience acquired by the developers did 

not help to minimize the inconsistency resolution effort. Although more 

experienced developers have invested less effort to compose the input models and 

detect inconsistencies, their additional experience did not help significantly to 

minimize the inconsistency resolution effort. For example, in Bandeira project, 

more experienced developers spent 40.15 percent more effort to resolve 

inconsistency than less experienced developers from Marlim project, compared 

the medians 9.12 and 15.24. The main reason is that more experienced developers 

tend to be more cautious than less experienced ones, and hence they tend to invest 

more time analyzing the impact of the resolution of each inconsistency.  
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4.2.4.2. 
RQ2.4: Influential Factors on Composition Effort 

Some factors influence the effort of composing large-scale design models in 

real-world settings. This section analyzes the side effects of these factors on the 

composition effort variables.  

 

4.2.4.2.1. 
The Effects of Conflicting Changes  

A careful analysis of the results pointed out that the production of the 

intended model is affected by the presence of different types of change categories 

in the delta model. These changes would be the addition, removal, modification, 

and derivation of model elements. The current composition algorithms are not 

able to effectively accommodate these into a base model; mainly, when these 

changes occur simultaneously. We described the most common categories of 

changes identified throughout the study and after analyzing their effects:  

 Addition: model elements are inserted into base model; for example, a 

stereotype <<instance>> was added to the directed relationship between the 

ProductionSystem and EditPSDialogOptionsAction. 

 Removal: a model element in the base model is removed; for example, 

the class PSElementGroup is removed;  

 Modification: a model element has some properties modified; for 

instance, the class PSElementGroup becomes abstract. For this, the property 

isAbstract has its value modified from false to true. 

 

Cases N Mean SD Min 25th Med 75th Max 

Marlim 31 40.79 74.79 3.09 4.13 9.12 11.33 246.25 

Bandeira 8 28.06 28.04 5.55 8.17 15.24 41.44 95.44 

GeoRisc 16 25.86 13.75 5.12 17.70 19.45 42.5 53.33 

PlanRef 44 2.86 1.92 1.2 2.03 2.33 2.52 10.41 

Alope 5 31.04 12.75 16.21 16.21 29.20 46.8 55.4 

 N = number of compositions, SD = standard deviation, Min = minimum, 25th = first quartile; 

Med = median, 75th: third quartile, Max: maximum. 

 

Table 23: Descriptive statistics for resolution effort 
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Derivation: model elements are refined to accommodate new changes 

and/or moved to other ones. For example, the class ProductionSystem is refined 

into two new classes: ProductionAction and ProductionPanel. The method 

ProductionSystem.runProduction() is inserted into ProductionAction. The 

attribute ProductionSystem.productionTime is inserted into ProductionPanel. This 

type of modification can be seen as a 1:N modification. 

Developers and researchers recognize that evaluable software should adhere 

to the Open-Closed principle (Meyer, 1997) as evolutions become easier. This 

principle states “software should be open for extensions, but closed for 

modifications.” However, this observation did not occur in all the cases as 

modifications and derivations of model elements happened as well. In our study, 

the open-closed principle was more closely adhered by the evolutions dominated 

by additions rather than any other one. In this case, developers invested low effort 

compared to other cases. This suggests that the closer to the Open-Closed 

principle the change is, the lower the composition effort. 

On the other hand, evolution scenarios that do not follow the Open-Closed 

principle required more effort to produce the intended model, MAB. This finding 

was identified when the change categories simultaneously occur in the delta model; 

hence, compromising the composition for some extent. This extra effort was due to 

the incapability of the matching algorithm to identify the similarities between the 

input model elements given the presence of widely scoped changes. In the Marlim 

project, for example, the composition techniques were not able to execute the 

compositions by about 17 percent (11/64) of the evolution scenarios. This required 

developers to recreate the models manually. In the Bandeira project, by about 10 

percent (10/95) of the composition cases did not produce an output model as well, 

or the composed model produced had to be thrown away due to the high amount 

of inconsistencies. 

In particular, we also observed that the refinement (1:N) of model elements 

in the delta model caused severe problems. A practical example of this refinement 

encompassed the direct relationship between PSDiagramOptionsDialog and 

MarlimInputData, named as input. This relationship was decomposed into (1) a 

direct relationship between PSDiagramOptionsDialog and StatusPanel, (2) the 

class StatusPanel; and (3) the aggregation between StatusPanel and 

MarlimInputData. In this case, the relationship (1:3) was not identified. This 
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problematic scenario was also noticed during the refinement of some classes 

belonging to the MVC (Model-View-Controller) architecture style into a set of 

more specialized ones. In both cases, the name-based, structural model 

comparison was unable to recognize the 1:N composition relations between the 

input model elements. However, we have observed these conflicts do not only 

happen when developers perform modifications, removals, or refinements in 

parallel, but also when developers insert new model elements. This finding was 

noted from the fact that although evolutions following the Open-Closed principle 

had reduced the developers’ effort, they still caused too frequent undetected 

inconsistencies.  

Developers were often unable to localize inconsistencies that did not affect 

the model elements created by them. Even worse, the composition algorithms 

were unable to identify that overlapping changes might cause “cross-semantic 

inconsistency.” That is, the semantic attributed to a model element conflict with 

another one assigned to the same (other) element. A very concrete example of 

semantic inconsistencies in our case studies was when UML stereotypes used to 

attribute new semantic to the model elements conflict with each other. The 

illustrative example shows two typical inconsistencies in our studies. For 

example, Steve attaches the stereotype <<MainClass>> to the class 

EditPSDiagOptionAction, while Bill attaches this attribute to MarlimCore. Hence, 

the algorithm does not detect that only one class can be defined as the main class.  

We have noted that these problems are more challenging to be detected 

when they occur in multi-valued properties defined in the UML metamodel such as 

Class.ownedOperation: Operation [*], which defines the methods of a class, or 

Class.extension: Extension [*], which specifies the stereotypes applied to a class. 

For example, Bill attaches the stereotype <<instance>> to the directed relationship 

(B2.step 2) from MarlimCore to EditPSDiagOptionsAction, while Peter attaches 

the stereotype <<use>> to this relationship (P2.step 3). As these stereotypes are 

not present in ancestor version (V1), the algorithm incorrectly brings both to the 

new version (V4). One of the reasons for this is that the meaning of the 

stereotypes are often not taken into account during compositions―either because 

the semantics of these stereotypes are rarely represented or either because the 

composition algorithms are unable to infer that the stereotypes <<instance>> and 

<<use>> are semantically contradicting. However, developers must tame this 

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA



144 
 

problem. 

Still considering the conflicting changes between Bill and Peter, whatever 

the change accepted — if the class PSElemenGroup is transformed into an 

abstract class, or if it is removed ― inconsistencies will emerge when the Steve’s 

changes are applied to PSElemenGroup. For example, Steve creates an inheritance 

relationship between the classes PSElemenGroup and Production (a concrete 

class). If the class PSElemenGroup is abstract, then a semantic inconsistency 

emerges because PSElemenGroup has an inheritance relationship with a concrete 

class Production. Note that this inconsistency is not related to the modeling 

language as the UML metamodel hinder inheritance relationship from the abstract 

class to concrete one. This inconsistency is because object-oriented programming 

like Java does not permit this type of relationships. On the other hand, if the class 

PSElemenGroup is removed, then a static semantic inconsistency arises because 

the inheritance relationship refers to a class that no longer exists.  

Thus, we have observed that the current state-of-the practice composition 

techniques superficially support the evolution categories. For accuracy reasons, 

this implies that developers need innovative techniques supporting restructuring 

changes and identifying the ripple effects of the semantic added to the model 

elements. Moreover, developers know that these problems (from structural to 

semantic inconsistencies) may happen in practice. However, they neither know 

their side effects nor grasp the meaning of the changes. To demonstrate this 

distinct side effect more clearly, let us take a closer look at the illustrative example 

in Figure 11, Figure 12, and Figure 13. As a prerequisite to produce the composed 

model, it is necessary to match the input model elements, which are suffering the 

effects of the changes performed by Peter, Steve, and Bill. For this, the 

composition technique identifies the similarities between the model elements. 

With addition based evolutions, the conflicting changes are identified because of 

the superimposition of changes: the composition algorithm detects that two 

contradicting values were attributed to a particular property defined in the 

language metamodel (e.g., isAbstract or isDerived). For example, Bill modifies 

the value of the property return type of the method 

MarlimCore.handleInvalidOutput() from void to Status (B3.step 4), while Steve 

modifies it to String. Similarly, Bill transforms the concrete class PSElemenGroup 

into an abstract class (B3.step 3), while Peter removes this class (P2.step 4). 
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Therefore, although the composition algorithm is effective to detect the 

changes, it is unable to identify whether the differences are caused by a simple (or 

multiple) modification, removal, or even refinement of model elements. Having 

more semantically richer information about the type of the changes, developers 

might detect and earlier resolve the conflicts. This would increase the number of 

correctly composed models as this semantic information aided those developers in 

making better-informed decisions. 

With this in mind, to alleviate these problems would be necessary to grasp 

the actual meaning of the model elements (in the base model and delta model) and 

the impact of the change categories on their quality issues (e.g., comprehensibility 

and correctness). However, the current name-based, structural model comparison 

strategy has demonstrated to be ineffective to recognize intricate equivalence 

relationships between the model elements. The meaning of the model elements is 

rarely represented in a formal way. Hence, the definition of the correspondence 

between the input model elements is essentially based on a signature-based 

approach (Reddy et al., 2005). In doing so, the developers have to address some 

false positives and false-negative definitions of correspondence between the input 

model elements. However, the problem is rarely resolved without causing any 

negative effects on the developers’ effort and expected characteristics of the 

design models e.g., correctness (Table 4).  

Consequently, it was particularly challenging for developers to perform the 

compositions, or even for modeling managers, authorize the execution of the 

compositions. The developers are reluctant to compose the input models, and 

hence all potential benefits (e.g., gains in productivity) of the use composition in 

collaborative software modeling are compromised. In these cases, the current 

composition techniques are not effective to compose design models in 

collaborative model evolution. 

 

4.2.4.2.2. 
Conflict Management 

The detection of all possible semantic conflicts between two versions of a 

model is an undecidable problem (Mens, 2002), as many false positive conflicts 

can appear. To reduce this problem, some previous works have recommended 
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reducing the size of the delta model in order to reduce the number conflicts (Perry 

et al., 2001). However, this approach does not ameliorate in fact the complexity of 

the changes. That is, the problem is not essentially the number of conflicts that the 

size of the delta can cause, but the complexity of the conflicts. To alleviate the 

effort to resolve the conflicts, we narrowed down the scope of the conflicts. For 

this, the delta model became to represent one or two functionalities of a use case 

in particular. Hence, the conflicts became more manageable and reasonable. 

Following this strategy, we were able to reduce the number and complexity of the 

conflicts. In practical terms, this complexity was minimized by reducing the 

number of functionalities implemented in the delta model. That is, the 

compositions had a smaller scope.   

On the other hand, sometimes the changes with broader scope were 

inevitable in the delta model. This was, for example, the case when the models 

(e.g., class and sequence diagrams) were reviewed and meliorated for reasons of 

quality assurance. Unfortunately, this results in a decreased precision of the 

compositions due to the presence of non-trivial compositions. It is known that the 

domain independent composition algorithms cannot rely on the detailed semantics 

of the models being composed or on the meaning of changes. Instead of being 

able to identify all possible conflicts, the algorithms detect as many conflicts as 

possible, assuming an approximate approach. Consequently, developers need to 

deal with many false positive conflicts.  

In practice, we noted that if the composition generates many conflicts, 

developers prefer throwing the models away (and investing more effort to recreate 

it after) to resolving all conflicts. Although the composition algorithm detects the 

conflicting changes created by developers in parallel, developers are unable to 

understand and proactively resolve these conflicts generated from non-trivial 

compositions. This can be explained by two reasons. First, the complexity of the 

conflicts affected the model elements. Second, the difficulty of understanding the 

meaning of the changes performed by other developers. More importantly, 

developers were unable to foresee the ripple effects of their actions. 

This is linked to two very interesting findings. First, developers have a tacit 

assumption that the models to-be-composed will not conflict with each other, and 

a common expectation is that little effort must be spent to integrate models. 

Hence, developers tend to invest low effort to check whether the composition 

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA



147 
 

produced inconsistencies or not. Therefore, we can conclude that the need to 

throw the model away in order to recreate it after demonstrates the complexity of 

the problem. 

We have observed that the developers spend more effort when inconsistency 

propagation occurs. Although it is well known that the spread of the 

inconsistencies lead developers to spend some additional time to detect and 

resolve them, we have observed that this extra effort is due to, in part, the 

developers produce the inconsistencies are not the same to detect and resolve 

them. Note that in general inconsistencies are produced from the conflict 

resolution process performed incorrectly. This can be explained based on some 

reasons. 

First, it is not always clear for developers that any inconsistency was 

produced. This perception is only realized along the project when the 

inconsistencies have already been resolved. Second, the inconsistencies tend to 

“keep alive” during the project because developers do not always detect and 

resolve the inconsistencies when they appear―either because they do not know 

which models are affected by the inconsistencies or either because the 

inconsistencies do not affect the use purpose of the models created by them.  

In the first case, developers are concerned with the models under their 

responsibility i.e., models that they must produce. However, they feel comfortable 

to resolve inconsistencies localized in models that they are not under their 

responsibility. The main reason is that developers need to understand use cases (or 

scenarios) describing the functionalities represented in the diagrams. For a perfect 

understanding, developers should often grasp business rules and design rules, 

which define the domain elements and their constraints. That is, developers should 

know about the company business before resolving the inconsistencies. This 

represents one of the impairments to resolve the inconsistencies when they are 

detected. Another finding is that to resolve the inconsistencies, developers need 

sometimes to grasp the reasons why a composition was realized in one way and 

not in an expected manner. 

In the second case, developers obligatorily spend effort to resolve 

inconsistencies that compromise the main purpose of use of the design models 

e.g., communication, but rarely to solve the inconsistencies that damage 

secondary purpose e.g., prediction. Developers do not solve all inconsistencies 
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due to time constraint. Consequently, they live with inconsistencies in practice. In 

our case studies, the models were used for improving the communication between 

the developers. Although other inconsistencies might be resolved, only the 

inconsistencies that jeopardize the comprehensibility of the models were 

necessarily solved. For example, the layout of the models was an ever-present 

concern during the modeling. This means that developers invested time to arrange 

the elements in the model to ensure a good understanding of the features. 

Therefore, all inconsistencies that affect this layout must be resolved; otherwise, 

the purpose of use of the model is compromised. We can conclude that, although 

it is desired to keep models without inconsistencies only the inconsistencies that 

affect the purpose of use of the models are resolved.  

 

4.2.4.2.3. 
Social Factors 

The reputation of the developers influences the resolution of conflicting 

changes. We observed this finding during the observational study, interviews, and 

analyzing the change history in the repository. Recall that a developer can accept 

and reject a change of a second developer. This situation can be illustrated in turns 

of our motivating example. The developers Peter and Bill have distinct levels of 

experience. Peter is less experienced than Steve. Thus, if Peter performs a change 

that conflicts with another carried out by Steve (and he is not sure about how to 

resolve them) then he accepts the changes performed by Steve. That is, given that 

Peter is indecisive, he relies on the Steve’s reputation. 

Reputation can be seen as the opinion (or a social evaluation) of a member 

of the development team toward other developer. We have identified two types of 

reputation: technical and social.  

Technical reputation refers to the level of knowledge considering issues 

related to the technology and tools used in the company such as the composition 

tool, IDEs, CASE tools, and version control systems. This type of reputation is 

mainly acquired solving daily problems. Social reputation refers to the position 

held by the members of the development team (e.g., senior developer). More 

experienced teamwork members (e.g., senior ones) influence less experienced 

members (e.g., novice ones). This happens mainly because the experienced ones 
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are the human face of the development projects, making important project 

decisions, and coordinating teams. 

Knowing that the reputation of the developers might affect the conflict 

resolution, we investigated which reputation would cause more influence. For 

this, eight developers were interviewed. The data collected suggests that technical 

knowledge causes more influence on decision making than social reputation. 

More specifically, 75 percent of the developers (6/8) reported that the technical 

reputation would influence more developers’ decisions than social one.  

 

4.2.5. 
Limitations of Related Work 

We contrast this work with previous studies considering empirical studies, 

development effort, composition techniques, and modeling language as follows. 

Empirical Studies. It is well known that empirical studies in model 

composition are severely lacking (Uhl, 2008; France & Rumpe, 2007). Some 

authors have contributed toward clarifying how conflicts emerge and how they are 

tamed in artificial scenarios. For the most part, these works have considered 

limited composition scenarios compared to the scenarios evaluated in this work. 

Still, the most of them do not consider effort as the investigation variable. 

The observational study in (Perry et al., 2001), for example, investigates the 

change history of a legacy system to delineate the boundaries of (and to 

understand the nature of) the problems considering the software development in 

parallel. The authors considered only one observational study and all work was 

concentrated in level of code. Another example would be the experimental report 

in (Altmanninger et al., 2009). That study analyzes the challenges in merging 

different versions of one model, proposes an initial categorization of typical 

changes, and identifies resulting conflicts from the compositions. Although 

interesting, the current empirical studies do not evaluate composition effort. Still, 

the findings are normally collected from artificial and limited case tests rather 

from realistic composition scenarios. Finally, some previous works (Mens, 2002; 

Whittle & Jayaraman, 2010; Dingel et al., 2008) reinforce the need for empirical 

studies in model composition.  
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Considering two empirical studies in model-driven development 

(Hutchinson et al., 2011a; Hutchinson et al., 2011b), Hutchinson and colleagues 

presents some initial results from a twelve-month empirical research study of 

model driven engineering (MDE). More specifically, they document a set of 

technical, organizational, and social factors that apparently influence 

organizational responses to MDE (Hutchinson et al., 2011a). In (Hutchinson et al., 

2011b), they describe the practices of three commercial organizations concerning 

MDE approach to their software development. The main contribution is a range of 

lessons learned, reporting the importance of social factors instead of technical 

factors on the relative success, or failure, of the adoption of MDE in practice. The 

authors do not mention any problem concerning model composition during these 

qualitative studies. This does not mean it is not a problem in practice since they 

take a much broader view and ask questions that are more general about the role 

and effectiveness of MDE.  

On the other hand, in (Uhl, 2008), Uhl points out that composition of 

enterprise artefacts is not a trivial issue. Most because it requires the composition 

of graphical views, forms, dialogs, and depends on “friendly” views to tame all 

conflicts between the multiple models. Hence, developers end up avoiding model 

composition and adopting pessimistic locking of design models. Therefore, our 

results can be seen as the first to empirically investigate RQ2.3 and RQ2.4 using 

the state-of-the-practice composition technique in industry.  

Development Effort. A major contribution of our work is the investigation of 

composition effort as a critical factor for the acceptance of the composition 

techniques in practice. Some previous works have also demonstrated that the 

effort is a critical factor during the software development (Jorgensen, 2005). 

Usually the effort is based on ad hoc estimation (Farias et al., 2011; Jorgensen, 

2005). Jorgensen (Jorgensen, 2005) highlights that effort estimation is still a real, 

open problem due to the lack of empirical evidences about the effort required to 

perform development tasks. In fact, estimating effort based on the expert 

judgment is the most common approach today. Even worse, these feedbacks are 

often diverging or overoptimistic. When we consider this problematic in the 

context of composition, the problem is aggravated. However, little has been done 

to investigate this problem.  
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Composition Techniques. Model composition is a very active research field 

in many research areas such as synthesis of state charts (Ellis & Gibbs, 1989), 

weaving of aspect-oriented models (Whittle et al., 2009; Klein et al., 2006; 

Whittle & Jayaraman, 2010), governance and management of enterprise design 

models (Norris & Letkeman, 2011), software configuration management 

(Whitehead, 2007), composition of software product lines (Jayaraman et al., 

2007), and composition of design models (Nejati et al., 2007; Epsilon, 2011). For 

this reason, several academic and industrial composition techniques have been 

proposed such as MATA (Whittle et al., 2009), Kompose (Kompose, 2011), 

Epsilon (Epsilon, 2011), IBM RSA (IBM, 2011), and so on. With this in mind, 

some observations can be done.  

First, these initiatives focus only on proposing the techniques instead of also 

demonstrate their effectiveness. Consequently, qualitative and quantitative 

indicators considering these techniques are still incipient. In addition, the situation 

is accentuated considering effort indicators. This lack hinders mainly the 

understanding of their side effects. Second, their chief motivation is to provide a 

systematic algorithm. Unfortunately, these approaches do not offer any insights or 

empirical evidences whether developers might reach the potential benefits claimed 

by using composition techniques in practice. Although some techniques are 

interesting approaches, they are fundamentally flawed because of the large 

number of false positives that will be produced for large-scale systems. 

Nevertheless, the effort required for the user to understand and correct 

composition inconsistencies will ultimately prove to be too great. The current 

study takes a different approach. It aims to provide a precise assessment of 

composition effort in real life context, quantifying effort and identifying the 

influential effort.  

Next, current works tend to investigate on the proactive detection and earlier 

resolution of conflicts. Most recently, Brun (Brun et al., 2011a) proposes an 

approach, namely Crystal, to help developers identify and resolve conflicts early. 

The key contributions are that conflicts are more common than would be 

expected, appearing overlapping textual edits but also as subsequent build, and 

test failures. In a similar way, Sarma (Sarma et al., 2011) proposes a new 

approach, named Palantír, based on the perception of workspace awareness, on 

the detection and earlier resolution of a larger number of conflicts. Based on two 
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laboratory experiments, the authors confirmed that the use of the Palantír reduced 

of the number of unresolved conflicts. Although these two approaches are 

interesting studies, the earlier detection does alleviate the problem of model 

composition. The problem is the same, but is only reported more quickly. In 

addition, they appear to be overly restrictive to the code, not leading to broader 

generalizations at modeling level. Lastly, they neither make consideration about 

the effort to compose the artefacts used nor investigate the research questions in 

vivo case studies. 

Modeling Language. There has been more research on evaluating the use of 

UML models (and its extensions) rather than the effort of composing them. These 

studies notably aimed at evaluating modeling languages in terms of some quality 

attributes such as comprehensibility (Lange & Chaudron, 2006), interpretation 

(Nugroho et al., 2008), and maintainability (Dzidek et al., 2008) rather than the 

composition effort. Additionally, most existing works have focused attention on 

exploring different quality issues considering UML models and understanding its 

appropriateness in mainly artificial scenarios. However, none of them attempt to 

understand how these quality issues may be affected during compositions and to 

examine a set of wider issues about the effort on composing these models in real-

life scenarios. Some these issues include: are these quality issues of the UML 

models affected during the composition? In which composition tasks should the 

developer invest more effort? What is the trade-off between the composition tasks 

in practice? What are the characteristics of the UML models that help developers 

to compose them?  

To sum up, there has been very limited empirical research evaluating the 

effort of composing large-scale design models in literature. Even worse, nothing 

has been done to both understand and describe the influential factors that can 

jeopardize the potential benefits of using composition techniques in industry. In 

particular, there are four critical gaps in current understanding. Firstly, the lack of 

practical knowledge on the effort of applying composition techniques, detecting 

and resolving inconsistencies in practice. More importantly, the lack of a trade-off 

analysis about three effort variables (Section 4.2.3.4.3). Secondly, a precise 

understanding about the influential factors of composition effort is lacking. Next, 

the lack of understanding of how technical and social factors can affect 

composition effort. Last, the absence of evaluation of important aspects in model 
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composition beyond modeling languages and composition techniques. Some of 

these aspects would be such as the potential benefits of good practice of software 

modeling, merging in pair (two or more developers work together to compose the 

input models), inconsistency management, and strategies to allocate tasks to 

minimize the composition effort. 

 

4.2.6. 
Concluding Remarks of the Second Study 

Model composition is a key mechanism to support the evolution of design 

models in large-scale software projects. In particular, this mechanism is essential 

to promote collaborative work of separate development teams whereas increasing 

their productivity. Thus, developers naturally become concerned about the quality 

of the software evolutions produced (i.e., the composed models) and the effort 

invested by the teamwork members. However, there is a lack of empirical studies 

evaluating model composition effort in practice. This means that little empirical 

findings can be converted into practical knowledge to the industry. Developers 

have no guidance on how to reduce model composition effort and the number of 

emerging model inconsistencies. 

This study represents the first in vivo exploratory study to evaluate the effort 

that developers invest to compose design models (RQ2.3) and to identify and 

analyze the factors that affect developers’ effort (RQ2.4). In our study, a best-of-

breed model composition technique was applied to evolve industrial design 

models along 297 evolution scenarios. Developers conducted the work during 56 

weeks, which resulted in more than 2 million compositions of model elements. 

We investigated the composition effort in this sample, and analyzed the side 

effects of key factors that affected the effort of applying the composition 

technique as well as detecting and resolving inconsistencies. All conclusions from 

RQ2.3 and RQ2.4 were drawn from quantitative and qualitative analyses based on 

the use of metrics, interviews, and observational studies. 

We summarize the findings related to RQ2.3 as follows: (1) the application 

effort measures do not follow an ad hoc distribution and, rather, it assumed a 

distribution pattern; (2) the application effort tends to reduce as developers 

become more familiar with technical issues rather than application domain issues; 
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(3) the more experienced developers spend 23.2 percent less effort to detect 

inconsistencies than less experienced developers; and (4) the higher the number of 

inconsistencies in behavioral models, the higher the effort to detect 

inconsistencies. Additionally, we also present four findings with respect to RQ2.4 

as follows: (1) the production of the intended model is strictly affected by the 

presence of different types of change categories in the delta model; (2) the closer 

to the Open-Closed principle the change is, the lower is the composition effort; (3) 

evolution scenarios that do not follow the Open-Closed principle required more 

effort to produce the intended model; and (4) the refinement (1:N) of model 

elements in the delta model caused severe composition problems and hence 

increased the composition effort.  

Although there is a significant amount of quantitative and qualitative 

evidence supporting our findings previously mentioned, further empirical studies 

are still required to check whether they are observed in other contexts with 

different subjects. For example, we need to better understand if the composition 

effort is alleviated when developers compose well-modularized input models. 

There is some expectation that design models with an improved modularization 

can aid the composition techniques to accommodate the changes in the base 

model. Another two interesting investigation points would be: (1) Do developers 

invest more effort to compose behavioral models (e.g., sequence diagrams) than 

structural models (e.g., component diagrams)? (2) Do developers invest more 

effort to resolve semantic inconsistencies than syntactic ones? It is by no means 

obvious that, for example, developers invest less effort to resolve inconsistencies 

related to the well-formedness rules of the language metamodel than to resolve 

inconsistencies considering the meaning of the model elements. 

Finally, we hope that the issues outlined throughout the thesis encourage 

other researchers to replicate our study in the future under different circumstances. 

Moreover, we also hope that this work represents a first step in a more ambitious 

agenda on better supporting the model composition tasks. 
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