
60

3
A Quality Model for Model Composition Effort

Software quality is defined as “conformance to requirements” (Boehm,

1978). Therefore, the quality of a software system can be seen as the

characteristics that lead its comprising artifacts or its development activities to

satisfy a set of requirements. A software quality model defines and organizes the

concepts required to characterize or evaluate the quality of a software system

(Lange & Chaudron, 2005b; Boehm et al., 1978). Certain quality models are

intended to be general — i.e., they can be used to evaluate certain quality

attributes in any software engineering context. However, in order to be useful in

practice, each quality model should support the evaluation of a particular category

of software artifacts and/or software development activities relevant to a certain

software engineering context, such as model composition.

In this context, a quality model for model composition effort should: (i)

define the conceptual elements required to characterize and evaluate model

composition effort, and (ii) define and structure the quality notions (Lange, 2007;

Boehm et al., 1978) that are relevant to model composition artifacts and activities.

A quality model with these components is proposed in this thesis. The goal of this

quality model is to fill the gap in the current literature that fails to provide

adequate quality frameworks for model composition.

Therefore, the goal of this chapter is to define a quality model for model

composition effort. This quality framework serves as a guideline for researchers

and developers to carry out qualitative investigations considering model

composition effort and to assess any quality achievements. The proposed quality

model (Section 3.5) is a practical quality framework built from evidence-based

knowledge acquired throughout the execution of a series of empirical studies

(Table 1). The empirical studies range from controlled experiments, case studies,

quasi-experiment, and observational study. These studies will be described in

Chapters 4, 5, and 6. Additionally, this quality model is also based on (1)

experience obtained from previous works performed over the past six years (Table

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

61

1), and (2) previous quality models such as (Marín et al., 2010; Lange, 2007a;

Lindland et al., 1994; Boehm et al., 1979; McCall et al., 1977). Although the

proposed quality model overcomes the limitations of related work (Section 3.2)

and it can be applied to any design models, it does not aim to be a final and

complete one. With this in mind, it has been designed to be extensible so that

other researchers can tailor it for different purposes.

The creation of this quality model requires answering some open questions.

First, what are the artifacts and activities involved in model composition? What do

we expect from model composition? Developers do not know which tasks should

be performed and what models participate in a model composition process

(Section 3.3). Second, how can we evaluate the model composition effort?

Researchers do not know which evaluation criteria should be used (Section 3.5),

and how they can contribute to achieve the required quality (Fitzpatrick, 1999).

Therefore, the proposed quality model addresses the first research question of this

thesis (RQ1): How can the evaluation of model composition be organized in terms

of a comprehensive framework?

The remainder of this chapter is organized as follows. First, Section 3.1

provides some additional motivation for our quality model. Then, Section 3.2

discusses the limitations of the related work. Section 3.3 defines how model

composition effort can be evaluated. Section 3.4 defines composition conflicts and

inconsistencies. Finally, Section 3.5 brings forward the quality model, which

serves as the reference frame for the empirical studies conducted throughout this

research.

3.1.
Motivation

Although researchers and developers recognize the importance of evaluating

model composition (France & Rumpe, 2009; Farias et al., 2010), the practice of

this evaluation is not a trivial task (Basili & Lanubile, 1999; Basili et al., 1999).

This can be explained by some reasons. First, the current quality models fail to

define the concepts (and their relations) required to characterize and evaluate

model composition. Examples of these concepts are conflicts, inconsistencies,

types of modeling languages, and model composition techniques. These concepts

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

62

are not even mentioned in the current quality models. Hence, it is not possible to

study the interplay of these concepts and model composition effort.

Second, because of the aforementioned problem, the use of prevailing

quality models, discussed in Section 3.2, does not enable developers to distinguish

between: (i) general quality notions that are typically associated with the design

models in general, and (ii) quality notions that are specifically relevant to the

evaluation of model composition effort. Rather, they only take into account well-

known general concepts in software modeling. The imprecise specification of

specific quality notions for composition effort causes misunderstanding about

what should be evaluated in this context. Even worse, researchers cannot properly

formulate and test hypotheses as well as replicate studies. If researchers cannot

replicate studies, then the generalization of the results is hindered.

Third, the lack of a quality model jeopardizes the understanding about how

conclusions can be drawn and related. According to (Basili and Lanubile, 1999;

Wohlin et al., 2000), the degree of validity of any finding of empirical studies

depends on how conclusions are drawn — i.e., the degree of confidence in a

cause-effect relationship between the study variables and to what the extent the

conclusions can be extrapolated to other contexts. A quality model guides

researchers to investigate cause-effect relationships and promote the alignment

between the results of empirical studies. Without a quality model, the conclusions

across multiple studies are weakly connected, and a body of knowledge about

model composition cannot be built.

Finally, the understanding of model composition is based on common

wisdom, intuition, evangelist feedback, or even proofs of concepts. All these

sources of information are not reliable sources of knowledge (France & Rumpe,

2007). Therefore, the lack of a quality model for model composition is a key

factor for the empirical evaluation of effort on composing design models. In fact,

without an adequate quality model the problem stated in Section 1.1 cannot be

addressed. In the following section, we discuss the limitations of the related work.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

63

3.2.
Limitations of Related Work

Researchers recommend the use of quality models in empirical

investigations (Runeson & Höst, 2009; Wohlin et al., 2000). In (Runeson & Höst,

2009), Runeson and Höst highlight the need for a reference frame (e.g., quality

model or theory) to plan and execute case studies. The authors emphasize, for

example, that quality models make the context of the empirical study clearer, and

help researcher to conduct as well as review the results obtained. In (Wohlin et al.,

2000), Wohlin and colleagues also confirm the importance of a quality model for

empirical investigations.

To date, most approaches involving model composition rest on subjective

assessment criteria. They depend on experts who build up an arsenal of mentally

held indicators to evaluate the growing complexity of the produced design models

(France & Rumpe, 2007). Consequently, developers ultimately rely on feedback

from experts to determine “how good” the input models and their compositions

can be. According to (France & Rumpe, 2007; Uhl, 2008), the state of the practice

in assessing model quality provides evidence that modeling is still in the

craftsmanship era and when we assess model composition this problem is

accentuated. Finally, to the best of our knowledge, the need for methods for

qualitative evaluation during a model composition process neither have been

pointed out nor even proposed by current model composition techniques (Brun et

al., 2011a; Maoz et al., 2011; Apel et al., 2011; Sarma et al., 2011; Dingel et al.,

2008; Zito, 2006).

Some quality models in the area of modeling have been proposed through

the last decades, such as (Marín et al., 2010; Lange, 2007; Lindland et al., 1994;

Boehm et al., 1979; McCall et al., 1977). In (Boehm et al., 1979) and (McCall et

al., 1977), the authors present quality models for conceptual modeling. However,

both of them do not convey any concept related to model composition, such as

conflicts and inconsistencies. In (Lange, 2007), Lange aims at proposing an

extension of (Boehm et al., 1979) and (McCall et al., 1977) in the context of

software modeling; they provide guidelines for selecting metrics and rules to

quantify the quality of UML models. The purpose of this quality model is to

support a broad quality evaluation of UML models. Although the Lange’s quality

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

64

model has been created based on a literature review and on experiences from

industrial case studies, it is not suitable to evaluate model composition effort due

to the reasons described in the previous section.

Moreover, we have also observed that previous works have been structuring

and specifying the quality model in different ways. Although Boehm (Boehm et

al., 1978), McCabe (McCabe, 1976), and Lange (Lange, 2007a) structure their

proposed quality models following a hierarchical approach, they differ as to the

manners of the hierarchical levels are defined. Each level defines a different set of

concepts of the quality model. For example, McCall defines the quality

framework in three hierarchical levels containing Uses, Factors, and Criteria,

respectively. Boehm uses a different vocabulary but similar meaning for these

levels. On the other hand, Lange proposes his quality model with four hierarchical

levels containing Use, Purpose, Characteristics, and Indicators. Our proposed

quality model adopts these four levels as the relation between quality notions and

the indicators can be better specified and understood.

As mentioned in Section 3.1, the current quality models fail to specify the

relations between the concepts found in software modeling and the ones defined

in model composition. Hence, it is not trivial to grasp how developers’ effort can

be quantified only considering the concepts defined by Lange (Lange, 2007a).

They are User, Modeling Language, Domain, and Design Model. It is not possible

to answer whether, in fact, there are (or not) relations between those concepts and

those found in the realm of model composition. For example, the related works do

not discuss how the above concepts would relate to concepts such as Conflict,

Inconsistency, and Model Composition Techniques. Understanding if these

relations are possible, or even how it would occur, is important when studying

model composition effort.

In 2010, Marín proposes a quality model based on the metamodeling

standard (Marín et al., 2010). This type of specification offers some advantages

concerning the previous ones. First, the elements of a quality model are defined by

a description, syntax abstract, and semantics constraints. Second, the UML

metamodel is also defined following a metamodeling approach. This means that

the use of metamodeling can favor the comprehension of the quality model as

developers are often familiarized with the UML specification. More specifically,

the purpose of the quality model is to formalize the elements involved in the

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

65

identification of the different types of defects relevant to Model-Driven

Development (MDD). This not only encapsulates common defect types usually

found in MDD, but also takes advantage of current standards in order to automate

defect detection in MDD environments (Marín et al., 2010).

According to Boehm (Boehm et al., 1978), McCall (McCabe, 1976), and

Lange (Lange, 2007a), researchers can evaluate software systems by relating

metrics to quality attributes. Today, there are many works defining metrics in

order to measure source code and design models such as (Fenton et al., 1996;

Chidamber & Kemerer, 1994; McCabe, 1976; Martin, 2003). However, none of

them explores the relation of metrics and quality notions in the context of model

composition assessment. For example, in (Chidamber & Kemerer, 1994), the

authors define a set of canonical metrics for OO designs, such as coupling

between object classes (CBO) and the lack of cohesion in methods (LCOM).

Martin in (Martin, 2003) proposes another metrics and discusses design

characteristics, such as stability. Although these works are effective to assess

quality attributes of both source code and design models, they are inadequate to

assess the model composition effort. For example, these quality models do not

consider important elements in model composition, such as conflicts,

inconsistencies, and composition techniques. That is, the current quality models

are unable to guide researchers during the planning of empirical studies about

model composition effort. This thesis, therefore, extends the previous quality

models so that researchers and developers are able to characterize and evaluate

model composition tasks. We structure the proposed quality model by using a

four-level framework following a metamodeling standard, as in Marín’s work

(Marín et al., 2010). The proposed extensions are described in the next sections.

Nevertheless, the main differences are (1) an abstract syntax is defined to

represent the concepts that are the basis of the quality model, (2) new concepts are

included in the model (such as conflict, inconsistency, composition technique, and

design characteristic), and (3) four quality notions are added (such as effort,

application, detection, and resolution notions).

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

66

3.3.
A Quality Model for Model Composition Effort

After motivating the quality model (Section 3.1) and contrasting the related

works (Section 3.2), this section describes the quality model for model

composition effort, which is based on previous works (Lange, 2007; Krogstie,

1995; Lindland et al., 1994; Marín et al., 2010).

3.3.1.
Model Composition Effort and Change Categories

In this section, we define model composition effort and the types of changes

that are applied to the design models during the empirical studies. Moreover, this

section answers some questions that have motivated the creation of the quality

model (Section 3.1).

To begin with, we identify the different types of effort that developers can

invest to produce an output intended model. Model composition effort can refer to

the time invested (or the number of activities required) to produce the output

intended model. In Figure 3, an effort equation summarizes three complementary

facets of model composition effort. The equation makes explicit that developers

invest effort to realize three activities to compose the base model, MA, i.e. the

model to-be changed, and the delta model, MB, so that the intended model, MAB,

can be produced. However, some additional effort may be invested to solve

inconsistencies in the composed model, MCM:

1. f(MA,MB): effort to apply composition technique to produce MCM from

MA and MB.

2. diff(MCM,MAB): effort to detect inconsistencies in MCM.

3. g(MCM): the effort to resolve inconsistencies i.e., the effort to transform

the composed model (MCM) into the intended model (MAB). Note that if

MCM is equal to MAB, then diff(MCM,MAB) = 0 and g(MCM) = 0. Otherwise,

diff(MCM,MAB) > 0 and g(MCM) > 0.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

67

Figure 3: Overview of model composition effort: an equation

Developers spend effort to accommodate changes from the MB to the MA.

We have identified four types of changes that usually happen during this

composition, which are widely accepted by researchers (Mens, 2002). Note that

the quality model is not limited to be used to these changes. The changes are

described as follows:

 Addition: new model elements from some delta model are inserted into the

base model; for instance, the new attribute – name: String is inserted into

the class Researcher (Figure 4).

 Removal: a model element in the base model is removed; for example, the

attribute, +salary: int is removed from the class Researcher.

 Modification: a model element has some properties modified; for instance,

the class Researcher in the base model has its property isAbstract = false

modified to true in the delta model (name in italic style).

 Derivation: model elements are refined and/or moved to accommodate the

changes (Mens, 2002); for example, the class Researcher in the intended

model (Figure 4) has the attributes name and salary moved to the classes

Assistant and Professor.

When developers accommodate these different types of changes into the

base model (MA) some conflicts between the properties of the design models can

arise. We present the concept of conflicts and inconsistencies in the next section.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

68

Figure 4: Illustrative example

3.3.2.
Composition Conflicts and Inconsistencies

Composition conflicts consist of contradictions between the values assigned

to the properties of the design models (Mens, 2002). They emerge when the input

models MA and MB need to be composed and their overlapping parts have

contradicting values. Figure 4 shows a practical example of conflicting changes

when we try to compose the classes Researcher of the base and delta model.

In the base model, the UML class Researcher is defined as a concrete class

(i.e., Researcher.isAbstract = false) whereas in the delta model class Researcher

is set as an abstract class (i.e., Researcher.isAbstract = true). That is, we have

contradicting values assigned to the same class. Then, the developers need to

properly answer the question: should class Researcher be abstract or not? In this

particular case, the correct answer is that the Researcher is abstract — i.e.,

Researcher.isAbstract = true. This can be observed in the intended model in

Figure 4.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

69

However, if this question is not properly answered, inconsistencies are

inserted into the output composed model. Inconsistencies are unexpected values

assigned to the properties (or characteristics) of the design models. For example,

Researcher.isAbstract = false represents an inconsistency as the expected value is

true. Note that when the conflicts are incorrectly resolved they are converted into

inconsistencies in the output composed model. Figure 4 shows the class

Researcher produced by the override and merge algorithms (Section 2.4.1) as a

concrete class (isAbstract = false) instead of abstract (isAbstract = true) as would

be expected. Note that these inconsistencies lead the model to-be considered not

compliant with the intended model. Two categories of inconsistencies can emerge

as follows:

o Syntactic inconsistency emerges when any output composed model

elements do not conform to the rules defined in the modeling

language’s metamodel. For example, a class must have attributes with

different names.

o Semantic inconsistency arises when the meaning of the elements of a

composed model does not match with the elements of the intended

model. For instance, a class in MCM has an unexpected method or it

requires functionality from another class that no longer exists.

We consider both categories of inconsistencies throughout this thesis. The

composition techniques, such as IBM RSA (Section 2.4.2), are able to

automatically detect syntactic inconsistencies while the semantic inconsistencies

can be only detected manually. The composition techniques are unable to detect

semantic inconsistencies because semantic information about the model elements

is rarely represented in a formal way.

Metric Description

NFCon The number of inconsistent functionalities

NCCon The number of model elements that are not compliant with the intended model

NDRCOn The number of dangling reference inconsistencies

NASCon The number of abstract syntax inconsistencies

NUMECon The number of meaningless model elements

NBFCon The number of behavioral feature inconsistencies

Table 2: Metrics of semantic inconsistencies (Farias et al., 2008)

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

70

Figure 5: Abstract syntax of the quality model for model composition (based on (Lange,
2007))

 Hence, the composition techniques cannot proactively localize such

inconsistencies. With this in mind, six metrics are proposed. Table 2 briefly

presents these metrics. These inconsistencies were chosen because we have

observed from empirical studies that they are the most common types of

inconsistencies faced by developers in practice (Farias et al., 2008; Mens, 2002).

3.3.3.
Abstract Syntax of the Quality Model

The goal of the abstract syntax is to define the quality model more

precisely, thereby identifying the main concepts and their relationships. As this

quality model is based on previous works (Lindland et al., 1994; Krogstie, 1995;

Lange, 2007), the extensions are based on the creation of four new model

elements, and six relationships, which are discussed as follows.

Figure 5 shows the abstract syntax of the proposed quality model, which

relies on the metamodeling pattern used in the UML metamodel (OMG, 2011).

Note that the numbers in Figure 5 correspond to the numbers in brackets of the

quality notions to be discussed in Section 3.5.2. We adopted the UML metamodel

as a reference because the UML is in fact the standard modeling language in both

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

71

academia and industry (Dobing & Parsons, 2006). It is important to highlight that

each association represents some effort that developers should invest. With this in

mind, the elements of the abstract syntax (Figure 5) are presented as follows.

a. Domain

The first element to be discussed is the concept of domain. This concept

represents an area of expertise or application that needs to be examined to solve

a problem. The solution of the problem is represented in a design model. In other

words, a domain consists of a reality to be represented by using a modeling

language. Supply chain, finance, and telecommunications are three examples of

domains. Typically, it can be stated as a conceptual model where a set of concepts

and relations are represented.

Association

 Without a directed relationship

b. Modeling Language

Modeling language is the concept that represents the language used to

design a software system. Object-oriented modeling languages and aspect-

oriented modeling languages are two examples of typical categories of languages

used to represent significantly different forms of design decompositions.

Modeling languages are commonly used in practice to improve the

communication between development teams and provide alternative means for

achieving design modularity. Different modeling languages – such as object-

oriented and aspect-oriented ones – may influence the structure of a design.

Software engineers use these languages to communicate design decisions and

check the feasibility of implementing the envisaged design. Example of a premier

software modeling tool is the IBM Rational Software Architect (IBM RSA, 2011).

The modeling languages define a set of constructs that are used to create instances

of the design models.

Association

 expresses: Design Model[*]

Each expresses represents the statement of design models. An

expresses means that the constructs of the design modeling language

are instantiated to create a Design Model concerning some Domain.

http://en.wikipedia.org/wiki/Problem
http://en.wikipedia.org/wiki/Conceptual_model_(computer_science)
DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

72

UML and its profiles are examples of design modeling language

used in practice. This is an ordered association from Modeling

Language to Design Model.

c. Design Model

Design model refers to the diagram used to represent static and dynamic

aspects of a software system. UML class and sequence diagrams are examples of

these design models. Developers commonly use these two diagrams, for example,

to design structural and dynamic aspects of an application. Moreover, a design

model represents the concepts (and their relations) from a domain. This

representation helps to describe this domain.

Association

 describes: Domain[1]

Each describes represents a particular domain. This representation

defines that every design model should describe a particular domain.

This is an ordered association from Design Model to Domain.

Design Models can describe just a domain.

d. User

User is a person who interprets design models to get an understanding of the

domain (Lange, 2007a). A user can interpret one (or more) design model and

compose design models for any particular purpose. Additionally, the user detects

and resolves inconsistencies that arise from the compositions. Typical categories

of users are software developers and researchers.

Association.

 composes: Design Model[2..*]

Each composes represents the instance of a composition that is

realized by User. A composes declares that there may be

composition between instances of two (or more) design models. A

composition is a tuple with two (or more) design models for each

end of the association, where each design model is an instance of the

type of the end (i.e., Design Model). This is an ordered association

from User to Design Model. Users can compose tow (or more)

design models.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

73

 detects: Inconsistency[*]

Each detects represents the detection of inconsistencies by the User.

A detects specifies that there can be detection of inconsistencies

when a User realizes composition of design models. This is an

ordered association from User to Inconsistency. User can detect

anything to many inconsistencies.

 resolves: Inconsistency[*]

Each resolves represents the resolution of inconsistencies by User. A

resolves specifies that there can be resolution of inconsistencies

when a User realizes composition of design models. This is an

ordered association from User to Inconsistency. User can resolve

from none to many inconsistencies.

 interprets: Design Model[1..*]

Each interprets represents the interpretation of design models by

User. A resolves specifies that there can be resolution of

inconsistencies when a User realizes composition of design models.

This is an ordered association from User to Inconsistency. User can

interpret no or many inconsistencies.

 applies: Composition Technique[*]

Each applies represents the application of model composition

technique to compose design models by User. A applies specifies

that there can be the use of composition technique when a User

realizes composition of design models. This is an ordered

association from User to Composition Technique. User can apply no

or many composition techniques.

e. Conflict

Conflict is the concept that represents the contradictions between different

design models to be composed. Since User tends to assign contradicting values to

the properties of the Design Models (Section 3.4). Conflicts arise why the design

models receive conflicting changes. These contradictions happen when the

ordered association composes: Design Model [2..*] from User to Design Model is

instantiated. Thus, conflict is a derived concept from the association composes.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

74

For example, a developer defines that a class is abstract (i.e., isAbstract = true)

while another developer specifies that the same class is concrete (i.e., isAbstract =

false). User should grasp and tame these conflicts in order to able to produce an

intended design model.

Association

 Without a directed relationship

f. Inconsistency

Inconsistency is the concept that represents the defects found in the output

composed model (Section 3.4). It usually arises because User tends to incorrectly

resolve the Conflicts. For example, developers can incorrectly tame the conflict

whether a class should be abstract or not.

Association

 affects: Design Model[*]

Each affects consists of problems jeopardizing quality notions of the

Design Model. When the affects takes place implies to say that an

output composed model and the output intended model do not match

(MCM ≠ MAB). This is an ordered association from Inconsistency to

Design Model.

g. Design Characteristic

A design characteristic is the concept that illustrates the strategies used by

developers to structure design models such as coupling and cohesion. Design

characteristics are used to improve, for example, the capability of design models

to be (more straightforwardly) composed. The design characteristics are also used

as indicators (Martin, 2003) of prone to problems. An example of this design

characteristic is model stability (Section 2.6).

Association

 influences: Design Model[*]

Each influences represents that the design characteristics modify the

manner of the design model is created or can act as an indicator such

as stability. This is an ordered association from Design

Characteristic to Design Model.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

75

h. Composition Technique

Composition technique is the concept that represents the technique used by

developers to compose the design models. Examples of these techniques are

Epsilon and IBM Rational Software Architect. A model composition technique

defines a set of operators that are used to manipulate the input model elements.

More detail about this concept can be found in Section 2.4.

Association

 Without a directed relationship.

3.3.4.
Quality Notions

After presenting the basic elements of the quality model, we discuss the

quality notions associated somehow with each one of them. In our study, quality

notions can be seen as non-functional requirements used to evaluate the effort of a

composition. Our quality model focuses on seven quality notions, namely

syntactic, semantic, social, effort, application, detection, and resolution notions.

We propose four quality notions effort, application, detection, and resolution

notions. Each of them captures a fundamental dimension of quality related to

model composition activities. The other quality notions are tailored from previous

works (Lindland et al., 1994; Krogstie, 1995; Lange, 2007a). Lindland (Lindland

et al., 1994) proposed three quality notions — i.e., syntactic, semantic, and

pragmatic ones. Krogstie (Krogstie, 1995) and Lange (Lange, 2007) add the social

and communicative quality notion to the Lindland’s quality notions, respectively.

All these notions were tailored to the context of evaluation on model composition

effort. These extensions are discussed as follows:

 Syntactic Quality (1). Krogstie originally proposed this quality notion

(Krogstie, 1995) to represent the correctness of design models produced by

a design modeling language (Lange, 2007a). If a design modeling language

is not properly used, then some syntactic inconsistencies may emerge. This

quality notion is relevant to our quality model as syntactic inconsistencies

can also arise during model compositions (Mens, 2002). Developers need to

be concerned with checking the syntactic consistency of the output

composed model. The degree of correctness should be evaluated in terms of

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

76

the presence or absence of inconsistencies of the composed model. In other

words, syntactic quality is computed by measuring the inconsistencies

resulting from conflicts between the input models. For this, inconsistency

metrics (Farias et al., 2008a) are used. This notion helps developers to

identify the number of deviations in the output composed model with

respect to the language specification. This quality notion is studied in

empirical studies presented in Chapters 5, 6, and 7.

 Semantic Quality (2). This notion deals with the degree of correspondence

between the design model and the problem domain (Lange, 2007a). If the

semantics of the model elements are affected, the main purpose of use of the

design models — i.e., communication between the team members can be

damaged. Thus, developers and designers need to be concerned with

checking the meaning of the model elements in the output composed model.

In a similar way to the syntactic notion, the degree of correctness should be

evaluated in terms of the presence or absence of inconsistencies. That is,

semantic quality is calculated by measuring the conflicting correspondence

between the design model and the problem domain (Chapter 2). This

inadequate representation may occur by two reasons (but not limited to): (i)

the inability of the developers to represent the concepts and the relationship

of the domain, and (ii) the inaccuracy of the composition techniques that

inadequately manipulate the semantics of the model elements (Mens, 2002).

To quantify these semantic inconsistencies, some metrics defined in (Farias

et al., 2008a) are used. This quality notion is studied in Chapters 5, 6, and 7.

 Social Quality (3). Design models are essentially used to communicate

design decisions between the software development teams (Larman, 2004;

Dobing et al., 2006). If there is a disagreement between the interpretations

of the design models, the communication between the developers is severely

harmed. With this in mind, researchers should elaborate studies in order to

understand the effects of the misinterpretations on the implementation. For

example, if the degree of misinterpretations is high, the diverging

understanding may be converted into defects in code. These two reasons can

in fact damage the interpretation of the output composed models. The social

quality notion, therefore, matches the interpretations of the developers and

checks the degree of disagreement between them. Therefore, the focus of

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

77

such social notion is to evaluate the threats to the agreement of

interpretations of the design models by the developers. The evaluation aims

at comprehending how the misinterpretation may be motivated by (but not

limited to): (1) the inadequate layout of the model elements caused by the

incorrect positioning of the model elements, and (2) the representations of

the constructs of the current modeling languages are not friendly. The

method described in (Lange, 2007a) to measure the degree of the

misinterpretations is used. This quality notion is studied in Chapter 6.

 Effort Quality (4). This quality notion addresses the effort of producing an

output intended model. It is expected that the practices of applying a

composition technique, detecting, and resolving inconsistencies are not

effort-consuming tasks. However, they will inevitably require extensive

effort to produce an indented model in several cases. Therefore, this quality

notion deals with the cost of obtaining an expected output model. This

quality notion is studied in Chapters 5, 6, and 7. The next three quality

notions refine this quality notion by addressing the easiness (or difficulty) in

the tasks of applying composition techniques, detecting, and resolving

composition inconsistencies.

 Application Quality (5). This notion represents the applicability of a

particular model composition technique. In other words, it addresses the

ease of producing an output composed model by applying a model

composition technique. Ideally, developers expect to be able to effortlessly

compose design models by using either heuristic-based or specification-

based composition techniques. However, two difficulties make the practice

of applying composition techniques not trivial. The first difficulty arises

from the inherent challenge of making use of different categories of model

composition techniques. Each of them imposes different burdens on

software designers. For instance, developers need to manually specify rules

in order to define the equivalence and composition relations between the

input model elements. On the other hand, they may also compose the

models using heuristic-based composition techniques. The second difficulty

consists of the accidental problems that emerge from the practice of

bringing design models together. Usually developers need to resolve

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

78

conflicting changes performed in parallel. This quality notion is studied in

Chapter 5.

 Detection Quality (6). After producing an output composed model,

developers should review it to assure its correctness. That is, developers

should check if some inconsistency was produced as the result of the

composition. When inconsistencies arise, developers should be able to

quickly localize them. If the detection of inconsistencies is hard, then the

assurance of the correctness of the models may also be hard. Unfortunately,

the localization of inconsistencies is not always a trivial task. This can be

explained by at least two reasons (but not limited to): (i) the composition

techniques cannot often help developers to automatically detect all kinds of

inconsistencies. Since, the meanings of the model elements are rarely

represented in a formal way; and (ii) developers cannot understand specific

inconsistencies, mainly semantic inconsistencies, given the problem at hand

and their knowledge about the meaning of the model elements. With this in

mind, researchers should study the degree of difficulty that developers face

to localize inconsistency so that the consistency of the output composed

model can be assured. In particular, it is expected that researchers provide a

clear understanding about the effort to detect inconsistencies in practice.

Therefore, the focus of this quality notion is on evaluating the cost to

localize inconsistencies in the output composed model. This evaluation is

important because it allows researchers to understand, for example, if design

modeling languages such as UML and aspect-oriented modeling can

significantly affect the detection effort, or if alternative composition

techniques such specification-based or heuristic-based ones can influence

the detection. This quality notion is studied in Chapters 5 and 6.

 Resolution Quality (7). After detecting inconsistencies, developers should

resolve them in order to transform the output composed model into the

output intended model. That is, developers should invest some additional

effort (apart from producing the output composed model) trying to find

some solution to the inconsistencies already localized. Otherwise, the

practice of composing design model can become prone to inconsistencies or

even require more effort than it would be expected. This additional effort

can make the practice of assuring the consistency of the composed models

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

79

Chapter Quality Notion Description

3 all quality notions
Definition of the quality model for

model composition effort

4

effort, application,

detection, resolution,

syntactic, semantic

Empirical studies address the quality

notions in practice

5
effort, detection, social,

syntactic, semantic

A controlled experiment is performed to

investigate the five quality notions

6
effort, resolution,

syntactic, semantic

Quasi-experiments were realized to

study the four quality notions

7 all quality notions

All quality notions are discussed based

on the series of empirical studies

performed

Table 3: Definition of chapters where quality notions are investigated

difficult and costly. Unfortunately, the resolution of inconsistencies is not

always an easy task. This can be explained by the lack of accuracy of the

composition techniques to understand the meaning of the model elements

and the incapability of the developers to find an adequate solution to the

inconsistencies (Mens, 2002). This notion, therefore, addresses the degree of

difficulty to resolve inconsistencies. This difficulty of resolving

inconsistency can be calculated considering the time invested to resolve

them or even the number of activities that developers should perform.

Moreover, it copes with the inherent and accidental difficulties of solving

composition anomalies e.g., syntactic and semantic inconsistencies. The

first complexity arises from the need to reason and then make decision

about how to tame inconsistencies. The accidental difficulty is caused by the

modeling technique such as OO or AO modeling used to represent the

design models and by the manner as they are structured i.e., more

modularized or not. This quality notion helps understanding the difference

between how the developers think about inconsistency resolution and how

in fact they resolve inconsistencies. This quality notion is studied in

Chapters 5 and 7.

Table 3 describes how the quality notions that are addressed through the

empirical studies presented in the next chapters.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

80

3.3.5.
Levels of the Quality Model

The quality model is organized following a 4-level specification pattern. To

define the quality model with levels, we need to consider: (1) when model

composition is used i.e., in which phase of the development process it is used; (2)

why model composition is applied i.e., the purpose of using the model

composition; (3) what can be used to characterize model composition i.e., the

characteristics that are directly related to model composition; and (4) how such

characteristics can be quantified i.e., the definitions of rules and metrics used to

measure the characteristics. These four levels are hierarchically organized and this

fine-grained partitioning allows separating concerns across layers of abstractions,

and providing flexibility to future studies so that they may extend the quantity

model.

This section, therefore, brings forward the levels of the quality model and

the concepts that belong to the levels. Recall that this thesis attempts to investigate

the effort that developers invest to use model composition in the context of design

model evolution; however, that does not mean that the model cannot be tailored to

other contexts. The model has four levels (based on (Lange, 2007a)), which are

described as follows:

a. Level 1: Use of Composition

The top level of our quality model describes the high-level use of model

composition in practice. These uses are:

 Development: developers use model composition to incrementally create

the design models before the implementation phase. This use combines

quality characteristics that concern the composition before the design

model of a system has been completely finished.

 Evolution: developers make use of composition techniques to evolve

design models. This use combines quality characteristics that concern the

product when it is changed.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

81

Characteristic M T Description

Effort X The effort to execute f, diff, and g.

Complexity X
The degree of difficulty to understand a model

(Lange, 2007; Feton et al., 1994).

Modularity X

The manner by which a software system can

be systematically structured and separated

such that it can be understood in isolation

(Parnas, 1972).

Stability X

The degree of changes that a module suffers

given a need of change i.e. a module is

stable if its design characteristics have a low

variation (Kelly, 2006).

Size X
The number of model elements in a design

model

Correctness X
The extent to which a design model is

complaint with a reference design model.

Consistency X
The extent to which no inconsistency is

contained (Easterbrook et al., 1996)

Communicativeness X

The degree of facility to communicate and

assimilate content (Boehm et al., 1978;

Lange, 2007).

Table 4: Characteristics of design models

b. Level 2: Purposes of Composition

The second level defines the purposes of using that model composition is

applied. These purposes are directly related to the purposes discussed in Section

2.1. In practical terms, it specifies why developers use composition. Thus, we

identify three purposes of using that are described as follows:

 Analysis: Users identify overlapping parts between the model to-be

composed. This allows them to analyze possible conflicting changes that

are strong candidate to become inconsistencies.

 Change: Users essentially use composition techniques to add, modify,

remove, or even refine model elements of some existing design model.

 Reconciliation: Users use the resource of model composition techniques

to reconcile contradicting changes (Clarke, 2001).

c. Level 3: Characteristics of Composition

The third level of our quality model contains the inherent characteristics of

the design model and model composition technique. The characteristics are

described in Table 4. According to the distinction between the characteristics of

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

82

the design model and the characteristics of the model composition technique, we

indicate for each characteristic whether it is a characteristic of the design model

(column M) or a characteristic of the model composition technique (column T).

Some characteristics are defined for both design model and composition

technique.

The composition effort that is applied to exclusively to the model

composition is characterized by the effort to apply the composition techniques

(f(MA,MB)), to detect (diff(MCM, MAB)) and resolve inconsistencies (g(MCM)).

With this in mind, the characteristics (in Table 4) describe the design models and

the composition technique.

d. Level 4: Metrics and Rules

The fourth level defines how the aforementioned characteristics are

quantified. To allow the quantification of these characteristics, a suite of metrics

and rules were used. Rules are special cases of metrics; being usually mappings of

some observations from the empirical domain to a binary value: true or false

(Wust, 2011; Lange, 2007a). These rules evaluate and measure design models,

mainly checking well-formed rules and design rules. Two practical examples of

well-formed rules would be “Abstract class must not be instantiated” and

“Abstract class must not have a concrete class as superclass.” Note that the

consistency of the design model is affected if these two rules are not assured.

In our empirical studies, several elements appear in the models, depending

on the types of diagrams used. Class, interface, and component and examples of

elements in component diagrams, which were used in several studies of this

thesis. Metrics can be defined to quantify these elements. In order to illustrate

these specific metrics: (i) Table 5 describes the metrics for classes, (ii) Table 6

shows the metrics for interfaces, and Table 7 describes the metrics for

components. These tables also describe the relations between the characteristics

(level 3) and the metrics and rules (level 4) are specified.

The metrics and rules are defined in previous work (Chidamber & Kemerer,

1994; Lorenz & Kidd, 1994; Lee et al., 1995; Martin, 2003; Lorenz, 1994;

Chidamber et al., 1998; McCabe; 1976). Although these metrics are often used in

previous research, we do not claim that this list of metrics and rules is complete.

These metrics were chosen because they are well-known indicators to quantify

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

83

Metric Characteristic Description

NAttr SI The number of attributes in the class.

NOps SI The number of operations in a class.

IFImpl CO, MO The number of interfaces the class implements.

NOC CO, CM The number of children of the class.

NDesc CO The number of descendents of the class.

NAnc CO The number of ancestors of the class.

DIT CO, CM The depth of the class in the inheritance

hierarchy.

OpsInh CO The number of inherited operations.

AttrInh CO The number of inherited attributes.

DepOut CO, MO, CM The number of elements on which this class

depends.

DepIn CO, MO, CM The number of elements that depend on this

class.

ECAttr MO The number of times the class is externally used

as attribute type.

ICAttr MO The number of attributes in the class having

another class or interface as their type.

SI: size, CO: complexity, MO: modularity, and CM: communicativeness

Table 5: Metrics for class

model characteristics, and are often supported by robust measurement tools, such

as SDMetrics (Wust, 2011).

After presenting the concepts and describing the three levels, Figure 6

describes the three top levels of the quality model: Use, Purpose, and

Characteristic. The fourth level Metrics and Rules and the relations to level three

are depicted in Table 5, Table 6, and Table 7. Note that a checkmark indicates

which characteristic of level three is related to the metric or rule in level four. In

Figure 6, the arrows indicate relations between two concepts of different levels.

The arrows can be interpreted as follows: a lower level concept is part of all

higher-level concepts to which it is related by an arrow, and a higher-level

concept contains the related lower level concepts. The interpretation of the

relations is that a concept in a lower level in the quality model contributes to the

related concepts of the higher level.

http://sdmetrics.com/manual/Metrics_class.html#Metrics_class_NumAttr
http://sdmetrics.com/manual/Metrics_class.html#Metrics_class_NumOps
http://sdmetrics.com/manual/Metrics_class.html#Metrics_class_IFImpl
http://sdmetrics.com/manual/Metrics_class.html#Metrics_class_NOC
http://sdmetrics.com/manual/Metrics_class.html#Metrics_class_NumDesc
http://sdmetrics.com/manual/Metrics_class.html#Metrics_class_NumAnc
http://sdmetrics.com/manual/Metrics_class.html#Metrics_class_DIT
http://sdmetrics.com/manual/Metrics_class.html#Metrics_class_OpsInh
http://sdmetrics.com/manual/Metrics_class.html#Metrics_class_AttrInh
http://sdmetrics.com/manual/Metrics_class.html#Metrics_class_Dep_Out
http://sdmetrics.com/manual/Metrics_class.html#Metrics_class_Dep_In
http://sdmetrics.com/manual/Metrics_class.html#Metrics_class_EC_Attr
http://sdmetrics.com/manual/Metrics_class.html#Metrics_class_IC_Attr
DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

84

Metric Characteristic Description

NOps SI The number of operations in the interface.

Assoc CO
The number of elements the interface has an

association with.

NAnc CO The number of ancestors of the interface.

NDesc CO The number of descendents of the interface.

NOps SI The number of operations in the interface.

ECAttr CO
The number of times the interface is used as attribute

type.

ECPar CO
The number of times the interface is used as parameter

type.

Assoc CO
The number of elements the interface has an

association with.

NDirClients CO
The number of elements directly implementing the

interface.

NIndClients CO
The number of elements implementing a descendent of

the interface.

NAnc CO, MO The number of ancestors of the interface.

NDesc CO, MO The number of descendents of the interface.

SI: size, CO: complexity, MO: modularity, CM: communicativeness

Table 6: Metrics for interface

Metric Characteristic Description

NOps SI The number of operations of the component.

NComp SI The number of subcomponents of the component.

NPack SI The number of packages of the component.

NCCmp SI The number of classes of the component.

NIntCmp SI The number of interfaces of the component.

Connectors CO The number of connectors owned by the component.

ProvIF CO, MO The number of interfaces the component provides.

ReqIF CO, MO The number of interfaces the component requires.

DepOut CO, MO, CM The number of outgoing dependencies.

DepIn CO, MO, CM The number of incoming dependencies.

AssocOut CO, CM
The number of associated elements via outgoing

associations.

AssocIn CO, CM
The number of associated elements via incoming

associations.

SI: size, CO: complexity, MO: modularity, CM: communicativeness

Table 7: Metrics for components

http://sdmetrics.com/manual/Metrics_interface.html#Metrics_interface_NumOps
http://sdmetrics.com/manual/Metrics_interface.html#Metrics_interface_Assoc
http://sdmetrics.com/manual/Metrics_interface.html#Metrics_interface_NumAnc
http://sdmetrics.com/manual/Metrics_interface.html#Metrics_interface_NumDesc
http://sdmetrics.com/manual/Metrics_interface.html#Metrics_interface_NumOps
http://sdmetrics.com/manual/Metrics_interface.html#Metrics_interface_EC_Attr
http://sdmetrics.com/manual/Metrics_interface.html#Metrics_interface_EC_Par
http://sdmetrics.com/manual/Metrics_interface.html#Metrics_interface_Assoc
http://sdmetrics.com/manual/Metrics_interface.html#Metrics_interface_NumDirClients
http://sdmetrics.com/manual/Metrics_interface.html#Metrics_interface_NumIndClients
http://sdmetrics.com/manual/Metrics_interface.html#Metrics_interface_NumAnc
http://sdmetrics.com/manual/Metrics_interface.html#Metrics_interface_NumDesc
http://sdmetrics.com/manual/Metrics_component.html#Metrics_component_NumOps
http://sdmetrics.com/manual/Metrics_component.html#Metrics_component_NumComp
http://sdmetrics.com/manual/Metrics_component.html#Metrics_component_NumPack
http://sdmetrics.com/manual/Metrics_component.html#Metrics_component_NumCls
http://sdmetrics.com/manual/Metrics_component.html#Metrics_component_NumInterf
http://sdmetrics.com/manual/Metrics_component.html#Metrics_component_Connectors
http://sdmetrics.com/manual/Metrics_component.html#Metrics_component_ProvidedIF
http://sdmetrics.com/manual/Metrics_component.html#Metrics_component_RequiredIF
http://sdmetrics.com/manual/Metrics_component.html#Metrics_component_Dep_Out
http://sdmetrics.com/manual/Metrics_component.html#Metrics_component_Dep_In
http://sdmetrics.com/manual/Metrics_component.html#Metrics_component_Assoc_Out
http://sdmetrics.com/manual/Metrics_component.html#Metrics_component_Assoc_In
DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

85

Figure 6: The purposed quality model (based on (Lange, 2007a))

3.4.
Concluding Remarks

Developers need to evaluate model composition effort. However, the

evaluation without any quality model is not a trivial task (Basili & Lanubile,

1999) as usually developers have no previous knowledge or experience about

empirical evaluations of model composition. This chapter, therefore, presents a

quality model for model composition effort. It is intended to help researchers and

developers to carry out empirical studies of model composition.

The proposed model extends three previous quality frameworks for

conceptual models proposed by Lindland (Lindland et al., 1994), Krogstie

(Krogstie, 1995), and Lange (Lange, 2007a). The model is organized in a four-

level structure. The first level defines the context where model composition is

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

86

used in practice, being development and evolution the two usage scenarios

proposed and investigated. The second level refers the purposes of using model

composition. We identify and evaluate model composition for three purposes of

using: change, analysis, and reconciliation. The third level refers to the

characterization of the elements involved in model composition: the models and

model composition techniques. That is, it considers the artefacts and the

techniques responsible for manipulating them. The fourth level aims at

quantifying the elements identified in the third level. To this end, metrics and

rules are used.

By defining this quality model, we can solve the problems presented in

Section 4.1 First, researchers and developers can make use of a unifying

framework for the evaluation of model composition. As a result, the findings

resulting from multiple studies can be compared, or even checked whether they

are valid in a specific context or not. Finally, the use of the quality model serves

as a reference frame for structuring empirical studies of model composition. In

this context, the quality model guides all empirical studies performed throughout

the thesis.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

