
35

2
Background and Related Work

Empirical studies are essential to evaluate the composition effort of design

models in practice. These studies allow building a body of knowledge supported

by empirical evidence, testing out hypotheses, identifying important context

variables, and understanding how influential factors may affect developers’ effort

when composing models. Without these studies, it is not possible to realize

effective improvements for the current state of the art of model composition.

The goal of this Chapter is to provide an overview of the main concepts and

definitions required understanding the empirical studies of model composition

presented in this thesis. This chapter also describes the relevant elements

underpinning the three model composition factors investigated in this thesis.

Finally, it also provides an overview of the limitations of related work considering

the topics addressed in our research questions (Section 1.3).

The remainder of this chapter is organized as follows. To begin with,

Section 2.1 presents the purpose of using model composition in practice. After

that, the main characteristics of the design modeling languages are presented

(Section 2.2) and the purpose of using design models is also discussed (Section

2.3). Then, the elements of the three influential factors are explained in the next

sections. Section 2.4 describes the types of composition techniques. Section 2.5

presents the modeling languages used to represent design decompositions. Section

2.6 elaborates on the design characteristics studied, more specifically those related

to model stability. In all previous three sections, the related works are discussed

and contrasted.

2.1.
 Purpose of Using Model Composition

Model composition is a fundamental activity that addresses the limitations

of humans for simultaneously dealing with a plurality of artefacts and tasks

(Mistrík et al., 2010; Whitehead, 2007). Dijkstra advocates to master complexity

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

36

someone should deal with one important issue at a time (Dijkstra, 1976). With this

in mind, software developer tends to work on simple tasks rather than on complex

tasks; but each task manipulating small artefacts rather than big, complex ones.

For example, developers work on small parts of an overall design model in order

to focus on part of the model relevant to them. Unfortunately, they are unable to

create a “big picture” view from the small parts created in parallel by different

software development teams. The composition of the parts can be performed by

using a model composition technique. Many academic and industrial composition

techniques (Section 2.4) have been proposed to help developers to use model

composition for different purposes.

In this thesis, we investigate the composition effort in the context of the

evolution of design models. We identify three particular purposes of using model

composition, which are presented based on the degree of relevance for the study.

They are described below:

1. Change of design models. Developers use model composition to

systematically change design models in collaborative development

environment. Typically, they add, modify, remove, or even refine model

elements of some existing design model in parallel. By using a more

systematic way of bringing together changes, developers aim at

implementing the changes rather than concerning on integrating the parts of

even grasping the impact of the changes. Consequently, this absence of

concerns on composing the models helps developers to effectively change

the models.

2. Reconciliation of design models. Usually developers create design models in

parallel and parts of these models conflict with each other. Thus, the model

composition techniques can identify these contradicting parts and help

developers to reconcile them. In (Clarke, 2001), Clarke defines a

mechanism for identifying and reconciling these conflicts. This mechanism

provides guidance to developers explaining how reconciling contradicting

models.

3. Analysis of overlapping parts. Design models are realized in multiple ways,

and hence at some point developers must converge on a single one. As

humans, developers are unable to recall all myriad of changes performed

during the composition time (Whitehead, 2007). Hence, they cannot foresee

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

37

when the changes are going to overlap. Therefore, the composition

technique helps developers to identify the overlapping parts. This

identification is critical because developers must decide which part will

remain into the output composed model.

Regardless of the usage scenario, developers are always concerned with

making the use of the composition technique to correctly produce the output

composed model. The composition techniques studied in this thesis are explained

in Section 2.4.

2.2.
Properties of the Design Modeling Languages

Popular modeling languages, such as the UML (OMG, 2011), have

particular properties and different diagrams that can play a role on model

composition effort. Some relevant properties are described as follows.

Lack of a rigorous definition. The design modeling languages are defined by

a metamodel, which specifies the syntax and semantics of the language’

constructs. This specification is aided by a set of well-formedness rules that

enable a more precise definition of the constructs. These rules can be expressed by

using OCL (OMG, 2011), for example. Unfortunately, these rules are seldom

represented in a formal way (Larman, 2004; OMG, 2011). Rather, they are usually

expressed using natural language. If well-formedness rules are not formally

specified, then they can jeopardize the benefits of using of model composition

(Section 2.1). For example, if a composition incorrectly reports a high number of

conflicts, then developers will invest some unnecessary effort to deal with them.

A high amount of conflicts makes the composition unmanageable (Mens, 2002),

increasing the likelihood of inconsistencies in the output composed model.

Incorrect composed models jeopardize the communication between the

developers, as misinterpretation may become inherent (Broy & Cengarle, 2011;

Maoz et al., 2011a; Maoz et al., 2011b; Lange & Chaudron, 2004). If the syntax

and semantics are formally specified, the conflicts and inconsistencies are reduced

or even localized more quickly. Therefore, given the state of practice on software

modeling, this thesis attempts to investigate model composition effort when

rigorous definition is not available. We study the identification of conflicts and

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

38

inconsistencies in scenarios where developers need to deal with the lack of formal

information. All the studies follow this strategy (Chapter 4, Chapter 5, and

Chapter 6).

Multi-view design modeling languages. The design modeling languages also

define a range of structural and behavioral diagrams to represent static and

dynamic aspects of software systems. The elements of complementary diagrams

(e.g., UML class and sequence diagrams) should have a precise consistency with

each other; otherwise, conflicting information in different views of the same

system may lead to misinterpretations. For example, an abstract class in a class

diagram cannot be used in a sequence diagram, as abstract classes cannot be

instantiated. Otherwise, developers may not observe the inconsistency and make

different interpretations about this class. Some of them may infer that the class is

concrete, while others will infer that the same class is abstract. The rate of

conflicting information typically increases when developers evolve design models

in parallel or even when the synchronization of design models is not fully

realized. Different developers tend to assign values to the model’s properties that

are conflicting. This thesis attempts to investigate how this lack of agreement

between the models leads to problems during the composition. Essentially, we are

concerned on understanding how these multi-view inconsistencies influence the

effort of composing design models and how developers deal with such

inconsistencies in practice.

Complexity of the design modeling languages. The size and complexity of

the design models have grown in recent years (Lange, 2007b) as developers are

increasingly creating systems that are more complex. To deal with these problems,

the design modeling languages have also grown and delivered new constructs. For

example, the UML and its extensions provide 13 diagram types, totaling more

than 150 constructs (Dori, 2002). However, the high number of diagrams and

constructs has led the language to become more complex than it was originally

planned. If design models are complicated, then their compositions can also tend

to be more complicated. Consequently, developers tend to modularize the design

models in such a way that the size and complexity of the design models can be

minimized. For example, developers may use object-oriented or aspect-oriented

modeling in order to better modularize design models. This thesis attempts to

understand how the use of different modeling languages can minimize the

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

39

complexity of the design models; hence, reducing the composition effort (Chapter

4, Chapter 5, and Chapter 6). For example, we are concerned with knowing how

different forms of decomposing designs can influence the composition of such

models.

Therefore, this thesis studies model composition effort in the presence of

imprecise model semantics as well as non-trivial, multi-view design models.

2.3.
Purpose of Using Design Models

Many modeling languages have been proposed in recent years, such as the

UML (OMG, 2011) and its extensions (Clarke & Banaissad, 2005; Baniassad &

Clarke, 2004). These languages provide a set of modeling resources to developers

so that they can represent concepts and their relationships. According to

(Rumbaugh et al., 1999), the representations created by using these resources are

abstractions in essence from a reality observed and reported at a specific level of

detail. Developers can use these modeling resources in a range of situations such

as specifying software architectures, communicating design decisions, and

documenting software systems. In this thesis, we use UML class diagrams and

UML component diagrams, and their respective extensions in aspect-oriented

modeling. These two modeling languages (and diagrams) were chosen because

some reasons.

First, UML is de fact the standard design modeling language adopted by

researchers and professionals in practice. The UML class and sequence diagrams

are the most used diagrams (Dobing & Jeffrey, 2006). Second, most modeling

tools are dedicated to create and manage UML models and its extensions such as

IBM Rational Software Architect (IBM, 2011). Third, the AO modeling is the

state-of-the-art modeling language for the modularization of software systems

(Clarke & Walker, 2005; Clarke & Banaissad, 2005). Fourth, the UML is a

general-purpose modeling language for systems engineering applications. It

supports the specification, analysis, and design of a broad range of systems

(OMG, 2011). Fifth, as the UML is the basis of most modeling languages today,

the results can be possibly transferable to other modeling languages based on it.

Sixth, both languages define notations to allow developers to graphically represent

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

40

static and dynamic views of a software system. These notations are available in

thirteen diagram types described in (OMG, 2011; Clarke & Walker, 2005). The

UML and AO models were used for three proposes during the empirical studies:

1. Communication. Developers use design models to communicate design

decisions between teamwork members.

2. Comprehension. Developers use design models to comprehend the

modules of a software system before implementing them.

3. Documentation for maintenance. The UML’s diagrams are used during

maintenance to locate system elements that are affected by a maintenance

request.

Additionally, design models can be also used for other purposes such as

code generation (Schmidt, 2006), effort estimation (Mohagheghi et al., 2005;

Uemura et al., 1999), quality prediction (Genero et al., 2003; Cortellessa et al.,

2002), and testing (Briand & Labiche, 2002). However, we do not use models for

these specific purposes during the empirical studies. In the next section, we

present the model composition techniques investigated in this thesis.

2.4.
Model Composition Techniques

Academia and industry have proposed many model composition techniques

in recent years. These techniques differ in their manner of expressing the

compositions. While some of them require the explicit specification of how the

compositions should be carried out, others rely on composition heuristics to

“guess” how the elements of the input models will be composed. Therefore, the

techniques can be grouped into two broad categories as follows:

 Specification-based technique. This category brings together the

techniques with which developers express the compositions by explicitly

determining the manner how the input model elements will be matched

and composed. Two state-of-the-art examples of this category are the

MATA (Whittle et al., 2009) and Epsilon (Epsilon, 2011) techniques.

 Heuristic-based techniques. Techniques in this category are characterized

by a set of predefined composition heuristics, which are responsible for

“guessing” the correspondence between the input model elements. Based

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

41

on such guessed similarities, the techniques can then combine the input

model elements. Two examples of the heuristic-based techniques are the

IBM RSA (IBM, 2011) and conventional composition algorithms of model

elements, including merge, union, and override (Clarke & Walker, 2005).

The specification-based technique used in our study was the Epsilon

technique (Kolovos et al., 2011), and the heuristic-based techniques were the one

supported by the IBM RSA tool (IBM, 2011) and traditional composition

algorithms (Clarke, 2001; Clarke & Walker, 2001). They are explained in the next

sections. Figure 1 shows an illustrative example that will be used to support the

discussion of the studied composition techniques.

2.4.1.
Traditional Composition Algorithms

We have studied three manual, heuristic-based composition algorithms:

override, merge, and union. These algorithms were proposed and analyzed in

(Clarke & Walker, 2005). There are some reasons that motivated the use of these

algorithms in this study. First, evolution scenarios can be decomposed into one (or

more) canonical operation supported by these algorithms. Typically, these

operations are additions, modifications, and removals (Section 3.3).

Second, these algorithms can be also seen as basic “rules of the thumb” for

developers to compose models; they do not need to be strictly realized for each

instance of model composition in a software project. They provide general

descriptions of how the compositions should be performed and guide developers

to combine model elements. For example, these general composition guidelines

may be useful to accommodate the specificities of particular model compositions

and lead to fewer inconsistencies in the output composed model.

Third, they have been applied in a wide range of model composition

scenarios, such as evolution and integration of software product lines (Jayaraman

et al., 2007), and composition of design models (Clarke & Baniassad, 2005), and

aspect-oriented modeling (Clarke & Baniassad, 2005). They have been recognized

as candidate algorithms to compose well-modularized design models, such as

aspect-oriented design models, e.g., Theme/UML (Clarke & Baniassad, 2005).

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

42

Figure 1: Illustrative example

In the following, we briefly define override, merge, and union algorithms,

using a simple example to illustrate them. We assume the presence of two input

model, MA and MB. We consider that two elements from MA and MB are

corresponding if they have been identified as equivalent in the matching process.

Override (direction: MA to MB). For all pairs of corresponding elements in

the base model (MA) should override its similar element in the delta model (MB).

Elements not involved in the correspondence remain unchanged. They are then

inserted into the output model. Figure 1 shows the application of this algorithm.

The concrete class Researcher (isAbstract = false) overrides the abstract class

Researcher (isAbstract = true), and the concrete classes Assistant and Professor

were just inserted into the output composed model. However, the intended model

was not produced. Rather, the output composed model has three inconsistencies.

This implies that the algorithm was not able to properly accommodate the changes

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

43

from the delta into the base model, as would be expected. Note that the algorithm

was applied in the direction from the base model to the delta model.

Merge. For all corresponding elements in MA and MB, such elements should

be composed instead of overridden as in the override algorithm. The composition

depends on the element type. Elements in MA and MB that are not involved in a

correspondence match remain unchanged and, consequently, are inserted into the

output model directly. In Figure 1, the merge algorithm is applied from the base

model to the delta model; hence, a composed model is produced with two

inconsistencies. Again, the intended model is not produced. Although the attribute

Researcher.name has been correctly inserted into the class Researcher, it is a

concrete class (isAbstract = false) instead of abstract (isAbstract = true), as it

would be expected (according to the intended model). This problem affects the

method Assistant.getSalary():int as a ripple effect. To produce the intended

model, the merge algorithm should be applied from the delta model to the base

model. Given this inverse order on the application of the algorithm, the changes in

the delta model will predominate over the model elements in the base model.

Union. For all elements in the base and delta model that are corresponding

elements, they should be manipulated in order to preserve their distinguished

identification. It means that they should coexist in the output models with

different identifiers; elements in the MA and MB that are not involved in a

correspondence match remain unchanged, and they are inserted into the output

model, MAB. For example, we will have two classes Researcher in the composed

model. However, both classes will carry identifiers that somehow preserve their

original identities e.g., BaseModel.Reseacher and DeltaModel.Researcher.

2.4.2.
IBM Rational Software Architect

IBM RSA is a comprehensive modeling and development environment that

relies on the UML language artefacts (Norris & Letkeman, 2011). We choose

IBM RSA due to some reasons.

First, it is the most robust composition techniques adopted in industry

(Norris & Letkeman, 2011). In (Altmanninger et al., 2009), this superior quality is

supported by empirical studies. Second, IBM RSA’s model validation mechanism

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

44

allows us to the automated identification of syntactic inconsistencies. This means

that developers are expected to localize inconsistencies more quickly than

manually, minimizing the detection effort. Third, it provides an adequate

composition environment to report the conflicting between the input model

elements.

Fourth, it allows creating all thirteen UML diagrams and executing some

important operations such as model transformation and reverse engineering. In

particular, it supports model-to-code (e.g., UML to Java) and code-to-model (e.g.,

Java to UML) transformations. In addition, it supports reverse transformations go

from Java to UML, C++ to UML, and .NET to UML. IBM RSA is designed on

top of the open-source Eclipse development platform. Therefore, it gives the

developers a complete IDE for model-driven software development. In addition, it

provides a disciplined control of shared design models in evolving software

projects. Finally, empirical studies (Altmanninger et al., 2009) indicate that IBM

RSA’s composition technique has a considerable level of precision compared with

other related technologies such as Subversion (SVN, 2012), EMF compare (EMF,

2012), and UNICASE (Unicase, 2012). More importantly, it enables model

management in collaborative software development e.g., splitting, comparing and

composing models created in cooperation.

Although IBM RSA implements a robust and precise model composition

technique, it does not ensure that the intended model will be always produced.

This means that developers should necessarily interact with models via the tool

facilities to produce an output composed model. Figure 1 depicts an example of

conflict report produced by RSA. For example, when conflicting changes emerge,

developers should decide which changes ― from the base model

(Researcher.isAbstract = false) or from the delta model (Researcher.isAbstract =

true) ― will be inserted into the output composed model.

2.4.3.
Epsilon

Epsilon is a flexible platform for model management (Kolovos et al., 2011)

defined as an Eclipse Plug-in. This flexibility is achieved by providing a set of

consistent task-specific languages for developers so that they can perform some

http://en.wikipedia.org/wiki/Eclipse_(software)
DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

45

tasks such as model comparison and model composition. To date, seven

interoperable, but with different purposes, languages have been proposed to help

developers to manage design models. Although there is a wide diversity of

modeling languages, we put our attention on two specific languages: the epsilon

comparison language (ECL, 2012) and the epsilon merge language (EML, 2012).

They are two hybrid, rule-based languages used to compare and merge design

models, respectively (EML, 2012). These two languages were chosen because

three reasons.

First, they are responsible for executing the two most common tasks in

model composition: comparison and composition of models. Second, these

languages define a set of constructs expressive enough to seamlessly specify how

the input model elements are going to be compared and integrated. Third, by using

these languages, developers can master the complexity of dealing with inherent

composition problems, i.e., the imprecise specifications of commonalities and

differences between the input model elements. Lastly, they are intuitive and

expressive enough so that we empirically investigate the effort of developers

invest to compose two design models (Kolovos et al., 2011).

Additionally, the Epsilon platform also presents some interesting

characteristics to support the use of those two languages. To begin with, the

feature of syntax highlighting differs in colors and fonts the language constructs

improving the readability of the composition specifications. Next, the code

completion steeps the learning curve, i.e., the learning related to composition

specification may be achieved more quickly. This resource can improve the

quality of the composition specification by decreasing the initial difficulty of

creating and editing the composition specifications. Developers can become more

familiar with the languages; hence, improving the definition of the

correspondence and composition relations. Thirdly, the syntax highlighting and

code completion are two crucial characteristics, for example, to foster the use of

model composition by novices. To sum up, the Epsilon is an Eclipse-based IDE

provides important resources to developers, so that the comparison and

composition rules can be carefully created and edited. Figure 1 shows an example

of these rules. The MatchRule determines that there can be correspondence

relations between the input classes if their names are similar. The MergeRule

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

46

specifies that the name of the output composed classes should be equal to the

name of the input class of the delta model, i.e., c.name := d.name.

To sum up, these three techniques (i.e., Epsilon, IBM RSA and Traditional

Algorithms) are good candidates for comparisons because: (1) they are robust and

usable tools, which are two prerequisites for an experiment like this; (2) IBM

RSA is an industry leading model composition tool; and (3) traditional algorithms

such as merge/override are well mentioned in the academic literature as a

technique and have been used to build tools.

2.4.4.
Limitations of Related Work on Model Composition Techniques

Model composition is a very active research field in many research areas, such as

merging of state charts (Whittle & Jayaraman, 2010), composition of software

product lines (Clarke, 2001), aspect-oriented modeling (Clarke & Walker, 2005),

and mainly composition of UML design models (Farias et al., 2011a). In doing so,

there has been more research on proposing model composition techniques or even

creating innovative model composition techniques, such as traditional composition

algorithms (Clarke, 2001; Clarke et al., 2005), IBM RSA (IBM RSA, 2011),

Epsilon (Kolovos et al., 2011), MATA (Whittle & Jayaraman, 2011), Kompose

(Kompose, 2011) rather than evaluating them.

Clarke and colleagues (Clarke, 2001; Clarke et al., 2005) propose three

conventional algorithms, namely override, merge, and union, to compose UML

design models such as UML class diagrams. These algorithms are the basis for

other composition techniques such as Epsilon (Kolovos et al., 2011), Araxis Merge

(Araxis, 2011), KDiff3 (KDiff3, 2011), and MergePlant (MergePlant, 2011).

Araxis Merge is a 2/3-way file comparison, merging and folder synchronization for

Windows and Mac OS X. The focus of the techniques is on synthesizing text-like

files rather than design models (Araxis Merge, 2011). KDiff3 (KDiff3, 2011),

MergePlant (MergePlant, 2011). They are useful for determining what has changed

between versions, and then merging changes between versions.

Kolovos and colleagues (Kolovos et al., 2011) propose the Epsilon Platform

in order to compose homogenous and heterogeneous design models. That is, the

tool is able to combine input design models that are instanced from a particular

http://en.wikipedia.org/wiki/Araxis_Merge
http://en.wikipedia.org/wiki/Araxis_Merge
http://en.wikipedia.org/w/index.php?title=KDiff3&action=edit&redlink=1
DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

47

metamodel or from different metamodels. Epsilon offers an innovative, flexible

platform to promote compositions of design models.

However, none of these approaches has investigated the effort that

developers should invest to compose design models. As a matter of fact, the

current literature in composition techniques points out the absence of empirical

studies and does highlight the importance of empirical evidence (Dingel et al.,

2008; Apel et al., 2011; Uhl, 2006; Mens, 2006; France & Rumpe, 2007). This

absence of knowledge may cause serious consequences. First, it is not possible to

grasp if the effort invested by developers is cost-effective (or not). Cost-benefits

analysis in terms of effort is crucial before applying any technique in practice. If

the effort of applying a particular technique is high, then developers will not use in

practice. Second, the composition techniques are improperly used due to the

influential factors that directly (or indirectly) affect the use of the techniques are

unknown.

The current works have notably aimed at evaluating the use of design models

rather than the consequences of the application of composition techniques on them.

In fact, there existing studies concentrate on investigating UML models in terms of

quality attributes such as comprehensibility (Ricca et al., 2010) and completeness

(Langes & Chaudron, 2004). These works are very important, as the current

standard modeling language is the UML.

In addition, we have also observed that most of the research on the interplay

of effort and composition techniques rests on subjective assessment criteria

(France & Rumpe, 2007). Even worse, they depend on the expert judgments, who

have built up an arsenal of mentally held indicators to analyze the growing

complexity of models and then evaluate the effort on composing them. Therefore,

to date, developers rely on feedback from experts to determine “how good” the

input models and their compositions are.

According to (France & Rumpe, 2007), the state of the practice in assessing

model quality provides evidence that modeling is still in the craftsmanship era and

when we assess model composition the problem be aggravated. More specifically,

to the best of our knowledge, our results are the first to empirically investigate the

research questions in a controlled way by using specification-based and heuristic-

based techniques.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

48

To sum up, there are two critical gaps in the literature. First, practical

knowledge about the relative effort of composing design models is lacking. That is,

developers do not know very little about what they invest in terms of effort to

apply the composition techniques as well as detecting and resolving

inconsistencies. Second, insight about the potential influential factors is also

lacking. Hence, developers are unable to improve the composition process (i.e., the

execution of the composition activities) once they do not know which, in fact,

jeopardize the execution of the activities. Second, the lack of empirical evidence

about the correctness of the output models produced using these techniques in

practice.

2.5.
Design Modeling Languages

In this research, we focus our investigations on the Unified Modeling

Language (UML) (OMG, 2011) and one of its extensions to Aspect-Oriented

Modeling (AOM) (Clarke & Walker, 2005).

2.5.1.
Unified Modeling Language

The Unified Modeling Language (UML) is a general-purpose modeling

language adopted as the standard modeling language in practice (OMG, 2011).

The UML models are by far the most widely used in object-oriented software

engineering (OMG, 2011; Dobing & Parsons, 2006). In fact, most of its diagrams

are primarily tailored to support object-oriented software development. It is used

to specify, communicate, and document the artifacts of software-intensive systems

under development.

UML is defined using a metamodeling approach, i.e., a metamodel is used

to specify the models that comprise UML. The UML metamodel is defined based

on a 4-layer metamodel pattern. While this approach lacks some of the rigor of

formal specification techniques, it offers the advantages of being more pragmatic

for most researchers and developers (OMG, 2011). The UML metamodel defines

thirteen diagrams, such as the component diagram, the class diagram, the

sequence diagram, and the use case diagram (OMG, 2011). Together the UML

http://en.wikipedia.org/wiki/Modeling_language
http://en.wikipedia.org/wiki/Modeling_language
http://en.wikipedia.org/wiki/Artifact_(software_development)
DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

49

diagrams represent two different views of a system model: (1) structural view: it

emphasizes the static structure of the system using objects, attributes, operations,

and relationships. Examples of these diagrams are the class diagram and

component diagram, and (2) behavioral view: it emphasizes the behavior of the

system by showing collaborations among objects and changes to the internal

states of objects. Examples of these diagrams are the sequence diagram, the

activity diagram, and the state machine diagram.

In this research, we use three UML diagrams: class, sequence, and

component diagrams. This choice is not an arbitrary choice, but based on

observations drawn on empirical studies reported by Dobing and Parsons in

(Dobing & Parsons, 2006). These researchers conducted an OMG-supported

survey to investigate which UML diagrams are used in real-world projects more

frequently. The survey identified the frequency of use of UML diagrams. The

main result of the study was that class diagram is the most-used UML diagram

used followed by use case diagram and sequence diagram. Consequently, these

diagrams tend to be the diagrams that developers compose.

Additionally, developers usually compose these diagrams in practice (Norris

& Letkeman, 2011). The key reason for using these diagram types is their

usefulness and adequacy of information as perceived by the models’ users. Their

selection for this research is also motivated for the fact that there are aspect-

oriented counterparts for these diagrams. The aspect-oriented versions of these

diagrams are also used in some of our studies. Aspect-oriented modeling is

discussed in the following subsection.

2.5.2.
Aspect-Oriented Modeling

Separation of concerns is a fundamental principle that addresses the

limitations of human cognition for dealing with complexity. Dijkstra advocates to

master complexity, one should deal with one relevant concern at a time (Dijkstra,

1976). Parnas reinforces that complexity of software systems should be tamed by

decomposing their modules into smaller, clearly separated modular units, each

dealing with a single concern (Parnas, 1972). The principle of separation of

concerns is employed through the decomposition and modularization of software

http://en.wikipedia.org/wiki/Class_diagram
http://en.wikipedia.org/wiki/Sequence_diagram
http://en.wikipedia.org/wiki/Activity_diagram
http://en.wikipedia.org/wiki/UML_state_machine
DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

50

systems. The expected benefits are an improved understandability and reuse in

complex software systems. In software modeling, the achievement of separation

of concerns depends largely on the suitability of abstractions and notations of

modeling languages to represent these concerns. Typically, components, classes,

and methods are examples of modular units in object-oriented modeling

languages, such as UML and its profiles.

Unfortunately, object-orientation has some limitations in dealing with

concerns that address global constraints and widely scoped functionalities, such as

persistence, error handling, logging, among many others (Sant’Anna, 2008).

These concerns have been commonly called crosscutting concerns since they

naturally crosscut the boundaries of modular units that implement other concerns.

Without proper means for separation and modularization in the UML, crosscutting

concerns tend to be scattered over a number of modular units (e.g., components

and classes) and tangled up with other concerns. Consequently, the cohesion in

the modular units tends to decrease, while the coupling between them tends to

increase. This can jeopardize the comprehensibility and evolvability of design

models. Aspect-orientation (Kiczales et al., 1997) is an approach that supports a

new flavor of separation of concerns. It introduces new modularization

abstractions and composition mechanisms to improve separation of crosscutting

concerns at different levels of abstraction. Aspect-orientation defines a new

modular unit, called aspect, for separating crosscutting concerns, and provides

new mechanisms for composing aspects with other modular units at well-defined

points. In the following, we briefly describe the main aspect-oriented abstractions

and mechanisms. After that, we illustrate the use of aspect-oriented modeling in

the light of an example.

Aspects

Aspect is the term used to denote the abstraction that aims at supporting

improved isolation of crosscutting concerns (Kiczales et al., 1997). Aspects are

modular units of crosscutting concerns that crosscut a set of modular units — i.e.,

components, classes, interface, and so on (Sant’Anna, 2008). An aspect can affect,

or crosscut, one or more modular units in different ways. Thus, aspect-oriented

design models can be decomposed into components, classes, interfaces, and

aspects. While aspects modularize crosscutting concerns and the other modular

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

51

unit modularize non-crosscutting concerns. In addition to conventional attributes

and methods, an aspect includes pointcuts and pieces of advice as described as

follows.

Join Points and Pointcuts

Essential to the process of composing aspects and classes is the concept of

join points, the elements that specify where aspects and other modular units are

related. Join points are well-defined points in the dynamic execution of a system

(Kiczales et al., 1997). Examples of join points are method calls, method

executions, attributes sets and reads, and object initialization. Each aspect defines

one or more first-order logic expressions, called pointcut expressions (or just

pointcuts), to select the join points that will be affected by the aspect’s

crosscutting behavior (Kiczales et al., 1997).

Advice

 When execution of the system reaches a join point, selected by some

pointcut expression, an advice, can be executed before, after or around it (Filman

et al., 2005). Advice is a special method-like construct attached to pointcuts

(Kiczales et al., 1997). There are three basic forms of advice supported by most

aspect-oriented languages (Kiczales et al., 1997): (i) a before advice runs

whenever a join point is reached and before the actual computation proceeds, (ii)

an after advice runs after the computation under the join point finishes, i.e., after

the method body has run, and just before control is returned to the caller, and (iii)

an around advice runs whenever a join point is reached, and has explicit control

whether and when the computation under the join point is allowed to run at all.

Therefore, aspect-oriented (AO) modeling languages aim at improving the

modularity of design models by providing a range of notations to represent these

concepts. It is important to highlight that there are many approaches proposed for

AO modeling. Most of them are aimed at representing basic AO concepts also

supported by most aspect-oriented programming models. Approaches that are

more conservative propose UML profiles (Losavio et al., 2009; Clarke &

Banaissad, 2005; Chavez & Lucena, 2002) for supporting AO modeling (Losavio

et al., 2009; Clarke & Banaissad, 2005). These techniques are more aligned to

classic AO programming models, such as the one realized by AspectJ (Laddad &

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

52

Johnson, 2009) and dialects. In these profiles, the modularization of crosscutting

concerns, for instance, is achieved by the definition of a new model element,

called aspect. In general, the notation enables to explicitly distinguish between

aspects and classes. An aspect can crosscut several classes in a system. These

relations between aspects and other modules are then called crosscutting

relationships. Typically, these relationships are motivated by crosscutting

concerns.

Having the goal of this work in mind (Chapter 1), we opted for carrying out

our investigation regarding UML profiles. Another reason for using AO UML

profiles is that the real developers will participate in the empirical studies and

these subjects tend to have previous experience with AspectJ (Laddad & Johnson,

2009) rather than with any other AO modeling approach. Thus, the UML profile

for aspect-orientated tends to be the best choice for this typical characteristic of

aspect-oriented software developers.

These profiles have the advantage of supporting classical AOP concepts at a

higher abstraction level. This means that AO key concepts are usually represented

via conventional extension mechanisms of the UML such as UML stereotypes.

This alternative followed in our studies prevented, for example, classical side

effects related to the learning curve in empirical studies. Otherwise, it would not

be possible to investigate any causal relationships between design model

languages and composition effort without any high overhead to the subjects

involved.

It is also important to highlight that UML is the standard for designing

software systems. The use of stereotypes reduces the gap between subjects with

low and high skilled (or experienced) subjects (Ricca et al., 2010). The other

consequence of using UML profiles for AO modeling is that the model reading

technique used by the subjects would not be much influenced by new notation

issues. Therefore, the use and interpretation of the models are exclusively

influenced by the use of the concepts in object-oriented and aspect-oriented

modeling. As UML profiles are supported by academic and commercial modeling

tools, such as IBM Rational Software Modeling (IBM RSA, 2011), developers are

familiar with stereotype notations. Additionally, learning the current state-of-the-

art of AO modeling is not a trivial task for developers in early adoption of aspect-

oriented programming. Finally, UML profiles for aspect-oriented design is the

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

53

approach more common for structural and behavioral diagrams. Based on these

reasons, the AOM language used in our study is a UML profile described in

(Losavio et al., 2009; Clarke et al., 2005; Chavez & Lucena, 2002).

Figure 2 presents illustrative examples of some aspect-oriented models used

in our study: class and sequence diagrams. The notation supports the visual

representation of aspects, crosscutting relationships and other aspect-oriented

modeling concepts. The stereotype <<aspect>> represents an aspect, while the

dashed arrow decorated with the stereotype <<crosscut>> represents a

crosscutting relationship. Inner elements of an aspect are also represented, such as

pointcut (<<pointcut>>) and advice. An advice adds behavior before, after, or

around the selected join points (Losavio et al., 2009; Clarke & Walker, 2005). The

stereotype associated with an advice indicates when (<<before>>, <<after>> or

<<around>>) a join point is affected by the aspect. The join point is a point in the

base element where the advice specified in a specific pointcut is applied.

With this in mind, we discuss the limitations of the related work regarding

the effort of detecting inconsistencies and empirical studies on software modeling.

2.5.3.
Limitations of Related Work on Design Modeling Languages

Many design modeling languages have been proposed in recent years, such

as UML and its extensions (OMG, 2011). Some empirical studies have also been

performed with these languages in order to understand their usefulness in different

contexts. For instance, AOM languages will be considered useful compared to

traditional modeling techniques if the claimed improved modularity of aspectual

design decompositions actually leads to practical benefits, such as reduction of

inconsistency detection effort and misinterpretations. Unfortunately, it is well

known that empirical studies of AO modeling are rare in the current literature,

which confirms that it is still in the craftsmanship era (France & Rumpe, 2007).

Research has been mainly carried out in two areas: (1) defining new AOM

techniques, and (2) proposing new weaving mechanisms for design models. First,

several authors have proposed new modeling languages, focusing on the definition

of constructs, such as <<aspect>> and <<crosscut>>. These constructs represent

concepts of aspect-orientation as UML based extensions (Losavio et al., 2009;

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

54

Chavez & Lucena, 2002). In addition, Clarke and Baniassad (Clarke & Banaissad,

2005) make use of UML templates to specify aspect models.

On the other hand, the chief motivation of some works is to provide a

systematic method for weaving aspect and base models (e.g., (Whittle &

Jayaraman, 2010; Jézéquel, 2008; Klein et al., 2006). For example, Klein and

colleagues in (Klein et al., 2006) present a semantic-based aspect-weaving

algorithm for hierarchical message sequence charts (HMSC). They use a set of

transformations to weave an initial HMSC and a behavioral aspect expressed with

scenarios. Moreover, the algorithm takes into account the compositional semantics

of HMSCs.

Unfortunately, most of empirical studies on aspect-orientation are focused

on assessing implementation techniques. For example, Hanenberg and colleagues

(Hanenberg et al., 2009) compare the time invested by developers to implement

crosscutting concerns using object-oriented and aspect oriented programming

techniques. Other studies focus on the assessment of aspect-oriented programming

under different perspectives, such as software stability (Ferrari et al., 2010;

(Greenwood et al., 2007) and fault-proneness (Burrows et al., 2010). However,

empirical studies about AO modeling have not been conducted in particular in the

context of modeling inconsistencies (or defects). Only the literature on OO

modeling does highlight that empirical studies have been done on identifying

defects in design models (Langes & Chaudron, 2004). Lange (Langes &

Chaudron, 2006a) investigates the effects of defects in UML models. The two

central contributions were: (1) the description of the effects of undetected defects

in the interpretation of UML models, and (2) the finding that developers usually

detect more certain kinds of defects than others do.

In particular, in this thesis, we aim at studying certain effects on model

composition from one of the most prominent and recently proposed approaches to

achieve separation of concerns at design level: aspect-oriented modeling language

(Clark & Walker, 2005; Losavio et al., 2009). In addition, our other focus is on

analyzing the empirical studies on UML and AO modeling. We reinforce that

aspect-oriented modeling supports early separation of otherwise crosscutting

concerns in software design. An improved modularization may ameliorate one of

the main purposes of using of design models: communication. If developers

communicate properly, so the interpretation of the models is also proper. Thus, we

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

55

Figure 2: An illustrative example of AO models used in our study.

analyze empirical studies investigating the side effects of inconsistencies on the

interpretation of the design models and the effort invested by developers to detect

them. In conclusion, there are two critical gaps in the current understanding about

AOM that are addressed in this thesis: (1) the lack of practical knowledge about

the developers’ effort to localize inconsistencies, and (2) the lack of empirical

evidence about the detection rate and misinterpretations when understanding AO

and OO models.

2.6.
Design Characteristics

Researcher investigates how design characteristics, such as design stability,

can influence the evolution of software artifacts (Kelly, 2006; Martin, 2003). In

this thesis, we study whether the model stability can affect the composition effort.

In the next section, we discuss how model stability is addressed in this thesis.

2.6.1.
Model Stability

Developers need an indicator to identify the most severe composition cases

in which the output composed models produced have a high number of

inconsistencies and require a great deal of the developers’ effort to be transformed

into an output intended model. Without this indicator, it is particularly challenging

for developers to exam hundreds of output composed models produced in a

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

56

collaborative software development environment. In this thesis, we investigate if

the model stability can be this indicator.

In practice, the stability of the output composed model can be computed

based on the internal design characteristics of (evolving) models. According to

(Kelly, 2006), a design characteristic (e.g., coupling and cohesion) is stable if,

when observed over two or more versions of the software, the differences in the

metric associated with that characteristic are considered small. With this in mind,

we can consider the output composed model as stable if its design characteristics

have a low variation regarding the characteristics of the output intended model.

In our study, we define low variation as being equal to (or less than) 20

percent. This choice is based on previous empirical studies (Kelly, 2006) on

software stability that has demonstrated the usefulness of this threshold. For

example, if the measure of a particular characteristic (e.g., coupling and cohesion)

of the output composed model is equal to nine, and the measure of the output

intended model is equal to 11. So the output composed model is considered stable

in relation to the output intended model (because nine is 18% lower than 11) with

respect to the measure under analysis. Following this stability threshold, we can

systematically identify whether (or not) the output composed model remains

stable in a particular evolution scenario or not. This threshold has been used more

as a reference value rather than a final decision maker. Although its effectiveness

has been demonstrated in (Kelly, 2006), we will also analyze in our empirical

studies if this threshold can be, in fact, used to indicate the most severe

composition cases in which an elevated number of inconsistencies and require a

great deal of the developers’ effort to resolve these inconsistencies. This

investigation is realized in Chapter 6.

We will carry out this new analysis because this threshold plays a crucial

role in the identification of the output composed models that will be reviewed by

the developers. The identification of stable and unstable output composed models

is based on the study of the differences between the measures of the design

characteristics of the output composed model and the output intended model.

These differences are calculated comparing the measures of each characteristic of

the design models. We use a suite of design metrics to quantify such

characteristics of the models used in our study. The metrics can be seen in the

next Chapter 3 (Table 5, Table 6, and Table 7), and Chapter 6.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

57

These metrics were used because they are conventional metrics and they

have been used previous works e.g., (Martin, 2003; Kelly, 2006; Fenton &

Pfleeger, 1997), which have tested the effectiveness of these indicators for the

quantification of design characteristics. We are also interested in identifying

evolution scenarios where composition techniques are able to effectively

accommodate changes from the delta model in the base model. The quantification

method of model stability is presented later in Section 6.1.2.4. With this in mind,

the next step is to discuss the limitations of related works considering the subject.

2.6.2.
Limitations of Related Work on Design Characteristics

The current literature in software design has defined a set of characteristics

that can be used to measure the quality of a design in terms of the interdependence

between the modules of that design (Martin, 2003). A pivotal example of such

characteristics is the software stability as previously mentioned in Section 2.6.1.

According to (Martin, 2003), when we design software, we strive to make it stable

in the presence of change. In fact, stability is at the very heart of all software

design discipline.

Some works about design stability have been conducted in recent years such

as (Kelly, 2006; Martin, 2003). Kelly has demonstrated the usefulness of stability

to software maintenance. For this, she presents a method for examining software

systems that have been actively maintained and used over the long term. The

method relies on a criterion of stability and a definition of distance to flag design

characteristics that have potentially contributed to the software maintenance

(Kelly, 2006). The main contribution is the demonstration that the method is

useful to provide insight into the relative importance of individual elements of a

set of design characteristics for the long-term evolution of software. On the other

hand, Martin (Martin, 2003) provides a definition of software stability and shows

how the characteristic can be applied.

Unfortunately, we have observed that the existing literature in model

composition and software design has failed to provide metrics or studies for

empirically revealing the effects of stability on model composition effort. Thus,

we see our work as the first step to investigate empirically the interplay between

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

58

stability and model composition effort. In other words, nothing has been done to

investigate the use of stability as an indicator of severe cases of composition

effort.

The absence of studies exploring this relationship prevents developers from

understanding the influence of stability on the developers’ effort. Without this

knowledge, developers end up relying on the evangelist feedback, rather than

empirical data, to comprehend how well the composition effort can be. In

conclusion, these works differ in their aims to the work presented in this thesis.

This thesis does not propose how to come up with a good guidance to design

software, neither proposes any particular method to quantify stability. Rather, we

empirically evaluate how stability influences the developers’ effort when

composing models (Section 6.1). We defer further consideration about this topic

to Section 6.2.4.

2.7.
Concluding Remarks

In this chapter, we have presented the main concepts discussed throughout

this thesis. To begin with, we describe the three purposes of using model

composition. After that, we analyzed the characteristics of design modeling

languages that can affect the use of model composition. Three characteristics are

discussed: the lack of a rigorous definition, the multi-view design modeling

languages, and the complexity of the design modeling languages.

We also revisit the purpose of using design models. The empirical studies

use design models for different particular purposes. This happens because we

need to investigate the effort of composing design models from alternative

perspectives. More specifically, we study the use of design models for three

purposes: communication, comprehension, and documentation for maintenance.

Moreover, following the description of the basic terminology used in this

thesis, we present the concepts associated with three key factors potentially

influencing mode composition effort: composition techniques, design modeling

languages, and design characteristics. After mentioning these three factors, we try

to discuss how each factor can affect the effort of composing design models in

practice.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

59

Observing the related works, the major conclusion is that nothing has been

done to evaluate the impact of such three influential factors on model composition

effort. In fact, some works such as (France & Rumpe, 2007) emphasize the need

for further researches in order to generate a clear understanding about the effects

of these factors on model composition effort. For example, several composition

techniques have been proposed and used in practice. However, little has been

done to quantify the effort invested by developers to compose design models.

Without studies that evaluate whether the effort invested is worthwhile or not, it is

not possible to recognize the benefits of using composition techniques. This lack

of knowledge about the effects of the composition on the developers’ effort is also

extended as to the other two factors: design modeling languages and design

characteristics. To date, the literature fails to provide insight on the influence of

these two factors on the composition effort. For example, researchers and

developers do not know if by using a particular design modeling language, they

will minimize the composition effort on the parts of the design model created in

parallel by different software development teams.

DBD
PUC-Rio - Certificação Digital Nº 0821407/CA

