Kleinner Silva Farias de Oliveira

Empirical Evaluation of Effort on Composing Design Models

TESE DE DOUTORADO

Thesis presented to the Programa de Pós-Graduação em Informática of the Departamento de Informática, PUC-Rio as partial fulfillment of the requirements for the degree of Doutor em Informática

Advisor: Prof. Alessandro Garcia
Co-Advisor: Prof. Carlos José Pereira de Lucena

Rio de Janeiro
March 2012
Kleinner Silva Farias de Oliveira

Empirical Evaluation of Effort on Composing Design Models

Thesis presented to the Programa de Pós-Graduação em Informática, of the Departamento de Informática do Centro Técnico Científico da PUC-Rio, as partial fulfillment of the requirements for the degree of Doutor.

Prof. Alessandro Garcia
Advisor
Departamento de Informática – PUC-Rio

Prof. Carlos José Pereira de Lucena
Co-Advisor
Departamento de Informática – PUC-Rio

Prof. Arndt von Staa
Departamento de Informática – PUC-Rio

Profª. Karin Koogan Breitman
Departamento de Informática – PUC-Rio

Prof. Toacy Cavalcante de Oliveira
Universidade Federal do Rio de Janeiro – UFRJ

Profª. Christina von Flach Garcia Chavez
Universidade Federal da Bahia – UFBA

Prof. José Eugenio Leal
Coordinator of the Centro Técnico Científico da PUC-Rio

Rio de Janeiro, 21 March 2012
Kleinner Silva Farias de Oliveira

He received his BSc in Computer Science from the Federal University of Alagoas in 2006 and in Information Technology from the Federal Institute of Alagoas in 2006. He received his MSc in Computer Science from the Pontifical Catholic University of Rio Grande do Sul in 2008.

Bibliographic data

Oliveira, Kleinner Silva Farias de

Empirical evaluation of effort on composing design models / Kleinner Silva Farias de Oliveira ; supervisor: Alessandro Garcia ; co-supervisor: Carlos José Pereira de Lucena. – 2012.

282f. : ill. (color.) ; 30 cm

Inclui bibliografia

CDD: 004
To my family
Acknowledgments

I am honored and grateful to have counted with excellent professionals along the way of this work. Especially, I would like to thank my supervisor, Prof. Dr. Alessandro Garcia, who provided constant encouragement, guidance, and freedom to develop this thesis. His competent and constructive criticism was essential to my success, my sincere admiration to him.

I am very grateful to have Prof. Dr. Carlos Lucena as one of my supervisors. I would like to thank him for all support on my research path by guiding me with his extensive knowledge, providing advice, and encouragement in the early stages.

I am indebted to Jon Whittle (Lancaster University, UK) for his in-depth reviews of many papers, and numerous interesting discussions and suggestions about the critical points throughout this work, lending a sense of reality to the research being conducted. I received so much from him to enlarge my vision on software engineering.

I could not forget to thank Dr. Toacy Oliveira, who trusted me fully from the beginning of my research career. Thanks to his mentoring, friendship, and all frequent discussions that help me to guide my professional life.

My gratefulness also goes to all my colleagues and professors from the Computer Science Department at PUC-Rio, especially to my friends from the Software Engineering Laboratory (LES) who gave me opportunities to grow as professional putting my ideas into action. It has been a privilege working on that stimulating environment.

During the development of this work, I was lucky to have collaborated with a number of research colleagues who contributed to this thesis in different ways and who allowed me to collaborate with their works as well. It was a pleasure to work with all of them on a number of papers.
I am also thankful to the members of my examination committee, who has generously contributed their time and expertise.

Thanks to my friends (whose names I did not quote to avoid being unfair to any of them right now) for giving invaluable tips, and giving lots of very useful advice. Especially, I am deeply grateful to my fiancée Carla Pedroso for putting up with me, and giving me so much that I could not even itemize them. Your love and understanding were instrumental in this journey. I love you so much.

Finally, I would like to thank my family for the constant support and belief in me in every conceivable way. This thesis is dedicated to my grandmother, Valdenira (in Memoriam), and my parents, Sandra and Carlos, my sisters, Kelyne and Klyvia, and my brother, Kleberson, with all my love.

I would like to express here my gratitude to CAPES/CNPq for the financial support of this doctoral study.
Resumo

Composição de modelos desempenha um papel fundamental em muitas atividades de engenharia de software como, por exemplo, evolução e reconciliação de modelos conflitantes desenvolvido em paralelo por diferentes times de desenvolvimento. Porém, os desenvolvedores têm dificuldades de realizar análises de custos e benefícios, bem como entender o real esforço de composição. Sendo assim, eles são deixados sem qualquer conhecimento prático sobre quanto é investido; além das estimativas de evangelistas que frequentemente divergem. Se o esforço de composição é alto, então os potenciais benefícios tais como aumento de produtividade podem ser comprometidos. Esta incapacidade de avaliar esforço de composição é motivada por três problemas: (i) as abordagens de avaliação atuais são inadequadas para mensurar os conceitos encontrados em composição, por exemplo, esforço e conflito; (ii) pesquisadores não sabem quais fatores podem influenciar o esforço de composição na prática. Exemplos de tais fatores seriam linguagem de modelagem e técnicas de composição que são responsáveis para manipular os modelos; (iii) a falta de conhecimento sobre como tais fatores desconhecidos afetam o esforço de composição. Esta tese, portanto, apresenta uma abordagem de avaliação de esforço de composição de modelos derivada de um conjunto de estudos experimentais. As principais contribuições são: (i) um modelo de qualidade para auxiliar a avaliação de esforço em composição de modelos; (ii) conhecimento prático sobre o esforço de composição e o impacto de fatores que afetam tal esforço; e (iii) diretivas sobre como avaliar esforço de composição, minimizar a propensão a erros, e reduzir os efeitos negativos dos fatores na prática de composição de modelos.

Palavras-chave

Composição de modelos, esforço de desenvolvimento, estudos empíricos.
Abstract

Model composition plays a central role in many software engineering activities such as evolving models to add new features and reconciling conflicting design models developed in parallel by different development teams. As model composition is usually an error-prone and effort-consuming task, its potential benefits, such as gains in productivity can be compromised. However, there is no empirical knowledge nowadays about the effort required to compose design models. Only feedbacks of model composition evangelists are available, and they often diverge. Consequently, developers are unable to conduct any cost-effectiveness analysis as well as identify, predict, or reduce composition effort. The inability of evaluating composition effort is due to three key problems. First, the current evaluation frameworks do not consider fundamental concepts in model composition such as conflicts and inconsistencies. Second, researchers and developers do not know what factors can influence the composition effort in practice. Third, practical knowledge about how such influential factors may affect the developers’ effort is severely lacking. In this context, the contributions of this thesis are threefold: (i) a quality model for supporting the evaluation of model composition effort, (ii) practical knowledge, derived from a family of quantitative and qualitative empirical studies, about model composition effort and its influential factors, and (iii) insight about how to evaluate model composition efforts and tame the side effects of such influential factors.

Keywords

Model composition, development effort, empirical studies.
Table of Contents

1 Introduction 18
 1.1. Problem Statement 20
 1.2. Limitations of Related Work 22
 1.3. Study Methodology 26
 1.4. Thesis Contributions 28
 1.5. Thesis Outline 30

2 Background and Related Work 35
 2.1. Purpose of Using Model Composition 35
 2.2. Properties of the Design Modeling Languages 37
 2.3. Purpose of Using Design Models 39
 2.4. Model Composition Techniques 40
 2.4.1. Traditional Composition Algorithms 41
 2.4.2. IBM Rational Software Architect 43
 2.4.3. Epsilon 44
 2.4.4. Limitations of Related Work on Model Composition Techniques 46
 2.5. Design Modeling Languages 48
 2.5.1. Unified Modeling Language 48
 2.5.2. Aspect-Oriented Modeling 49
 2.5.3. Limitations of Related Work on Design Modeling Languages 53
 2.6. Design Characteristics 55
 2.6.1. Model Stability 55
 2.6.2. Limitations of Related Work on Design Characteristics 57
 2.7. Concluding Remarks 58

3 A Quality Model for Model Composition Effort 60
 3.1. Motivation 61
 3.2. Limitations of Related Work 63
 3.3. A Quality Model for Model Composition Effort 66
 3.3.1. Model Composition Effort and Change Categories 66
3.3.2. Composition Conflicts and Inconsistencies 68
3.3.3. Abstract Syntax of the Quality Model 70
3.3.4. Quality Notions 75
3.3.5. Levels of the Quality Model 80
3.4. Concluding Remarks 85

4 Effort on the Application of Composition Techniques 87
4.1. Effects of Composition Techniques on the Composition Effort 87
4.1.1. Experiment Planning 89
4.1.2. Experimental Results 99
4.1.3. Limitations of Related Work 107
4.1.4. Threats to Validity 108
4.1.5. Concluding Remarks of the First Study 110
4.2. Analyzing the Effort of Composing Design Models of Large-Scale Software 111
4.2.1. Background 113
4.2.2. Composition Scenario 114
4.2.3. Study Methodology 122
4.2.4. Study Results 133
4.2.5. Limitations of Related Work 149
4.2.6. Concluding Remarks of the Second Study 153

5 Effort on the Detection of Inconsistency 155
5.1. Background 157
5.1.1. Aspect-Oriented Modeling 157
5.1.2. Model Inconsistency 159
5.1.3. Inconsistency Detection Effort 162
5.2. Study Methodology 163
5.2.1. Experiment Definition 163
5.2.2. Hypothesis Formulation 164
5.2.3. Selection of Subjects 167
5.2.4. Experiment Design 167
5.2.5. Operation and Material 168
5.2.6. Variables and Quantification Method 170
5.2.7. Operation 171
5.2.8. Analysis Procedures 171
5.2.9. Qualitative Data 172
5.3. Experimental Results 172
5.3.1. RQ4.1: Detection Rate in AO and OO models 173
5.3.2. RQ4.2: Detection Effort in AO and OO models 174
5.3.3. RQ4.3: Misinterpretation Rate in AO and OO models 176
5.4. Discussion 177
5.5. Limitations of Related Work 180
5.6. Threats to Validity 181
5.7. Concluding Remarks 182

6 Effort on the Resolution of Inconsistency 184
6.1. Effect of Model Stability on Inconsistency Resolution 184
6.1.1. Background 188
6.1.2. Study Methodology 193
6.1.3. Results 205
6.1.4. Limitations of Related Work 220
6.1.5. Threats to Validity 223
6.1.6. Concluding Remarks 229
6.2. Impact of Design Language on Inconsistency Resolution Effort 230
6.2.1. Aspect-Oriented Modeling for Architectural Models 231
6.2.2. Study Methodology 233
6.2.3. Composition Effort Analysis 243
6.2.4. Limitations of Related Work 253
6.2.5. Threats to Validity 255
6.2.6. Conclusions and Future Work 255

7 Conclusions 257
7.1. Summary 257
7.2. Contributions 259
7.3. Future Works 265

8 References 268
List of Figures

Figure 1: Illustrative example 42
Figure 2: An illustrative example of AO models used in our study 55
Figure 3: Overview of model composition effort: an equation 67
Figure 4: Illustrative example 68
Figure 5: Abstract syntax of the quality model for model composition (based on (Lange, 2007)) 70
Figure 6: The purposed quality model (based on (Lange, 2007a)) 85
Figure 7: The Experimental process 97
Figure 8: The correctness of the output composed model 104
Figure 9: A real-world collaborative model composition leading to two critical overlapping points 116
Figure 10: A real-world use scenario of model composition (A). The change descriptions performed by the developers (B). 118
Figure 11: The Base Model (A) and the Intended model (B) 120
Figure 12: The model versions created by Peter (P2) (above) and Steve (S3) (below). 121
Figure 13: The model versions created by Bill (B4). 122
Figure 14: The flow of activities during the studies 129
Figure 15: Histogram of the application effort measures 136
Figure 16: An illustrative example of aspect-oriented models used 159
Figure 17: Example of composition of the Mobile Media product line 191
Figure 18: The intended and composed model produced following the union heuristic 191
Figure 19: Box-plot of inconsistencies 207
Figure 20: Box-plot of resolution effort in relation to the intended model 214
Figure 21: AOM language for architectural models 238
Figure 22: The input models: the AO base and AO delta model 240
Figure 23: Output AO models produced by override and merge
algorithms

Figure 24: AO intended model (from Figure 22) and AO output model produced following the union heuristic

Figure 25: Inconsistency rate produced by the override algorithm

Figure 26: Inconsistency rate produced by the merge algorithm

Figure 27: Inconsistency resolution effort to recover the output model produced by override algorithm

Figure 28: Effort to recover the output model produced by merge algorithm
List of Tables

Table 1: List of direct and indirect publications 34
Table 2: Metrics of semantic inconsistencies (Farias et al., 2008) 69
Table 3: Definition of chapters where quality notions are investigated 79
Table 4: Characteristics of design models 81
Table 5: Metrics for class 83
Table 6: Metrics for interface 84
Table 7: Metrics for components 84
Table 8: Tested hypotheses 93
Table 9: The tasks of the evolution scenarios 94
Table 10: Descriptive statistic for the composition effort 100
Table 11: Wilcoxon test results for application and detection effort 101
Table 12: Wilcoxon test results for the resolution and general effort 102
Table 13: Statistical test for the Friedman Test 102
Table 14: Descriptive statistic for the inconsistency rate 105
Table 15: McNemar test results for correctness 105
Table 16: Friedman test result for inconsistency rate 106
Table 17: Wilcoxon test results for the correctness 106
Table 18: Metrics used 124
Table 19: The collected measures of the case studies 124
Table 20: Descriptive Statistics: Subjects’ Background 126
Table 21: Descriptive statistics for application effort 134
Table 22: Descriptive statistics for detection effort 138
Table 23: Descriptive statistics for resolution effort 141
Table 24: Measures of the diagram used in the study 169
Table 25: Descriptive statistics 173
Table 26: Hypotheses testing 174
Table 27: Metrics used 189
Table 28: The inconsistencies used in our case study 193
Table 29: Descriptions of the evolution scenarios 198
Table 30: Descriptive statistics of the inconsistency rate 206
Table 31: Mann-whitney test and Spearman’s correlation analysis 208
Table 32: Descriptive statistics of the resolution effort 213
Table 33: Mann-whitney test and Spearman’s correlation analysis 215
List of Acronyms and Abbreviations

IBM – International Business Machine
UML – Unified Modeling Language
AO – Aspect-Oriented
AOM – Aspect-Oriented Modeling
CBO – Coupling Between Object Classes
EMF – Eclipse Modeling Framework
GQM – Goal Question Metric
IBM – International Business Machine
IDE – Integrated Development Environment
LCOM – Lack of Cohesion in Methods
MDD – Model Driven Development
MVC – Model View Controller
OCL – Object Constraint Language
OMG – Object Management Group
OO – Object-Oriented
RQ – Research Question
SPL – Software Product Line
UML – Unified Modeling Language
ECL – Epsilon Comparison Language
EML – Epsilon Merge Language
Believe in your dreams

Kleinner Farias