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5
Extending mimp-graphs

Mimp-graphs provide a formalism for Natural Deduction where the use
of a “mixed” graph representation of formulas and inferences (in the purely
implicational minimal logic) serve as a way to study the complexity of proofs
and to provide more efficient theorem provers. We presented the main notion
of mimp-graphs in Chapter 3. In this chapter, we wish to extent this formalism

in graphs for full minimal propositional calculus and for first order logic.

5.1
Proof-graphs for propositional logic

In Chapter 3 we considered implication as the only logic connective.
Let us now turn to a more general presentation of proof-graphs for full
minimal propositional logic that includes » (implication), v (disjunction) and
A (conjunction). We also develop the normalization procedure for these proof-
graphs. Mimp-graphs for propositional logic will be defined along with partial
ordering on its R-nodes that allows to pass through the nodes of the structure.

We will also develop the normalization procedure for these proof-graphs.

— the set of formula labels F-Labels in Definition 5 has two added labels v,

A,
— the set of inference labels R-Labels has the added labels: {Al, AEl, AEr,
vIi, vir, vE};

— the set of edge labels Ej,-Labels has the added labels: {Ip (left premise),
rp (right premise), Im (left minor premise), rm (right minor premise) ,
ldisc (discharge to the left), rdisc (discharge to the right)};

— the definition of formula graphs has two added inductive graphs,

Conjunction: Disjunction:
(n). V)
\ // N o \ Vi L}\ oY -
v N y, \
formula node formula node formula node formula node
i.e. (leftsubformula) (right subformula) (left subformula)  (right subformula)

— inference rules A-Introduction, A-Elimination, v-Introduction and v-

Elimination in proof-graphs are as follows:
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In the terminology about inference rules or R-nodes, when an R-node
has more than one incoming edge, these are distinguished by calling them
left, right, major or minor, or a combination of these terms and so also the
F-node ‘premise’ associated with these edges. Thus, the major premise in R-
node contains the connective that is eliminated; the other premise in R-node is
called ‘minor’. Two premises that play a more or less equal role in the inference
are called ‘left’ and ‘right’. For instance, an R-node VE has a major premise, a
left minor premise and a right minor premise; an R-node Al has a left premise
and a right premise.

The term R-node sequence is representing a deduction, and if it is a
smaller part of another R-node sequence (subdeduction), then it is called a
subsequence of the latter. A subsequence that derives a premise of the last R-
node application in an R-node sequence is called a direct R-node subsequence.
Instead of writing “the direct R-node subsequence that derives the minor
premise of the last inference of an R-node sequence D”, we simply write “the
minor subsequence of D”.

Definition 22 Let G; = (VY, E!, L) and Gy = (VZ2, E2, L2) be two graphs,
where: V! and V? are sets of vertices, E! and E? are sets of labeled edges, L'
and L? are subsets of LBL. The operation G1 ® G := (V'u V2, E17 E2, L'u L?)
equalizes R-nodes of G1 with R-nodes of G5 that have the same set of premises
and conclusion keeping the inferential order of each node, and equalizes F-
nodes of G with F-nodes of Gy that have the same label, and equalizes edges
with the same source, target and label into one.
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Definition 23 A mimp-graph for propositional logic G is a directed graph (V,
E, L) where: V is a set of nodes, L is a set of labels, E is a set of labeled edges
(veV, teL, v'e V), of source v, of target v' and label t.

Propositional mimp-graphs are recursively defined as follows:

mimp Ewvery construction rule for mimp-graphs (Definition 9) is a construc-
tion rule for propositional mimp-graph.

Al If G1 and G5 are propositional mimp-graphs and Gy contains o, linked to
the D-node C and Gy contains (3, linked to the D-node C, then the graph
G that is defined as

1. G = Gy ® Gy ® G3 with the removal of ingoing edges in the node
C' which were generated in the intermediate step (see Figure 5.1,
dotted area in G, ® Gs);

2. an R-node Al; at the top position;

lp; D4 ci conc
3. edges: apy——Al;, B,——AL;, AL—>A; and A,——C,

is a mimp-graph (see Figure 5.1).

Gi1BGBGs

Figure 5.1: The Al rule of the propositional mimp-graph.

AEl If Gy is a propositional mimp-graph and contains edges /\timzm,
/\t;ﬁn) and the node A, linked to the D-node C then the graph G that
is defined as G with

1. the remowval of the ingoing edge in the node C;
2. an R-node AEl; at the top position;

pi (& conc
3. edges: ni——>nEl;, AEl,—a,, and a,,,—C;

is a mimp-graph. There is a symmetric case for AFr.

vIl If Gy is a propositional mimp-graph and contains nodes o, linked to the
D-node C' then the graph G that is defined as G, with

1. the remowal of the ingoing edge in the node C.


DBD
PUC-Rio - Certificação Digital Nº 1012697/CA


PUC-RIo - Certificacdo Digital N° 1012697/CA

Some Results in a Proof-theory Based on Graphs 52

2. an R-node VIl; at the top position;

i Pi 1 r conc
3. edges: VIl;—>V;, a— VI, Vi—say,, Vi— B, and vi—C,

is a mimp-graph. There is a symmetric case for VvIr.

vE If G, G5 and G3 are propositional mimp-graphs, and the graph obtained
by (G1© Gs) ® G3 (intermediate step) contains nodes: vy and o, linked
to the D-node C' (o, twice); and o, and B, are subformulas of v; and are
linked to D-nodes H, then the graph G that is defined as (G1© Gs) & G3
with

1. the removal of ingoing edges in the node C which were generated in

the intermediate step (see Figure 5.2);
2. an R-node VE; at the top position;

Im; rm; M; c; ldisc;
3. edges: 0o,——>VE;, 0,——VE;, vi——>VE;, VE,—>0,, VE,—>H,,

rdisc; conc
, VE,—H, and 0,—C,

is a mimp-graph (see Figure 5.2).

(G1O G2)@BGs

Figure 5.2: The VE rule of the propositional mimp-graph.

Lemma 5 enables us to prove that a given graph G is a propositional
mimp-graph without explicitly supplying a construction. Among others it says
that we have to check that each node of G is of one of possible types that
generate the construction cases of Definition 23.

In order to avoid overloading of indexes, we will omit whenever possible,
the indexing of edges of kind Im, rm, lp, rp, ldisc and rdisc, keeping in mind
that the coherence of indexing is established by the kind of rule-node to which
they are linked.
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Lemma 5 G is a propositional mimp-graph if and only if the following hold:

1. There exists a well-founded (hence acyclic) inferential order < on all rule

nodes of the propositional mimp-graph.
2. Every node N of G is of one of the following ten types:

P It is as in the Lemma 1.

F N has one of the following labels: »;, Aj or vy, and has ezactly two
outgoing edges with label I and r. N has outgoing edges with labels
p, m, M, lm, rm, lp, rp; and ingoing edges with label ¢ and hyp.

I* N has label AL;, one outgoing edge AL——A; and ezactly two ingoing
edges: aml—pmli and ﬁnimli, where o, and [, are nodes type
P or F. There are two outgoing edges from the node Ay: AtLam

and Ay—sB,,.

E* N has label AE;, one outgoing edge AEl;——>a,, where o, (or B, in
the case AEr; is a node type P or F and has exactly one ingoing
edge: N——AE;. There are two outgoing edges from the node A:

l r
Ae—>Cly, and Ne—> ;.

IV N has label VII;, one outgoing edge VIl;—>v, and has ezactly one
ingoing edge: aym——VIl; where am, (or B, in the case VIr;) is a
node type P or F. There are two outgoing edges from the node v;:
vtimzm and vt—r—>[3’n.

EVY N has label VE;, three outgoing edges vE,-Lmr, in%Hu and

in%HS; and it has exactly three ingoing edges: vtLin,

O'TLVE” o, ——>VE; where a,, (or B, in the case VE;) is a
node type P or F. There are two outgoing edges from the node v;:

. h h
vtimzm, Vi—s B, and hypothesis edges: H,~%sq,, and Hsiﬁn.

I, E, H, C They are as in the Lemma 1.

Proof:

=: Argue by induction on the construction of propositional mimp-graph
(Definition 23). For every construction case for propositional mimp-graphs we
have to check the three properties stated in Lemma. Property (2) is immediate.
For property (1), we know from the induction hypothesis that there is an
inferential order < on R-nodes of the propositional mimp-graph. In the new
construction cases Al, AEl, AEr, VII, vIr or VE, we make the new R-node that
is introduced highest in the <-ordering, which yields an inferential ordering on
R-nodes. In the construction case Al, when we have two inferential orderings,

<1 on GG; and <5 on GG5. Then G; @ G5 can be given an inferential ordering
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by taking the union of <; and <, and in addition putting n < m for every
R-node n,m such that n € G;,m € GG5. In the construction case VE, when
we have three inferential orderings, <; on G1, <3 on G5 and <3 on Gs. Then
(G1 ® G3) ® G3 can be given an inferential ordering by taking the union of <,
<9 and <3 and in addition putting n < m < p for every R-node n, m,p such that
neGy,meGy,peGs.

<: Argue by induction on the number of R-nodes of G. Let < be the
topological order that is assumed to exist. Let n be the R-node that is maximal
w.r.t. <. Then n must be on the top position. When we remove node n,
including its edges linked (if n is of type IV) and the node type C is linked
to the premise of the R-node, we obtain a graph G’ that satisfies properties
listed in Lemma. By induction hypothesis we see that G’ is a propositional
mimp-graph. Now we can add the node n again, using one of construction
cases for propositional mimp-graphs: mimp if n is a L node, F node, »E node
or »I node, I" if n is a Al node, E* if n is a AEl node or AEr node, IV if n is a
vIl node or vIr node, E* if n is a VE node. [ ]

5.2
Normalization for propositional mimp-graphs

5.2.1
Elimination of maximal formula

In this section, we describe the normalization process for propositional
mimp-graphs. Eliminating a maximal formula is very similar to the procedure
for mimp-graphs described in Chapter 3, where we considered only the case of
implication, now we define maximal formulas in conjunction, disjunction and

implication:

Definition 24 A maximal formula m in a propositional mimp-graph G is a
sub-graph of G as follows:

— AI followed by AEl. It is composed of (see Figure 5.3):
1. F-nodes: am, B, and Ay, where Ay has zero or more ingoing/outgoing

edgest, e.g. A, could be premise or conclusion of others R-nodes;

2. R-nodes: AI; and AEl;, where AL; has an inferential order lower than

AEl; and there are zero or more mazximal formulas between them?. If

'Represented in the figure by double-headed arrows
2The maximal formulas are represented in the figure by nodes labeled with I and E
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these nodes occur in different branches, a branch must be insertable3

in the other branch or bifurcated by an R-node VE;

l r lp D c
3. edges: Ng—>Qpm, Ag—>Pn, om—AL, B,——AL, AL—Ay,

/\qiv\Ell and AElL->a,.

Figure 5.3: The maximal formula: Al followed by AEI.

There is a symmetric case for Al followed by AFEr.

- VIl followed by VE. It is composed of (see Figure 5.4):

Figure 5.4: The maximal formula: vl followed by VE.

1. F-nodes: Qm, Bn, Vq and o, where v, has zero or more ingo-

ing/outgoing edges*;
2. D-nodes: H, and Hg;

3. R-nodes in ascending inferential order: v1l;and vE;, and there are
zero or more mazimal formulas in branches between them®. If these
nodes occur in different branches, a branch must be insertable in the

other branch or bifurcated by an R-node VE;

3A branch is insertable in other branch when it is bifurcated by a maximal formula: -1
followed by =E

4Represented in the figure by double-headed arrows

SMaximal formulas are represented in the figure by nodes labeled with I and F
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l r p c M
4. edges: Vg—ou,, Vq— LB, an— VI, VI,—v,, v,—VE,
Im rm c ldisc rdisc
O'x—>VEl, O'm—)VEl, VEl—>O'm, VEl—)H,« and VEZ—)HS.

There is a symmetric case for vIr followed by VE.

— »I followed by >E. It is composed of (see Figure 5.5):

1. F-nodes: am, B and »,, where », has zero or more ingoing/outgoing
edgess;

2. the D-node: H,;

3. R-nodes in ascending inferential order: »I; and >E;, and there are
zero or more maximal formulas between them”. If these nodes occur
in different branches, a branch must be insertable in the other branch
or bifurcated by an R-node VE;

disc

¢ i—H,,

l r D c
4. edges: 3>, 3B, Lp—>3L, >L—>

M m c
>—>E, a,—>F; and >E—f,.

Figure 5.5: The maximal formula: -1 followed by >E.

Definition 25 The operation incorporate adds an R-node sequence inside
other R-node sequence where it shares the same formula-graphs premise and
conclusion, then apply the operation defined in Definition 13 to the resulting
graph. Note that Proposition 1 ensures that the result is a mimp-graph.

Note that the actual situation is more complicated than those sketched in
Figures 5.3, 5.4 and 5.5. There are five sub-cases for each maximal formula due
to the presence of disjunction and other maximal formulas. These sub-cases

are treated in the Definition 26 as follows.

6Represented in the figure by double-headed arrows
"Maximal formulas are represented in the figure by nodes labeled with I and E
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Definition 26 Given a propositional mimp-graph G with a maximal formula
m, eliminating a maximal formula s the following transformation of a propo-

sitional mimp-graph:

Elimination of AI followed by AEl. There is a symmetric case for the
elimination of AI followed by AEr. The elimination of the mazimal
formula AI followed by AEL is the following operation on a propositional

mimp-graph:

1. If there are no maximal formulas between R-nodes Al; and AEl; then

follow these steps:
(a) If AL; and AEl are not bifurcated by one VE then (see cases 1
and 2 in Figure 5.6).
i. Remove R-nodes Al; and AEl; and their edges.

. If the F-node Ay only has outgoing edges to sub-formulas

then remove it (see case 2 in Figure 5.6).

Figure 5.6: Elimination of Al followed by AEI: Cases 1 and 2.

(b) Else If Al; represents two R-nodes then (see case 3 in Figu-
re 5.7):

i. Remove the R-node Al; and its edges.
#. Eliminate edges: /\qllek, N—>VEy, and VE,—A,.
ii. If the F-node Ay only has outgoing edges to sub-formulas
then remove it (see case 4 in Figure 5.7).

. Im rm c
w. Add edges: a,,——VEy, a,,——VE, and VE,—a,,.
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Figure 5.7: Elimination of Al followed by AEI: Cases 3 and 4.

(c) Else (see case 5 in Figure 5.8)
1. Remove the R-node Al;, and its edges.
1. Eliminate edges: /\quEk, /\qﬂwEk and kaimq.
1. Add edges: amllek, A—>VE; and VEx——>a,.
w. Incorporate the R-node AEl;, as defined in Definition 25, in
the right minor sequence of VEy as last inference.

\rdise

Figure 5.8: Elimination of Al followed by AFE!l: Case 5.
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2. Otherwise eliminate maximal formulas between R-nodes Al, and
/\Ell.

Elimination of vI| followed by VE There is a symmetric case for vIr
followed by VE. The elimination of this maximal formula is the following

operation on a mimp-graph:

1. If there are no maximal formulas in branches between R-nodes VII;
and VE; then follow these steps:

(a) If VIl; and VE; are not bifurcated by one VE then (see cases 1
and 2 in Figure 5.9).
i. Remove R-nodes VI1l;, VE;, H, and H,, and their edges.

. If the F-node v, only has outgoing edges to sub-formulas

then remove it (see case 2 in Figure 5.9).

Figure 5.9: Elimination of v/l followed by vE: Cases 1 and 2.

(b) Else If V1l; represents two R-nodes then (see case 3 in Fig-
ure 5.10):

i. Remove R-nodes VIl;, VE;, H; and H,, and their edges.
#. Eliminate edges: vqlink, Ve—5VEy and VE—v,.
ii. If the F-node v, only has outgoing edges to sub-formulas
then remove it (see case 4 in Figure 5.10).
. Add edges: awlink, 0,—sVE; and VE,—>0,.
v. Incorporate the sequence II"™ of the Figure 5.10, as defined

in Definition 25, in left and right minor subsequences of
VEk.
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"
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=

e

Figure 5.10: Elimination of vIi followed by VE: Cases 3 and 4.

(c) Else (see case 5 in Figure 5.11)
1. Remove the R-node V1l;, and its edges.
1. Eliminate edges: quka, vqﬂwEk and kaiwq.
1. Add edges: aml—mek, 0o—5>VE;, and VE,—>0,.
w. Incorporate the R-node VE; with its sub-sequences II™ and
I showed in Figure 5.11, as defined in Definition 25, in the

right minor subsequence of VE, and incorporate the R-node

sequence II™ in the left minor premise of VE.

2. Otherwise eliminate the maximal formulas in branches between R-
nodes vIl; and VE.
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Hij3 R-nodes Sequence from F-node X; to F-node X;

Figure 5.11: Elimination of vII followed by VE: Case 5.

Elimination of »I followed by »FE In order to reduce this, we need the

following rule:

1. If there are no maximal formulas between R-nodes >1; and >E; then

follow these steps:

(a) If »1; and -E; are not bifurcated by one VE then (see cases 1
and 2 in Figure 5.12).

Figure 5.12: Elimination of »I followed by »FE: Cases 1 and 2.
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.

If the D-node H,, discharged by =1;, has n outgoing edges
with label hyp then repeat n-times edges in the minor sub-
sequence of >E;.

Remove R-nodes »1;, sE; and H,, and their edges.
Remove R-nodes »1; and »E;, and their edges.

If the F-node A, only has outgoing edges to sub-formulas
then remove it (see case 2 in Figure 5.12).

(b) Else If »1; represents two R-nodes then (see case 8 in Fig-
ure 5.13):

Figure 5.13: Elimination of »I followed by »E: Cases 3 and 4.

.

Remove R-nodes »1;, »E;, H; and H,, and their edges.
Eliminate edges: -)qllek, >—>VE; and VE,—>,.
If the F-node », only has outgoing edges to sub-formulas
then remove it (see case 4 in Figure 5.13).

Add edges: B—">VEy, Bu—TsVEy, and VE—>B,.

Incorporate the R-node sequence with conclusion o,,, as
defined in Definition 25, in left and right minor sub-

sequences of VEy.

(c) Else (see case 5 in Figure 5.14)

1.

Remove R-nodes »1; and H;, and their edges.
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it. Eliminate edges: —)qllek, >—>VE; and VE,—>>,.

iii. Add edges: B—sVEy, B—rsVEy and VE,—8,.

iv. Incorporate the node -»E;, as defined in Definition 25, in
the right minor subsequence of VEy as last inference and
the R-node sequence with conclusion o, in the left minor

subsequence.

2. Otherwise eliminate maximal formulas between R-nodes =I; and
>E;.

Figure 5.14: Elimination of »I followed by »E: Case 5.

Definition 27 (1) For n; € V, a p-path in propositional mimp-graph is a
. bl bl 1bly,—s Ibl_
sequence of vertices and edges of the form: n; — ny — ... Ng_1

nk, such that ny is a hypothesis formula node, ny is the conclusion formula
node, n; alternating between a rule node and a formula node. Edges [bl;
alternate between two types of edges: the first is lbl; € {rm,Im,m, M,rp,lp,p}
and the second lbl; = c. (2) A branch in propositional mimp-graph is an initial
part of a p-path which stops at the conclusion F-node of the graph or at the
first minor (or left) premise whose magor (or right) premise is the conclusion

of a rule node.

Lemma 6 If G is a propositional mimp-graph with a mazximal formula m and
G' is obtained from G by eliminating m, then G' is also a propositional mimp-

graph.

Proof: 'We use Lemma 5. All nodes in G' are of the right form: P, K, E, I, EV,
IV, E~, I, H or C. We verify that G’ has one ingoing edge with label conc to the
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D-node with label C' and that is acyclic and connected. Finally, an inferential

order on G’ (as defined in Definition 13) between rule nodes must preserve. m

5.2.2
Normalization proof

Just as with mimp-graphs, we shall also construct the normalization proof
for these extended mimp-graphs. This proof is guided by the normalization
measure. That is, the general mechanism from the proof determines that a
given mimp-graph G should be transformed into a non-redundant mimp-graph
by applying of reduction steps and at each reduction step the measure must be
decreased. The normalization measure will be the number of maximal formulas

in the mimp-graph.

Theorem 5 (Normalization) Every propositional mimp-graph G can be re-
duced to a mormal propositional mimp-graph G' having the same hypotheses
and conclusion as G. Moreover, for any standard tree-like natural deduction
I, if G := G (the F-minimal mimp-like representation of I1, c¢f. Theorem 3),

then the size of G' does not exceed the size of G, and hence also II.

Remark 2 The second assertion sharply contrasts to the well-known exponen-
tial speed-up of standard normalization. Note that the latter is a consequence
of the tree-like structure of standard deductions having different occurrences of
equal hypotheses formulas, whereas all formulas occurring in F-minimal mimp-

like representations are pairwise distinct.

Proof: This characteristic of preservation of premises and conclusions of the
derivation is proved naturally. Through an inspection of each elimination of
maximal formula is observed that the reduction step (see Definition 26) of the
propositional mimp-graph does not change the set of premises and conclusions
(indicated by D-nodes H and C) of the derivation that is being reduced.

In addition, the demonstration of this theorem has two primary require-
ments. First, we guarantee that through the elimination of maximal formulas
in the propositional mimp-graph, cannot generate more maximal formulas.The
second requirement is to guarantee that during the normalization process, the
normalization measure adopted is always reduced.

The first requirement is easily verifiable through an inspection of each
case in the elimination of maximal formulas. Thus, it is observed that no
case produces more maximal formulas. The second requirement is established
through the normalization procedure (see Section 5.2.2) and demonstrated
through an analysis of existing cases in the elimination of maximal formulas in

mimp-graphs. To support this statement, it is used the notion of normalization
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measure, we adopt as measure of complexity (induction parameter) the number
of maximal formulas Nmaxz(G). Besides, as already mentioned, working with
F-mimimal mimp-graph representations we can use as optional inductive

parameter the ordinary size of mimp-graphs. [ ]

Normalization Process

We know that a specific propositional mimp-graph G can have one or
more maximal formulas represented by M;, ..., M,,. Thus, the normalization
procedure is:

1. Choose a maximal formula represented by M.

2. Identify the respective number of maximal formulas Nmaz(G).

3. Eliminate M}, as defined in Definition 26, creating a new graph G.
4. In this application one, of the following six cases may occur:

a) The maximal formula is removed (case 1 in all eliminations of

maximal formulas).

b) The maximal formula is removed but the formula node is maintained,
and, Nmaz(G) is decreased (case 2 in all eliminations of maximal

formulas);

c¢) Two maximal formula are removed (case 3 in all eliminations of

maximal formulas).

d) Two maximal formula are removed but the formula node is main-
tained, hence Nmaz(G) is decreased (case 4 in all eliminations of

maximal formulas).

e) The maximal formula is removed, the formula node is maintained and
R-node sequence reordered, hence Nmaz(G) is decreased (case 5 in

all eliminations of maximal formulas).

f) All maximal formulas are removed.

5. Repeat this process until the normalization measure Nmaz(G) is re-

duced to 0 and G becomes a normal propositional mimp-graph.

Since the process of the eliminating a maximal formula on propositional
mimp-graphs always ends in the elimination of at least one maximal formula,
and with the decrease in the number of vertices of the graph, we can say that

this normalization theorem is directly a strong normalization theorem.
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5.3
Proof-graphs for first order logic

In this section we extend mimp-graphs for propositional logic defined in
Section 5.1 to first order logic. This extension can be carried through without
much ado and thus we show the robustness of the concept of mimp-graphs.

In Section 5.3.1 we give the definition of these mimp-graphs for first order
logic, called mimp-fol, starting from definitions for terms, formula graphs of
first order logic, and rule nodes for mimp-fol, then the Section 5.3.2 show two
examples of mimp-fol. The set of transformations for normalization in mimp-fol

is given in Section 5.3.3.

5.3.1
Definition

According to the language of first order logic for Gentzen-Prawitz style
natural deduction (Gentzen 1969) (Prawitz 2006) introduced in Chapter 2, we
extend mimp-graphs (defined in Chapter 3) to first order logic as follows.

— Variables are represented by nodes as follows:

Variale: (X;) with V-Label. {a, b, ... X, ¥, 7 Xy, Xz, .}

It is not necessary to differentiate between free and bound variables, since
this will be made explicit by label in edges of the graph.

— Formulas are represented by formula graphs that are composed by
formula nodes; thus the definition of formula graphs has three added

inductive graphs:

Predicate: Universal quantifier: Existential quantifier:
= v\ Bind o Vbind
(®) W) @)
av/ N N
QM/ \_;% u T,q
L/ \\4 formula node formula node
Argument 1 ... Argumentn (subformula) (subformula)

Figure 5.15 shows how bound variables appear in formula graphs; they are to
be shared as much as possible. Like hypothesis (linked to D-node with label
H) may only be discharged once, variables may not be bound by more than
one quantifier. Also, quantifiers may not bind variables outside their direct
subformula, their scope.

In mimp-fol, rule nodes operate conveniently on the root node (primary
connective) of a formula-graph. Since quantifier rules of mimp-fol affect vari-
ables and we are sharing subformulas and since variables are different before

and after substitution, we cannot share one formula graph as the “before and
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vx (R(x) V S(x)) /v. R(x) v S(x)

{,4{) e’;m.f (S) \}\J @‘\)

b ol
-u;;}"‘/ \u z! u;l

“\

—

Figure 5.15: Bound and free variables in formula graphs.

after” of a substitution. Instead, two subgraphs are required that are different
in the variable that is substituted for. The substitution explicit by an edge
labeled subs.by ( see Definition 28). In the following example we can identify
two formula graphs as the premise and conclusion of a substitution, P and
P[z/t].

argl

(?

‘s’ f’ ar \ub.w. by
L‘VI‘." \

\

T
i
1€ bind

O N P\ H_T‘q:f;l(\

S

Figure 5.16: Premise and conclusion of a substitution.

Now we have the set of rules added in the extension:

Definition 28 A mimp-fol G is a directed graph (V, E, L) where: V is a set
of nodes, L is a set of labels, E is a set of edges (ve V, t e L, v' € V), where
v 18 the source and v’ the target.

The mimp-fol is defined recursively as follows:

pmimp FEvery construction rule for propositional mimp-graphs (Definition 23)

is a construction rule for mimp-fol.

VI If Gy is a mimp-fol, containing a node: ., linked to the D-node C, then
the graph G is defined as Gy with
1. the remowal of the ingoing edge in the node C;
2. an R-node VI; at the top position,
3. duplicating: the graph of a,, with the substitution of x for t

(am[z/a]);
4. an F-node Vy;
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1y V- Introduction V- Elimination
‘I formula node formula node
Q (premise) (premise)
» P P
O 22 Variable (VR [y Variable
\-..T-" \‘_‘_Y—’r \\“'—,!
ol ul ol
v v
formula node formula node formula node
(conclusion) (conclusion) (conclusion)

3- Introduction 3- Elimination

formula node delimiter node

(premise) (discharged hypothesis)
: formula node ™ formula node
P ; o Ndlis minor premise
: (major premise) ‘?f’c (mi " prom )
< term i e anra
:\3{ }' _____ 'y Variable .\“‘J}! ',-**-9“' m
w1 S 3EF-22r  variable
3 e
L4

v
formula node v
(conclusion) formula node

(conclusion)

P c par bind u
5. edges: ap—VI;, VI,—=5V,, VI,—5t, Vi—x, Vi—san[z/a],
subs. by conc
a——x and V;—C;

is a mimp-fol under the proviso that ‘a’ does mot occur in any variable
node of the branch (see Figure 5.17).

()22 0)

i

ﬁffew -
= ~E Paluew  subs by

TR
VI e
Ne I‘

-

Figure 5.17: V-Introduction Rule.

VE If Gy is a mimp-fol and contains the edge ¥i—>ay,, and the node V, linked
to the delimiter node C then the graph G is defined as G with
1. the remowal of the ingoing edge in the node C.
2. an R-node VE; at the top position;
3. duplicating: the graph of ., with the substitution of x for t-

(om[t/z]);
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4. edges: YV, ZSVE;, VE——an[t/z], VE; termnew t, 222y and
am[t]z]255C,

is a mimp-fol (see Figure 5.18).

e stbs. by
{\ vE ,.L—""":E‘i’i{{‘ﬂ' \

S,

‘Sﬂcu. are i\t :lll,

Figure 5.18: V-Elimination Rule.

3L If G, is a mimp-fol and contains the node o, linked to the D-node C' then
the graph G is defined as G1 with

1. the remowval of the ingoing edge in the node C.

2. an R-node 31; at the top position;
3. duplicating: the graph of «,, with the substitution of t for x

(am[z/t]);
4. edges: am—=53L, AL 3, 3L

subs. by conc
t——2x and 3,—C,

e t, 3 g z, EI1ti>0~’m[$/t];

is a mimp-fol (see Figure 5.19).

|
Are
Oy :
ﬁ)’;frw T \
B fertaiw sups by
{‘ 3l :"'—‘ |

i

Figure 5.19: 3-Introduction Rule.
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dE If Gy and G are mimp-fol, and the graph obtained by G1®G, (intermediate
step) contains nodes: 3; and o, linked to the D-node C; and «, is linked
to 3; by EItL»am and o, 1s linked to D-node H,, then the graph G is
defined as G, ® Gy with

1. the removal of the ingoing edges in the node C which were generated
in the intermediate step (G, ® G3);

2. an R-node 3E; at the top position;

m M,
3. edges: o,——3E;, J—>

di subs. b
E| DIAENy 5 S A

par c
ElEi, EIEiﬂm, aEiﬂ)O},

conc
a and o,—C;

is a mimp-fol (see Figure 5.20).

Figure 5.20: 3-Elimination Rule.

LI If Gy is a mimp-fol and contains the node 1 linked to the D-node C' then
the graph G is defined as G with

1. the remowal of the ingoing edge in the node C.
2. an R-node LI; at the top position,

conc

3. edges: LI—=*>q,,, 1251 T, and am—sC,

is a mimp-fol.
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5.3.2
Examples

By means of these examples we shall first of all show how our graphs
represent deductions. Figure 5.21 shows a small proof with quantifiers, where
the term-edge indicates the replaced term ¢ in the inference scheme 31 that has
the conclusion 3yP(y) and the premise P(y)[t/y] = P(t). The substitution is
indicated by means of the subs-edge.

£

2
X ‘~sg:b.1. by

%
\\
\ ferm
N

v RS ‘\‘
~‘ 'S¢ -“_.mb. by \

obm

[P#)]*
WPy) ~ B

JyP(y) A B =

JzP(x) JyP(y)
JyP(y)

3}
[ &y

IE,1

Sl e e =

Figure 5.21: Example in proof-graphs for FOL

hY

N e ind \

b ferm |

. ] <

SN s Wise Y & AN

A N - W\
! ho T~ arg J

e 4
\ Seae

9 l.‘f‘”-z’,'\'--___lln f - L ¢ 714_1 s
[VyF(tby)] VE S = - argZl “_/ .s'h‘!’.'.\i by
F(tl tz) L i o [ L — | \
ol g o S e N e
aF (21,t2 Pl ST T A
[EIa:VyF(w,y)]l Vy13a:1F(ac1,y1) B by I{Vlg‘:li'__i’-— ! e ; X subs. b_l.-/
1 Sl \ /
Vyidz1 F(z1,
y13z1F(z1,51) >l

IzVyF(z,y) > Yy 3z F(z1,91)

Figure 5.22: Example in mimp-graphs for FOL
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5.3.3
Reductions for mimp-fol

To obtain a normal derivation from any deduction, we transform it step
by step, until no elimination rule is below an introduction rule. This process
is called normalization, thus we give a set of transformations for first order
logic proofs which preserve the information content of the original proof.
We emphasize that for previous schemes of reduction (propositional logic),
conclusions of maximal formulas remain shared, but now we have reduction
schemes with added conclusions, we can compare it to the reduction scheme
for natural deduction in Definition 3. Note that II[¢/a] represents the resulting
graph of replacing the label a on variable nodes by the label .

Elimination of VI followed by VE In this reduction step are only pre-
served nodes and edges in the graph represented by II, the formula graph
Q. the edge amﬂga, the variable node with label a and the remain-

ing graph represented by a cloud, then this label a on variable nodes is
replaced by t(II[t/a]).

Elimination of 3I followed by FE Now, we preserve the graph represented
by II, the formula graph «,,, the edge amirit, the variable node with
label ¢, the graph II’, the formula graph o,, then the label a on variable
nodes is replaced by t (II'[t/a]).

then this label a on variable nodes is replaced by t.
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