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3
Mimp-graphs: Graphs for Minimal Implicational Logic

In this chapter we define graph representations using “mixed” formulas
and inferences in Natural Deduction in the purely implicational minimal
logic; then we obtain a (weak) normalization theorem that, in fact, is a
strong normalization theorem. The choice of purely implicational minimal
logic (M=) is motivated by the fact that the computational complexity
of the validity of M~ is PSPACE-complete and can polynomially simulate
classical, intuitionistic and full minimal logic (Statman 1979) as well as any
propositional logic with a Natural Deduction system satisfying the subformula
property (Haeusler 2013).

3.1
Definition of Mimp-graphs

Mimp-graphs are special directed graphs whose nodes and edges are
assigned with labels. Moreover we distinguish two parts, one representing the
inferences of a proof, and the other the formulas. For the formula-part of a
mimp-graph, we use formula graphs as a basis and consist only of formula
nodes (see Definition 8). A formula can also be presented as a formula tree,
but sharing within a formula is possible with formula graphs. An example is
shown in the Figure 3.1: the propositions p and ¢ each only need to occur once
in the graph.

AN ,;(:’L}‘»\
Ve \'\. o
K - J/
) ) (3
FL Vgl i
# . K T & P
® @ ® @ @) (@

Figure 3.1: Formula (p » ¢) » (p » ¢) depicted as a formula tree (left side)
and as a formula graph (right side).

The formula nodes (F-nodes) are labeled with formulas as being en-

coded /represented by their principal connectives (in particular, atoms). Addi-
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tionally we will use delimiter nodes (D-nodes) H; and C' to indicate which are
the hypothesis formulas and the final conclusion formula of the mimp-graph.

As for the inference-part of a mimp-graph we have the rule nodes (R-
nodes) that are labeled with the names of the inference rules (I and -E). Both
logic connectives and inference names may be indexed, in order to achieve an
1-1 correspondence between formulas (inferences) and their representations
(names).

Since formulas are uniquely determined by the representations in ques-
tion, i.e. F-node labels, in the sequel we will sometimes identify both; to em-
phasize the difference we will refer to the former as formula graphs, i.e. those

whose F-node labels are formulas, instead of principal connectives.
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Figure 3.2: Types of formula nodes.

Edges are labeled with tokens that identify the connections between the
respective R-nodes and F-nodes. Note that formulas may occur only once in
the mimp-graph. Subformulas are indicated by outgoing edges with labels [
(left) and r (right), see Figure 3.2.

R-nodes, like in Natural Deduction, require the correct number of
premises. The premises are indicated by incoming edges and there are edges
from the R-nodes to the conclusion formulas. In the terminology about R-
nodes, the R-node —E has two incoming edges, these are distinguished by
calling them major (with label M) or minor (with label m) and so also the F-
node ‘premise’ associated with these edges. Thus, an R-node —E has a major
premise and a minor premise, the major premise contains the connective that
is eliminated; the other premise is called ‘minor’, and an R-node —I has only
one premise. Figure 3.3 shows the R-nodes »I (implication introduction), »Iv?
(implication introduction vacuously) and »E (implication elimination). In the
case in which the discharge of hypotheses is vacuous, a mimp-graph is repres-
ented by a disconnected graph, where the discharged F-node is not linked to
the conclusion of the rule by any directed path.

In the R-nodes, formulas are re-used, which is indicated by putting several
arrows towards them, hence the number of edges with label p, M, m and ¢

coming/going to an F-node could be arbitrarily large. To make all this a bit

Lthe “v” stands for “vacuous”, this case of the rule I discharges a hypothesis vacuously.
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Figure 3.3: Types of rule nodes of the mimp-graph.
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Figure 3.4: The transition from a derivation in ND to a mimp-graph.

more intuitive we give an example of a mimp-graph in Figure 3.4, which can
be seen as a derivation of (¢ » 7) » (p » r) from (p » ¢). Hypotheses are
replaced by D-nodes H and indexes of discarded hypotheses are replaced by
additional edges assigned with the label: disc. Note that the D-node H can
only be discharged once. The re-using of formulas is necessary. We remind the
reader that some valid implicational formulas, such as ((((r » s) »7) > 1) >
s) » s (see Figure 3.5), need to use any number of times a subformula, in this
case the subformula (((r » s) » r) » ) > s is used twice. Because of this,
edges p, m, M and c in Figure 3.5 are indexed with the same index of the
R-node to which they belong.

F-nodes in the graph (Figure 3.4) are labeled with propositional letters p,
q and r, the connective »; R-nodes are labeled with »E and »I. The underlying
idea is that there is an inferential order between R-nodes that provides the

corresponding derivability order; F-node labeled 4 linked to the delimiter node
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Figure 3.5: The transition from a natural deduction proof to a mimp-graph.

with labeled C' by an edge labeled conc is the root node and the conclusion
of the proof represented by the graph. Besides, the node -»; linked to the
delimiter node labeled Hj by the edge labeled hyp (hypothesis) in the graph
is representing the premise (p » q).

We want to emphasize that the mimp-graphs put together information on
formula-graphs and R-nodes. To make it more transparent we can use different
types of lines. In this way F-nodes and edges between them are used solid lines,
whereas inference nodes and edges between them and adjacent premises and/or
conclusions are used dashed lines and additionally delimiter nodes have been
shaded. So nodes of types » and p (propositions) together with adjacent edges
(1,7) have solid lines, whereas nodes labeled »I and »E together with adjacent
edges (m, M, p, c,disc) have dashed lines.

We now give a formal definition of mimp-graphs.
Definition 5 (Label types) There are four types of labels:
— R-Labels is the set of inference labels: {1,/n € N} u {s3E,,/m € N},

— F-Labels is the set of formula labels: {=;/i € N} and propositional letters
{p7Q7r) "'}7
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— Ep-Labels is the set of edge labels: {l (left), r (right)},

— Ey-Labels is the set of edge labels: { p; (premise), m; (minor premise),
My, (major premise), ¢, (conclusion), discs (discharge), hyp, (hypo-
thesis), conc (final conclusion) / i,j,k,r,s,t € N},

— D-Labels is the set of delimiter labels: {Hy/k e N} u{C}.

The union of these four sets of label types will be called LBL.

Definition 6 Let G be a graph. ly is a labeling function from the nodes of G
to RUFuUD-Labels, i.e. it assigns a label to each node; lg is a labeling function

from the edges of G to EpUE,-Labels, i.e. it assigns a label to each edge.

Definition 7 Let G; = (V!, El, L) and Go = (V?, E2, L?) be two graphs,
where: VI and V2 are sets of vertices, E! and E? are sets of labeled edges, L
and 1.2 are subsets of LBL. The operation G1®Gs = ( Viu V2, E17 E2) Llu L?)
equalizes nodes of G1 with nodes of G5 that have the same label, and equalizes

edges with the same source, target and label into one. To be precise, the sets
Vu V2 and E'7 E? are of the form

- Viuv2= {CU]_ € Vl}U {LUQ € VZ/VIL']_ eVl lvl(IL']_) * le(l'g)}.
~ B B? = {z1—1; € BV} U {my—2oy € B2/ V(z1—5y1) € B (I (z1) #
b2 (22) V U1 (31—1) # Lz (ma—>90) v ly1 (31) # Ly2(y2))}-

Note: This operation does not include nodes created by duplication or marked,

according what is explained in Definition 28.

We will use the terms o, 8, and +, to represent the principal connective
of the formula «, 8 and ~y respectively. In next definitions, the graph has been

simplified to improve readability, and to explain the details.

Definition 8 (Formula graph) A formula graph G is a directed graph
(N, A, B) where: N is a set of vertices (or nodes), A is a set of labeled edges
(ve N, t eEp-Labels, v’ € N) of source v, target v’ and label t and is identified
with the arrow 'ULVU’, B is a set of labels b € FUEp-Labels.

Formula graphs are recursively defined as follows:
Basis One propositional letter p is a formula graph.

> If Gy is a formula graph with root node o, and G5 is a formula graph
with root node B,, then the graph G that is defined as G1 & Gy with

1. an F-node >,
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2. edges: -)ql—>ozm and »>,——sf,,
is a formula graph (see the following figure).

Gy Gy

(&> -

Definition 9 (Mimp-graph) A mimp-graph G is a directed graph (V, E, L)
where: V is a set of nodes, L is a subset of LBL, E is a set of labeled edges (v €
V, t € Epyp-Labels, v’ € V') of source v, target v’ and label t and identified
with the arrow v—v'.

Mimp-graphs are recursively defined as follows:

Basis If Gy is a formula graph with root node o, then the graph G defined as
G: with delimiter nodes H, and C and edges a,—sC' and thﬂwm

s a mimp-graph.

sE If Gy and Gy are mimp-graphs, and the graph (intermediate step) obtained
by G1 ® G5 contains the edge -)ql—>am and two nodes >, and o, linked
to the delimiter node C, then the graph G5 that is defined as G1 ® G,
with

1. the removal of ingoing edges in the node C which were generated in
the intermediate step (see the figure below, dotted area in G & Gs);
2. an R-node »E; at the top position;

C conc
»E;, »E,—=p, and p,—C, where

new is a fresh (new) index ranging over all edges of kind ¢, m and

new

3. edges: oyp—

M ingoing and/or outgoing of F-nodes o, [, and >4;

is a mimp-graph (see the following figure).

>I If Gy is a mimp-graph and contains a node B, linked to the delimiter node
C and the node a, linked to the delimiter node Hy, then the graph G
that is defined as
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1. G := Gy & Go, such that Gy is a formula graph with root node -,
linked to F-nodes a,, and (3, by edges: -)tl—>am, >——Bn;

conc

2. with the removal of edges: B,—C;
3. an R-node >1; at the top position;

p c conc disc,
4. edges: B,——>1;, sL;—5» 5, ——C and »1;,—> H},, where new
is a fresh (new) index considering all edges of kind p, disc and c

ingoing and/or outgoing of F-nodes oy, By and -4;

is a mimp-graph (see the following figure; the a,,-node is discharged).

>Iv If G1 is a mimp-graph and contains a node B, linked to the delimiter
node C, then the graph G that is defined as

1. G == Gy ® Gy, such that Gs is a formula graph with root node >4
linked to F-nodes o, and B, by edges: -)tl—>am, -)tr—>ﬂn;

2. with the removal of the edge B, —~—>C;

3. an R-node »lv; at the top position;

4. edges: Bnm»)lvj, > 25C and -)Ivjcnﬁh)t, where new is an index

under the same conditions of the previous case;

is a mimp-graph (see the following figure).

Definition 10 Let G be a mimp-graph. An inferential order < on nodes of
G is a partial ordering of the R-nodes of G such that n <n' iff n and n' are
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R-nodes and there is an F-node f such that nﬂ)f Bt and Ibly is ¢ and

Ibly is m, or lbly is ¢ and lbly @s M, or [bly is ¢ and Ibly is p. Node n is a top

position node if n is maximal w.r.t. <.

In order to avoid overloading of indexes, we will omit, whenever possible,
the indexing of edges of kind ¢, m, M, p and disc, keeping in mind that the
coherence of indexing is established by the kind of rule-node to which they are
linked.

Lemma 1 enables us to prove that a given graph G is a mimp-graph. We
just have to check that G has an inferential ordering on all R-nodes and that
each node of G is of one of the possible types that generate the Basis and the

construction cases »E, »I and »Iv of Definition 9.
Lemma 1 G is a mimp-graph if and only if the following properties hold:

1. There exists a well-founded (hence acyclic) inferential order < on all R-

nodes of the mimp-graph?.
2. Every node N of G is of one of the following siz types:

P N is labeled with one of the propositional letters: {p, q, 1, ... }. N

has no outgoing edges | and r.

K N has label »,, and has exactly two outgoing edges with label | and
r, respectively. N may has outgoing edges with labels p;, m; or My;

and ingoing edges with label c; and hyp,,.

E N has label 5E; and has ezactly one outgoing edge >E;——> [, where
Brn is a node type P or K. N has exactly two ingoing edges
am—>>E; and -)qLeEi, where oy, s a node type P or K. There

are two outgoing edges from the node -»,: -)ql—>am and »;——B.

I N has label »1; (or »lv;, if discharges an hypothesis vacuously), has
one outgoing edge »1,—-;, and one (or zero for the case »Iv)
outgoing edge -)deii>H k- N has ezactly one ingoing edge: ﬂnp—>Ij,
where B, is a node type P or K. There are two outgoing edges from
the node >;: -)tl—>am and -)tr—>ﬂn such that there is one (or zero

for the case »Iv) ingoing edge to the node oy, : Hkhﬂ»am.
H N has label Hy and has outgoing edges with label hyp.

ZWe can extend this “dashed” inferential order < to the full “mixed” order <* by adding

new “solid” relations < corresponding to arrows L and 5 between F-nodes. Note that <*
may contain cycles (see Figure 3.4). However all recursive definitions and inductive proofs
to follow are based on the well-founded “dashed” order <, hence being legitimate.
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C N has label C and has ezxactly one ingoing edge with label conc.

Proof:

=: By induction on the construction of mimp-graph (Definition 9). For
every construction case for mimp-graphs we have to check the three properties
stated in Lemma. Property (2) is immediate. For property (1), we know from
the induction hypothesis that there is an inferential order < on R-nodes of
the mimp-graph. In the construction cases »I, sIv or 5E, we make the new
R-node that is introduced highest in the <-ordering, which yields an inferential
ordering on R-nodes. In the construction case »E, when we have two inferential
orderings, <; on GG; and <3 on G5. Then G; & G5 can be given an inferential
ordering by taking the union of <; and <, and in addition putting n < m for
every R-node n,m such that n € G; and m € Gs.

<=: By induction on the number of R-nodes of G. Let < be the topological
order that is assumed to exist. Let n be the R-node that is maximal w.r.t. <.
Then n must be on the top position. When we remove node n, including its
edges linked (if n is of type I) and the node type C is linked to the premise of
the R-node, we obtain a graph G’ that satisfies the properties listed in Lemma.
By induction hypothesis we see that G’ is a mimp-graph. Now we can add the
node n again, using one of the construction cases for mimp-graphs: Basis if n
is a P node or K node, »E if n is an E node, -1 if n is an I node. [

It is natural to consider minimal mimp-graph-like representations of given
natural deductions. Actually one can try to minimize the number of F-nodes
and/or R-nodes, but in this version we consider only the F-option, as it helps
to reduce the size under standard normalization (see the next section). To
grasp the point, note that mimp-graph in Figure 3.4 (see above) is F-minimal,
i.e., its F-labeled nodes refer to pairwise distinct formulas. This observation is

summarized by Theorem 3.

Theorem 3 (F-minimal representation) FEvery standard tree-like natural
deduction II has a uniquely determined (up to graph-isomorphism) F-minimal

mimp-like representation Gy that satisfies the following four conditions.

1. G is a mimp-graph whose size does not exceed the size of 1.

2. II and Gy both have the same (set of ) hypotheses and the same conclu-

sion.
3. There is graph homomorphism h : Il - Gy that is injective on R-Labels.

4. All F-Labels occurring in G denote pairwise distinct formulas.
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Proof: Let N and Form be the set of nodes and formulas, respectively, occur-
ring in II. Note that II determines a fixed surjection f : N-Form that may not
be injective (for in II, one and the same formula may be assigned to different
nodes). In order to obtain G take as R-nodes the inferences occurring in II
assigned with the corresponding R-Labels representing inferences’ names (pos-
sibly indexed, in order to achieve a 1-1 correspondence between inferences and
R-Labels, cf. Figure 3.4). Define basic F-nodes of G as formulas from Form
assigned with the corresponding F-Labels representing formulas’ principal con-
nectives (possibly indexed, in order to achieve an 1-1 correspondence between
formulas and F-Labels, cf. Figure 3.4). So the total number of all basic F-nodes
of Gy is the cardinality of the set Form, while f being a mapping from nodes
of II onto the basic F-nodes of Gp. To complete the construction of G we
add, if necessary, the remaining F-nodes labeled by failing representations of
subformulas of f(z), z € N, and define the E-Labels of Gy, accordingly. Note
that by the definition all nodes of G have pairwise distinct labels. In particu-
lar, every F-Label occurs only once in Gpj, which yields the crucial condition
4. [ ]

3.2
Normalization for mimp-graphs

In this section we define the normalization procedure for mimp-graphs.
It is based on the standard normalization method given by Prawitz. Thus a
mazimal formula in mimp-graphs is a »I followed by a »E of the same formula
graph (see Definition 11). It is the same notion of maximal formulas that is
being used in natural deduction derivations. So a maximal formula occurrence
is the consequence of an application of an introduction rule and major premise
of an application of an elimination rule. But here we assume that derivations
represented by mimp-graphs. We wish to eliminate such maximal formula by
dropping nodes and edges that are involved in the maximal formula.

Definition 11 A maximal formula m in a mimp-graph G (see the figure below,
where the double-headed arrows represent several edges) is a sub-graph of G

consisting of:
1. F-nodes o, Bn, 24, the R-node >1; and the delimiter node H,;
2. the R-node »E; at the top position;

l T p c hyp disc
3. edges: >, Qs >4 Bn, Bn »l;, -1, >4, Hy, O, 21;—H,,

m M c
ap—E;, »—>E; and -sE;—f,,;
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I,
O
a a >0
3 s>E
I3

However, as a special case of maximal formula could also happen that
between the R-nodes »I and »E there are several other maximal formulas such
as the case in the example of Figure 3.6, where there is a maximal formula
with R-nodes »I, and »Ej; (dotted area with white background) inside of the
maximal formula with R-nodes »I3 and »E¢ (area with shaded background).
That is, the inferential orders of R-nodes are intermediate to those of the R-
nodes »I3 and »Eg. In these cases eliminate in one step the maximal formula,
with the exception of the R-nodes »; and »; because they are still related with
other nodes, becoming as shown in the same figure. We can visualize another
maximal formula (with R-nodes »Iy and »E;) that is pending removal.

Definition 12 (1) For n; € V, a path in a proof-graph is a sequence of

. h la lg—2 I .
vertices and edges of the form n, Ny Np-1 ny such that ny is

a hypothesis F-node, ny, is the conclusion F-node, n; alternating between an R-
node and an F-node. edges; alternate between two types of edges: l; € {m, M, p}
and l; = c¢. (2) A branch is an initial part of a path which stops at the
conclusion F-node or at the first minor premise whose major premise is the

conclusion of an R-node.

The term R-node sequence is representing a deduction, and if it is a
smaller part of another R-node sequence (subdeduction), then it is called a
subsequence of the latter. A subsequence that derives a premise of the last R-
node application in an R-node sequence is called a direct R-node subsequence.
Instead of writing “the direct R-node subsequence that derives the minor
premise of the last inference of an R-node sequence D”, we simply write “the

minor subsequence of D”.

Definition 13 A reordering of a given mimp-graph G is obtaining by supply-
ing G with the following (new) inferencial order on the R-nodes of G.

- o(t,) =0 for an R-node t,, starting with hypothesis.

- o(t) = o(t") + 1 if the conclusion formula of R-node t' is premise, right

premise or magjor premise of t.
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Figure 3.6: Example of a maximal formula with an intermediate maximal
formula.

Proposition 1 A graph obtained by a reordering according to Definition 13

is @ mimp-graph.

Definition 14 Consider a mimp-graph G with a mazimal formula m, that

satisfies the following requirements:

1. Between the R-nodes -1, and ->E; there are zero or more maximal

formulas with inferential orders within the range of these rule nodes.

2. There is an edge -)I,-i»)q and the F-node >4 has zero or more ingoing

edges.

3. There is an edge -)qL-)El and the F-node -, is the premise of zero or

more of another R-nodes.

4. If a branch will be separated from the inferential order this branch must
be insertable in the following branch, according to the order, i.e., the

conclusion of this separated branch is the premise in the following branch.

The elimination of a maximal formula m from G is the following opera-
tion on a mimp-graph (see Figure 3.7, the double-headed arrows are represen-

ting several edges):


DBD
PUC-Rio - Certificação Digital Nº 1012697/CA


PUC-RIo - Certificacdo Digital N° 1012697/CA

Some Results in a Proof-theory Based on Graphs 33

1. If there is no mazximal formula between the R-nodes »1; and ->E; then

follow these steps:

(a) If the edge »1,—>, is the only ingoing edge to », and the edge
-)qL-)El is the only outgoing edge from -, then remove edges to

and from the F-node -4, and remove the F-node .

(b) If the D-node H,, discharged by >1, has n outgoing edges with label

hyp then repeat n-times edges in the minor subsequence of >E;.
(c) Remove edges to and from nodes »1;, »E; and H,.
(d) Remove nodes »1;, »E; and H,.
(e) Apply the operation defined in Definition 18 to the resulting graph.

Note that Proposition 1 ensures that the result is a mimp-graph.

2. Otherwise eliminate the mazimal formulas between the R-nodes »I; and

>E; as in the previous step.

N
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Figure 3.7: Elimination of a maximal formula in mimp-graphs.

Note that the removal of a node type I generated by case -»Iv in
Definition 23, disconnects the graph, meaning that the sub-graph hypotheses
linked, by the edge with label m, to the node labeled »E removed, is no longer
connected to the delimiter node type C.

Figure 3.8 shows an instance of the elimination of a maximal formula in

tree form. Note that this example shows the reason why essentially our (weak)
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Figure 3.8: Eliminating a maximal formula in a natural deduction proof and

its mimp-graph translation.


DBD
PUC-Rio - Certificação Digital Nº 1012697/CA


PUC-RIo - Certificacdo Digital N° 1012697/CA

Some Results in a Proof-theory Based on Graphs 35

normalization theorem is directly a strong normalization theorem. The formula
B » v is not a maximal formula before a reduction is applied to eliminate the
maximal formula o » (8 » 7). This possibility of having hidden maximal
formulas in Natural Deduction is the main reason to use more sophisticated
methods whenever proving strong normalization. In mimp-graphs there is no
possibility to hide a maximal formula because all formulas are represented
only once in the graph. In this graph 8 » 7 is already a maximal formula. We
can choose to remove any of the two maximal formulas. If 5 » 7 is chosen
to be eliminated, by the mimp-graph normalization procedure, its reduction
eliminates the @ » (8 » ) too. On the other hand, the choice of @ » (8 »
v) to be reduced only eliminates itself. In any case, the number of maximal

formula decreases.

Lemma 2 If G is a mimp-graph with a mazimal formula m and G' is obtained

from G by eliminating m, then G' is also a mimp-graph.

Proof: We use Lemma 1. All nodes in G’ are of the right form: P, F, E, I, H
or C. We verify that G’ has one ingoing edge with label conc to the delimiter
node type C and that is acyclic and connected. Finally, a referential order on
G' (as defined in Definition 13) between R-nodes must preserve. ]

We shall construct the normalization proof for mimp-graphs. This proof
is guided by the normalization measure. That is, the general mechanism from
the proof determines that a given mimp-graph G should be transformed into a
non-redundant mimp-graph by applying reduction steps and at each reduction
step the measure must be decreased. The normalization measure will be the
number of maximal formulas in the mimp-graph.

Also note an important observation concerning F-minimal mimp rep-
resentations (see Theorem 3). Since F-minimal mimps can have at most one
occurrence of hypotheses a and/or 3, every proper reduction step will diminish
the size of deduction. Hence the size of the graph (= the number of nodes)
can serve as another inductive parameter, provided that the normalization is
being applied to F-minimal mimp-graph representations.

Theorem 4 (Normalization) Every mimp-graph G can be reduced to a
normal mimp-graph G’ having the same hypotheses and conclusion as G.
Moreover, for any standard tree-like natural deduction I1, if G := Gy (the F-
minimal mimp-like representation of II, cf. Theorem 8), then the size of G’

does not exceed the size of G, and hence also 11.

Remark 1 The second assertion sharply contrasts to the well-known exponen-

tial speed-up of standard normalization. Note that the latter is a consequence
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of the tree-like structure of standard deductions having different occurrences of
equal hypotheses formulas, whereas all formulas occurring in F-minimal mimp-
like representations are pairwise distinct.

Proof: This characteristic of preservation of the premises and conclusions of
the derivation is proved naturally. Through an inspection of each elimination
of maximal formula is observed that the reduction step (see Definition 14) of
the mimp-graph does not change the set of premises and conclusions (indicated
by the delimiter nodes type H and C) of the derivation that is being reduced.

In addition, the demonstration of this theorem has two primary require-
ments. First, we guarantee that through the elimination of maximal formulas in
the mimp-graph, cannot generate more maximal formulas. The second require-
ment is to guarantee that during the normalization process, the normalization
measure adopted is always reduced.

The first requirement is easily verifiable through an inspection of each
case in the elimination of maximal formulas. Thus, it is observed that no
case produces more maximal formulas. The second requirement is established
through the normalization procedure and demonstrated through an analysis
of existing cases in the elimination of maximal formulas in mimp-graphs. To
support this statement, it is used the notion of normalization measure, we
adopt as measure of complexity (induction parameter) the number of maximal
formulas Nmaz(G). Besides, as already mentioned, working with F-mimimal
mimp-graph representations we can use as optional inductive parameter the
ordinary size of mimp-graphs. [ |

Normalization Process

We know that a specific mimp-graph G can have one or more maximal

formulas represented by Mj, ..., M,,. Thus, the normalization procedure is:
1. Choose a maximal formula represented by Mj.
2. Identify the respective number of maximal formulas Nmaz(G).
3. Eliminate M) as defined in Definition 14, creating a new graph G.

4. In this elimination, one of the following three cases may occur:

a) The maximal formula is removed.

b) The maximal formula is removed but the F-node is maintained, and,

Nmaz(G) is decreased;

c) All maximal formulas are removed.
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5. Repeat steps 1 to 4 until the normalization measure Nmax(G) is reduced

to 0 and G becomes a normal mimp-graph.

Since the process of eliminating a maximal formula on mimp-graphs
always ends in the elimination of at least one maximal formula, and with
the decrease in the number of vertices of the graph, we can say that this

normalization theorem is directly a strong normalization theorem.

3.3

Summary

In this chapter, we introduced the mimp-graph through the main defi-
nitions and examples, mainly devised for extracting proof-theoretic properties
from proof system. That is, we have tackled one of our research tracks. Mimp-
graphs preserve the ability to represent proofs in Natural Deduction and their
minimal formula representation is a key feature of the mimp-graph structure,
because as we saw earlier, it is easy to determine an upper bounds on the
length of reduction sequences leading to normal proofs. It is the number of
maximal formulas. This feature is of crucial importance because we intend to

use this method in automated theorem provers.
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