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1
Introduction

The use of proof-graphs, instead of trees or lists, for representing proofs
is getting popular among proof-theoreticians. Proof-graphs serve as a way to
provide a better symmetry to the semantics of proofs (Oliveira & Queiroz 2003)
and a way to study complexity of propositional proofs and to provide more
efficient theorem provers, concerning size of propositional proofs. In (Bonet &
Buss 1993), one can find a complexity analysis of the size of Frege systems,
Natural Deduction systems and Sequent Calculus concerning their tree-like
and list-like representation. This leads to O(nlog(n)) improvement in the size
of the list-based proofs compared to tree-like proofs, which is based on the
observation that the hypotheses occur only once in the lists and more than once
in the trees. Thus sharing formulas helps to reduce the size of proofs. There
are related works, e.g. (Alves, Ferndndez & Mackie 2011), that use graphs
for representing proofs, pointing out that proof-graphs offer a better way to
facilitate the visualisation and understanding of proofs in the underlying logic.

On the other hand (Finger 2005), (da Costa 2007) and (Gordeev,
Haeusler & Costa 2009) show that the use of Directed Acyclic Graphs (DAGs)
together with mechanisms of unification/substitution in proof representations
has compacting/compressing factor equivalent to cut-introduction. And, ob-
viously, graphs can save space by means of reference, instead of plain copying.
This work shows yet another advantage of using graphs for representing proofs.
First, we show that using “mixed” graph representations of formulas and in-
ferences in Natural Deduction in the purely implicational minimal logic one
can obtain a (weak) normalization theorem that, in fact, is a strong norma-
lization theorem. Moreover the corresponding normalization procedure does
not exceed the size of the input, which sharply contrasts to the well-known
exponential speed-up of standard normalization. The choice of purely implic-
ational minimal logic (M) is motivated by the fact that the computational
complexity of the validity of M~ is PSPACE-complete and can polynomially
simulate classical, intuitionistic and full minimal logic (Statman 1979) as well
as any propositional logic with a Natural Deduction system satisfying the sub-

formula property (Haeusler 2013). Then we extend this result to propositional
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logic obtaining also strong normalization.
In a more general context, this work has been conducted as part of a
bigger tree-to-graph proof compressing research project. The purpose of such

proof compression is:

1. To construct small (if possible, minimal) graph-like representations of
standard tree-like proofs in a given proof system and — in the propo-
sitional case — investigate the corresponding short graph-like theorem

provers.

2. To find short (say, polynomial-size) graph-like analogous of standard
tree-like proof theoretic operations like e.g. normalization in Natural

Deduction and/or cut-elimination in Sequent Calculus.

Note that the present work fulfills both conditions with regard to the
mimp-graph representation (see below) of chosen Natural Deduction and the
corresponding notion of formula-minimality (see Theorems 3, 7?7, 4 and 5).

Back to the proof normalization, recall the following properties of a given

structural deductive system (Natural Deduction, Sequent Calculus, etc):

— Normal form: To each derivation of « from A there is a normal derivation
of o from A’ c A.

— Normalization: To each derivation of o« from A there is a normal
derivation of a from A’ ¢ A, obtained by a particular strategy of

reductions application.

— Strong Normalization: To each derivation of a from A there is a normal
derivation of o from A’ ¢ A. This normal form can be obtained by

applying reductions to the original derivation in any ordering.

The strong normalization property for a natural deduction system is

usually proved by the so-called semantical method:

— Define a property P(m) on derivations 7 in the Natural Deduction

system;

— Prove that this property implies strong normalization, that is Va (P(7) —
SN (7)), where SN(X) means that X is strongly normalizable;

— Prove that V@ P(m).

There are well-known examples of this property P(X) : (1) Prawitz’s
“strong validity”; (2) Tait’s “convertibility”; (3) Jervell’s “regularity”; (4)
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Leivant’s “stability”; (5) Martin-L6f’s “computability”; (6) Girard’s “candi-
date de reducibilité”. Note that such semantical method to prove strong
normalization is unconstructive and even in the case of purely implicational
fragment of minimal logic it provides no combinatorial insight into the nature
of strong normalization. Another, more constructive strategy would be to
show that there is a worst sequence of reductions always produces a normal
derivation. Let us call it a syntactic method of proving the strong normalization
theorem. The method used in the present research is that any sequence of
reductions always produces a normal derivation. This means that the order
in which cuts (maximal formulas) are eliminated has no impact on the end-
result. This is obtained by brute force: the proof consists of an exhaustive
case-analysis.

Other methods use assignments of rather complicated measures to deriv-
ations such that arbitrary reductions decrease the measure, which by standard
inductive arguments yields a desired proof of the strong normalization. In
this thesis we show how to represent derivations in a graph-like form to M~
and full propositional logic, and how to reduce (eliminating maximal formu-
las) these representations such that a normalization theorem can be proved
by counting the number of maximal formulas in the original derivation. The
strong normalization is a direct consequence of such normalization, since any
reduction decreases the corresponding measure of derivation complexity. The
underlying intuition comes from the fact that our graph representations use
only one node for any two identical formulas occurring in the original Natural

Deduction derivation (see Theorem 3 for a more precise description).
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Figure 1.1: Example of derivation with two steps of reduction.

We show in Figure 1.1 an example of the eliminating a maximal formula
in a derivation in Natural Deduction. The formula p » (pA¢q) is not a maximal
formula before a reduction (>1) is applied to eliminate the maximal formula
(p~>q) > (p> (prq)). This possibility of having hidden maximal formulas in
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ND is the main reason to use more sophisticated methods whenever proving
strong normalization.

In Figure 1.2 we show an embedding of this derivation into a mimp-
graph. This example shows the reason why our normalization procedure is
directly a strong normalization. We remark that there is no possibility to hide
a maximal formula because all formulas are represented only once in the graph
(see Figure 1.2). In this graph p » (pAgq) is already a maximal formula. We can
choose to remove any of the maximal formulas. If p > (p A q) is chosen to be
eliminated, by the mimp-graph elimination procedure, its reduction eliminates
the (p = q) » (p > (pAq)) too. On the other hand, the choice of (p » q) » (p »
(pAq)) to be reduced only eliminates itself. In any case the number of maximal

formulas decreases and the mimp-graph becomes as shown in Figure 1.3.

Figure 1.3: Normalized mimp-graph of the example in Figure 1.2.

Continuing with our aim of studying the complexity of proofs, the current
approach also give graph representations for first order logic, deep inference

and bi-intuitionistic logic.
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1.0.1
Related work

The related idea of proof-graphs has been investigated in the last deca-
de, for classical and intuitionistic logic. More recently, N-graphs introduced by
de Oliveira (Oliveira & Queiroz 2003) is a proof system originally developed
for classical logic, as a suitable solution to the lack of symmetry in classical
ND logic. Mainly because N-Graphs use a multiple conclusion proof struc-
ture. N-Graphs have also been adapted for intuitionistic logic (Quispe-Cruz,
de Oliveira, de Queiroz & de Paiva 2014).

In (Geuvers & Loeb 2007) another approach to represent Natural De-
duction using graphs is proposed. It reports a graph-representation of Natural
Deduction, in Gentzen as well as Fitch’s style. In fact the proofs are repres-
ented as hypergraphs, or boxed-graphs, with possibility of sharing subproofs.
It is developed not only for the implicational fragment, although the repre-
sentation of linear logic proofs is related as further work. Our approach is di-
fferent from (Geuvers & Loeb 2007) in that we include graph-representations
of formulas in the proofs. The fact that our normalization procedure leads
to strong-normalization is a consequence of sharing subformulas, and hence
subproofs, in our proof-graph representations. It is unclear whether a similar
result is available using (Geuvers & Loeb 2007).

Other previous research concerning the use of graphs to represent proofs
was developed on connections to substructural logics as Linear Logic, see
(Girard 1996) and (Girard, Lafont & Regnier 1995) for example. The main
motivation of this just mentioned investigations is to provide a sound way
of representing Linear Logic proofs without dealing with unique labeling and
complicated rules for relabeling and discharging mechanisms need to represent
Linear Logic proofs as trees in Natural Deduction style as well as in Sequent
Calculus.

Proof-nets were such representations and a syntactical criteria on the
possible paths on them were considered as a soundness criteria for a proof-
graph to be a proof-net. Proof-nets have a cut-rule quite similar to the cut in
Sequent Calculus. For the Multiplicative fragment of Classical Linear Logic,
there is a linear time cut-elimination theorem. However, when the additive
versions of the connectives are considered, the usual complexity of the cut-
elimination raises up again. Linear Logic is an important Logic whenever we
consider the study of a concurrent computational system and semantics of
it strongly uses concurrency theory concepts. Our investigation, on the other
hand, is not motivated by proof-theoretical semantics !. From the purely proof-

! The name that nowadays is used to denote the kind of research pioneered by Jean-Yves
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theoretical point of view, we use graphs to reduce the redundancy in proofs
in such a way that we do not allow hidden maximal formulas in our graph
representation of a Natural Deduction proof.

Finally, we mention Alessio-Gundersen (Guglielmi & Gundersen 2008)
work, where a kind of flow graph is used to present an abstract graphical
framework capable of representing the calculus of structures in deep inference
and is also presented a normalization mechanism via an abstract graphical

framework for SKS system.

1.1
Organization

Chapter 2 gives the basic notions of natural deduction that is considered
in the thesis.

Chapter 3 introduces our proof-graphs for minimal implicational propo-
sitional logic.

Chapter 4 proposes proof-graphs with explicit sharing of sub-proofs by
means of boxes to border the set of shared rules.

Chapter 5 adds the full minimal propositional logic to the mimp-graph
formalism (propositional mimp-graph) with its normalization procedure and
then adds a version for first order logic and the set of transformations that we
need to describe the normalization.

Chapter 6 starts with a brief overview of deep inference and the calculus
of structures by Guglielmi (Guglielmi 2007) and then presents a proof-graph
representation for this calculus; and Section 6.2 introduces the Bi-intuitionistic
Logic and then shows how the formalism N2Int can be embedded in proof-

graphs.

Girard
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