PUC-RIo - Certificacdo Digital N° 0921318/CA

VIII
Related work

Figure VIII.1 presents an overview of work related to CEU, pointing
out supported features which are grouped by those that reduce complexity
and those that increase safety. The line Preemptive represents asynchronous
languages with preemptive scheduling [9, 29|, which are summarized further.
The remaining lines enumerate languages with goals similar to those of CEU
that follow a synchronous execution semantics.

Many related approaches allow events to be handled in sequence through
a blocking primitive, overcoming the main limitation of event-driven systems
(column 1 [14, 5, 33, 4, 27]). As a natural extension, most of them also keep the
state of local variables between reactions to the environment (column 2). In
addition, CEU introduces a reliable mechanism to interface local pointers with
the system through finalization blocks (column 8). Given that these approaches
use cooperative scheduling, they can provide deterministic and reproducible
execution (column 5). However, as far as we know, CEU is the first system to
extend this guarantee for timers in parallel.

Synchronous languages first appeared in the context of WSNs through
OSM |28] and Sol |27], which provide parallel compositions (column 3) and
distinguish themselves from multi-threaded languages by handling thread
destruction seamlessly [35, 7]. Compositions are fundamental for the simpler
reasoning about control that made possible the safety analysis of CEU. Sol
detects infinite loops at compile time to ensure that programs are responsive
(column 6). CEU adopts the same policy, which first appeared in Esterel.
Internal events (column 4) can be used as a reactive alternative to shared-
memory communication in synchronous languages, as supported in OSM [28|.
CEU introduces a stack-based execution that also provides a restricted but
safer form of subroutines.

nesC provides a data-race detector for interrupt handlers (column 7),
ensuring that “f a variable x is accessed by asynchronous code, then any access
of © outside of an atomic statement is a compile-time error” [19]. The analysis
of CEU is, instead, targeted at synchronous code and points more precisely

when accesses can be concurrent, which is only possible because of its restricted

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

Chapter VIII. Related work 82

Figure VIII.1: Table of features found in work related to CEU.

The languages are sorted by the date they first appeared in a publication. A gray
background indicates where the feature first appeared (or a contribution if it appears
in a CEU cell).

semantics. Furthermore, CEU extends the analysis for system calls (commands
in nesC) and control conflicts in trail termination. Although nesC does not
enforce bounded reactions, it promotes a cooperative style among tasks, and
provides asynchronous events that can preempt tasks (column 6), something
that cannot be done in CEU.

On the opposite side of concurrency models, languages with preemptive
scheduling assume time independence among processes and are more appro-
priate for applications involving algorithmic-intensive problems. Preemptive
scheduling is also employed in real-time operating systems to provide response
predictability, typically through prioritized schedulers [9, 16, 17, 29]. The
choice between the two models should take into account the nature of the
application and consider the trade-off between safe synchronization and pre-

dictable responsiveness.

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

