PUC-RIo - Certificacdo Digital N° 0921318/CA

VII

The implementation of Céu

The compilation process of a program in CEU is composed of three main

phases, as illustrated in Figure VII.1:

Source code
in Céu

Parsing

—_—
LPeg + Lua

- tokenizing

- parsing

- error handling
- tree generation

Syntax Tree

Temporal
analysis

Lua + C

- termporal analysis
- error handling
- #line annotations

Source code
inC

Final
generation

GCC

- runtime files
- platform files
- converted Céu
- error handling

010101010

Final binary

0101010101

Figure VII.1: Compilation process: from the source code in CEU to the final

binary.

Parsing The parser of CEU is written in LPeg [24], a pattern matching library

that also recognize grammars, making it possible to write the tokenizer

and grammar with the same tool. The source code is then converted to

an abstract syntax tree (AST) to be used in further phases. This phase

may be aborted due to syntax errors in the CEU source file.

Temporal analysis This phase detects inconsistencies in CEU programs,

such as unbounded loops and the forms of non-determinism. It also makes

some “classical” semantic analysis, such as building a symbol table for

checking variable declarations. However, most of type checking is delayed

to the last phase to take advantage of GCC’s error handling. Therefore,

this phase needs to annotate the C' output with #line pragmas that

match the original file in CEU. This phase must output code in C', given
how tied CEU is to C' by design.

Final generation The final phase packs the generated C file with the CEU

runtime and platform-dependent functionality, compiling them with gce

and generating the final binary. The CEU runtime includes the scheduler,

timer management, and the external C' API. The platform files include

libraries for I/O and bindings to invoke the CEU scheduler on external

events.

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

Chapter VII. The implementation of Céu 72

In the sections that follow, we discuss the most sensible parts of the com-
piler considering our design, such as the temporal analysis, runtime scheduler,
and the external API.

VII.1 Temporal analysis

As introduced, the temporal analysis phase detects inconsistencies in
CEU programs. Here, we focus on the algorithm that detects non-deterministic
access to variables, as presented in Section II1.2.

For each node representing a statement in the program AST, we keep
the set of events I (for incoming) that can lead to the execution of the node,
and also the set of events O (for outgoing) that can terminate the node.

A node inherits the set [from its direct parent and calculates O according

to its type:

— Nodes that represent expressions, assignments, C' calls, and declarations

simply reproduce O = I, as they do not await;
— An await e statement has O = {e}.

— A break statement has O = {} as it escapes the innermost loop and never
terminate, i.e., never proceeds to the statement immediately following it

(see also loop below);

— A sequence node (;) modifies each of its children to have I,, = O,_;.
The first child inherits I from the sequence parent, and the set O for the

sequence node is copied from its last child, i.e., O = O,,.

— A loop node includes its body’s O on its own I (I = I U Opgy), as the
loop is also reached from its own body. The union of all break statements’

O forms the set O for a loop.
— An if node has O = Opye U Ojgise.

— A parallel composition (par/and / par/or) may terminate from any of its
branches, hence O = O, U ... U O,,.

With all sets calculated, any two nodes that perform side effects and
are in parallel branches can have their [sets compared for intersections.
If the intersection is not the empty set, they are marked as suspicious (see
Section II1.2).

Figure VIL.2 reproduces the second code of Figure II1.5 and shows the
corresponding AST with the sets I and O for each node. The event . (dot)
represents the “boot” reaction. The assignments to y in parallel (lines 5,8 in

the code) have an empty intersection of I (lines 6,9 in the AST), hence, they

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

73 VIIL.2. Memory layout

do not conflict. Note that although the accesses in lines 5, 11 in the code (lines

6,11 in the AST) do have an intersection, they are not in parallel and are also

safe.

input void A, B; 1 Stmts I={.} O={A}

var int y; 2 Dcl_y I={.} O={.}
par/or do 3 ParOr I={.} O={A,B}

await A; 4 Stmts I={.} O={A}

y = 1; 5 Await A I={.} O={A}
with 6 Set_y I={A} O={A}

await B; 7 Stmts I={.} O={B}

y = 2; 8 Await_ B I={.} O={B}
end 9 Set_y I={B} 0O={B}
await A; 10 Await_A I={A,B} O={A}

y = 3; 11 Set_y I={A} O={A}

Figure VIL.2: A program with a corresponding AST describing the sets I and
O. The program is safe because accesses to y in parallel have no intersections
for I.

VII.2 Memory layout

CEU favors a fine-grained use of trails, being common the use of trails that
await a single event. For this reason, CEU does not allocate per-trail stacks;
instead, all data resides in fixed memory slots—this is true for the program
variables as well as for temporary values and flags needed during runtime.
Memory for trails in parallel must coexist, while statements in sequence can
reuse it. CEU reserves a single static block of memory to hold all memory slots,
whose size is the maximum the program uses at a given time. A given position
in the memory may hold different data (with variable sizes) during runtime.

Translating this idea to C' is straightforward [28, 5]: memory for blocks
in sequence are packed in a struct, while blocks in parallel, in a union. As an
example, Figure VII.3 shows a program with corresponding memory layout.
Each variable is assigned a unique id (e.g. a_1) so that variables with the same
name can be distinguished. The do-end blocks in sequence are packed in a
union, given that their variables cannot be in scope at the same time, e.g.,
MEM.a_1 and MEM.b_2 can safely share the same memory address. The example
also illustrates the presence of runtime flags related to the parallel composition,

which also reside in reusable slots in the static memory.

VI1.3 Trail allocation

The compiler extracts the maximum number of trails a program can have

at the same time and creates a static vector to hold runtime information about

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

Chapter VII. The implementation of Céu 74

input int A, B, C; union { // sequence
do int a_1; // do_1
var int a = await A; int b_2; // do_2
end struct { // par/and
do u8 _and_3: 1;
var int b = await B; u8 _and_4: 1;
end };
par/and do } MEM ;
await B;
with
await C;
end

Figure VIL.3: A program with blocks in sequence and in parallel, with
corresponding memory layout.

them. Again, trails that cannot be active at the same time can share memory
slots in the static vector.

At any given moment, a trail can be awaiting in one of the following
states: INACTIVE, STACKED, FIN, or in any event defined in the program:

enum {
INACTIVE = O,
STACKED,
FIN,
EVT_A, // input void A;
EVT_e, // event int e;
< L. // other events

All terminated or not-yet-started trails stay in the INACTIVE state and
are ignored by the scheduler. A STACKED trail holds its associated stack level
and is delayed until the scheduler runtime level reaches that value again. A FIN
trail represents a hanged finalization block which is only scheduled when its
corresponding block goes out of scope. A trail waiting for an event stays in the
state of the corresponding event, also holding the sequence number (segno) in
which it started awaiting. A trail is represented by the following struct:
struct trail t {

state_t evt;

label_t 1bl;

union {

unsigned char seqno;
stack_t stk;

}i
Yi

The field evt holds the state of the trail (or the event it is awaiting);
the field 1bl holds the entry point in the code to execute when the trail is

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

)

VII.3. Trail allocation

1 input void A; enum {

2 event void e; Main = 1, // 1ln 3
3 // TRAIL 0 — 1lbl Main Awake_e, // 1ln 7
4 par/and do ParAnd_chk, // 1ln 8, 15
5 // TRAIL 0 — 1lbl Main ParAnd_sub_2, // 1n 10
6 await e; Awake_ A_1, // 1n 12
7 // TRAIL 0 1bl Awake_e Emit_e_cont, // 1n 14
8 // TRAIL 0 1bl ParAnd_ chk ParAnd_out, // 1n 17
9 with Awake A 2 // 1ln 19
10 // TRAIL 1 — 1bl ParAnd_sub_2 ¥

11 await A;

12 // TRAIL 1 1bl Awake_ A_ 1

13 emit e;

// TRAIL 1 — 1lbl Emit_e_ cont
// TRAIL 1 — 1lbl ParAnd_chk
end
// TRAIL 0 — 1lbl ParAnd_out
await A;
// TRAIL 0 — 1bl Awake_A_ 2

e e e e
© o N 3 Ot

Figure VII.4: Static allocation of trails and entry-point labels.

scheduled; the third field depends on the evt field and may hold the segno for
an event, or the stack level stk for a STACKED state.

The size of state_t depends on the number of events in the application;
for an application with less than 253 events (plus the 3 states), one byte
is enough. The size of label_t depends primarily on the number of await
statements in the application—each await splits the code in two and requires
a unique entry point in the code for its continuation. Additionally, split & join
points for parallel compositions, emit continuations, and finalization blocks
also require labels. The seqno will eventually overflow during execution (every
256 reactions). However, given that the scheduler traverses all trails in each
reaction, it can adjust them to properly handle overflows (actually 2 bits to hold
the seqno would be already enough). The stack size depends on the maximum
depth of nested emissions and is bounded to the maximum number of trails,
e.g., a trail emits an event that awakes another trail, which emits an event that
awakes another trail, and so on—the last trail cannot awake any trail, because
they will be all hanged in a STACKED state. In WSNs applications, the size of
trail_t is typically only 3 bytes (1 byte for each field).

(a) Code generation

The example in Figure VII.4 illustrates how trails and labels are statically
allocated in a program. The program has a maximum of 2 trails, because the
par/and (line 4) can reuse TRAIL 0, and the join point (line 16) can reuse
both TRAIL 0 and TRAIL 1. Each label is associated with a unique identifier

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

Chapter VII. The implementation of Céu 76

1 while (<...>) { // scheduler main loop
2 trail_tx trail = <...> // choose next trail
3 switch (trail—>1bl) {

4 case Main:

5 // activate TRAIL 1 to run next

6 TRLS[1] .evt = STACKED;

7 TRLS[1].1bl = ParAnd_sub_2; // 2nd trail of par/and
8 TRLS[1] .stk = current_stack;

9

10 // code in the 1lst trail of par/and

11 // await e;

12 TRLS[0] .evt = EVT_e;

13 TRLS[0] .1bl = Awake_e;

14 TRLS[0] .seq = current_seqno;

15 break;

16

17 case ParAnd_sub_2:

18 // await A;

19 TRLS[1] .evt = EVT_A;

20 TRLS[1].1bl = Awake_A_1;

21 TRLS[1] .seqg = current_seqno;

22 break;

23

24 <..0> // other labels

[CEE V)

[

—
—~

Figure VIL5: Generated code for the program of Figure VII.4.

in the enum. The static vector to hold the two trails in the example is defined

as

trail_t TRLS[2];

In the final generated C' code, each label becomes a switch case working
as the entry point to execute its associated code. Figure VIL.5 shows the
corresponding code for the program of Figure VII.4. The program is initialized
with all trails set to INACTIVE. Then, the scheduler executes the Main label in
the first trail. When the Main label reaches the par/and, it “stacks” the 2nd
trail of the par/and to run on TRAIL 1 (line 5-8) and proceeds to the code
in the Ist trail (lines 10-15), respecting the deterministic execution order. The
code sets the running TRAIL 0 to await EVT_e on label Awake_e, and then
halts with a break. The next iteration of the scheduler takes TRAIL 1 and
executes its registered label ParAnd_sub_2 (lines 17-22), which sets TRAIL 1
to await EVT_A and also halts.

Regarding cancellation, trails in parallel are always allocated in subse-
quent slots in the static vector TRLS. Therefore, when a par/or terminates, the
scheduler sequentially searches and executes FIN trails within the range of the

par/or, and then clears all of them to INACTIVE at once. Given that finalization

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

7 VII.j. The external C API

blocks cannot contain await statements, the whole process is guaranteed to ter-
minate in bounded time. Escaping a loop that contains parallel compositions

also trigger the same process.

VII.4 The external ' API

As a reactive language, the execution of a program in CEU is guided
entirely by the occurrence of external events. From the implementation per-
spective, there are three external sources of input into programs, which are all

exposed as functions in a C' API:

ceu go init(): initializes the program (e.g. trails) and executes the “boot”

reaction (i.e., the Main label).

ceu go event(id,param): executes the reaction for the received event id

and associated parameter.

ceu go wclock(us): increments the current time in microseconds and runs

a reaction if any timer expires.

Given the semantics of CEU, the functions are guaranteed to take a
bounded time to execute. They also return a status code that says if the CEU
program has terminated after the reactions. Further calls to the API have no
effect on terminated programs.

The bindings for the specific platforms are responsible for calling the
functions in the API in the order that better suit their requirements. As
an example, it is possible to set different priorities for events that occur
concurrently (i.e. while a reaction chain is running). However, a binding must
never interleave or run multiple functions in parallel. This would break the
CEU sequential /discrete semantics of time.

As an example, Figure VII.6 shows our binding for TinyOS which maps
nesC callbacks to input events in CEU. The file ceu.h (included in line 3)
contains all definitions for the compiled CEU program, which are further
queried through #ifdef’s. The file ceu.c (included in line 4) contains the
main loop of CEU pointing to the labels defined in the program. The callback
Boot.booted (lines 6-11) is called by TinyOS on mote startup, so we initialize
CEU inside it (line 7). If the CEU program uses timers, we also start a periodic
timer (lines 8-10) that triggers callback Timer.fired (lines 13-17) every 10

milliseconds and advances the wall-clock time of CEU (line 15)'. The remaining

'We also offer a mechanism to start the underlying timer on demand to avoid the “battery
unfriendly” 10ms polling.

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

Chapter VII. The implementation of Céu 78

lines map pre-defined TinyOS events that can be used in CEU programs, such

as the light sensor (lines 19-23) and the radio transceiver (lines 25-36).

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

79

© 0 N 3 ot s W N =

—-
o

11
12
13
14
15
16
17
18
19
20
21
22
23
24

26
27
28
29
30
31
32
33
34
35
36
37
38
39

implementation

{
#include "ceu.h"
#include "ceu.c"

event void Boot.booted () {
ceu_go_init ();
#ifdef CEU_WCLOCKS
call Timer.startPeriodic (10);
#endif
}

#ifdef CEU_WCLOCKS
event void Timer.fired () {
ceu_go_wclock (10000) ;

}
#endif

#ifdef _EVT_PHOTO_READDONE

VII.j. The external C API

event void Photo.readDone (uintl6_t wval) {
ceu_go_event (EVI_PHOTO_READDONE, (voidx)val);

}
#endif

#ifdef _EVT_RADIO_SENDDONE

event void RadioSend.sendDone (message_tx*x msg) {
ceu_go_event (EVT_RADIO_SENDDONE, msq) ;

}
#endif

#ifdef _EVT_RADIO_RECEIVE

event message_t* RadioReceive.receive (message_t* msg) {
ceu_go_event (EVT_RADIO_RECEIVE, msg);

return msg;

}
#tendif

<...0> // other events

Figure VII.6: The TinyOS binding for CEU.

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

VO/8TETZ60 oN [enbig ogdeouad - or4-dNd

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

