PUC-RIo - Certificacdo Digital N° 0921318/CA

VI
The semantics of Céu

The disciplined synchronous execution of CEU, together with broadcast
communication and stacked execution for internal events, may raise doubts
about the precise execution of programs. In this chapter, we introduce a
reduced syntax of CEU and propose an operational semantics in order to
formally describe the language, eliminating imprecisions with regard to how a
program reacts to an external event. For the sake of simplicity, we focus on
the control aspects of the language, leaving out side effects and C' calls (which

behave like in any conventional imperative language).

VI.1 Abstract syntax

// primary expressions

p ::= mem(id) (any memory access to ‘id’)
| await(id) (await event ‘id’)
| emit(id) (emit event ‘id’)
| break (loop escape)

// compound expressions
if mem(id) then p else p (conditional)

|
l p;p (sequence)
| loop p (repetition)
| p and p (par/and)
| porp (par/or)
| fin p (finalization)
// derived by semantic rules
| awaiting(id,n) (awaiting ‘id’ since sequence number ‘n’)
| emitting(n) (emitting on stack level ‘n’)
| p @ loop p (unwinded loop)

Figure VI.1: Reduced syntax of CEU.

Figure VI.1 shows the BNF-like syntax for a subset of CEU that is
sufficient to describe all semantic peculiarities of the language. The mem(id)
primitive represents all accesses, assignments, and C' function calls that affect
a memory location identified by id. As the challenging parts of CEU reside

on its control structures, we are not concerned here with a precise semantics

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

Chapter VI. The semantics of Céu 62

for side effects, but only with their occurrences in programs. The special
notation nop is used to represent an innocuous mem expression (it can be
thought as a synonym for mem(e), where € is an unused identifier). Except
for the fin and semantic-derived expressions, which are discussed further,
the other expressions map to their counterparts in the concrete language
in Figure III.1. Note that mem expressions cannot share identifiers with

await/emit expressions.

VI.2 Operational semantics

The core of our semantics is a relation that, given a sequence number n
identifying the current reaction chain, maps a program p and a stack of events

S in a single step to a modified program and stack:
<S’p> T> <S/’p/>
where

S, S € id* (sequence of event identifiers : [idiyp, ..., id;])
p,p€P (as described in Figure VI1.1)

nelN (univocally identifies a reaction chain)

At the beginning of a reaction chain, the stack is initialized with the
occurring external event ext (S = [ext]), but emit expressions can push new
events on top of it (we discuss how they are popped further).

We describe this relation with a set of small-step structural semantics
rules, which are built in such a way that at most one transition is possible at
any time, resulting in deterministic reaction chains. The transition rules for

the primary expressions are as follows:

(S, await(id)) — (S, awaiting(id,n)) (await)
(id : S, awaiting(id,m)) — (id : S, nop), m <n (awaiting)
(S, emit(id)) — (id: S, emitting(|S])) (emit)

n

(S, emitting(|S|)) — (S, nop) (emitting)

n

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

63 VI2. Operational semantics

An await is simply transformed into an awaiting that remembers the
current external sequence number n (rule await). An awaiting can only transit
to a nop (rule awaiting) if its referred event id matches the top of the stack
and its sequence number is smaller than the current one (m < n). An emit
transits to an emitting holding the current stack level (|.S| stands for the stack
length), and pushing the referred event on the stack (in rule emit). With the
new stack level |S|+1, the emitting(|S]) itself cannot transit, as rule emitting
expects its parameter to match the current stack level. This trick provides the
desired stack-based semantics for internal events.

Proceeding to compound expressions, the rules for conditionals and

sequences are straightforward:

val(id,n) # 0

(S, Gf mem(id) then p else q)) — (S,p) (if-true)
(S, (if mem(idﬁiﬁ%)ezg 0 — (5.9 (if-false)
(S,p) — (5"p)
(S:(ps q) % S0 q) (seq-adv)
(8, (mem(id) ; q)) — (S.q) (seq-nop)
(S, (break ; q)) — (S, break) (seq-brk)

n

Given that our semantics focuses on control, rules if-true and if-false
are the only to query mem expressions. The “magical” function val receives the
memory identifier and current reaction sequence number, returning the current
memory value. Although the value is arbitrary, it is unique in a reaction chain,
because a given expression can execute only once within it (remember that
loops must contain awaits which, from rule await, cannot awake in the same
reaction they are reached).

The rules for loops are analogous to sequences, but use ‘@’ as separators

to properly bind breaks to their enclosing loops:

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

Chapter VI. The semantics of Céu 64

(S, (loop p)) — (S5, (p @ loop p)) ~ (loop-expd)

(S;p) — (51)
(S, (p @ loop q)) — (5", (p" @ loop q))

(loop-adv)

(S, (mem(id) @Q loop p)) — (S,loop p) (loop-nop)

(S, (break @ loop p)) — (S, nop) (loop-brk)

When a program first encounters a loop, it first expands its body in
sequence with itself (rule loop-expd). Rules loop-adv and loop-nop are
similar to rules seq-adv and seq-nop, advancing the loop until they reach a
mem/(id). However, what follows the loop is the loop itself (rule loop-nop).
Note that if we used ¢;’ as a separator in loops, rules loop-brk and seq-
brk would conflict. Rule loop-brk escapes the enclosing loop, transforming
everything into a nop.

The rules for parallel and compositions force transitions on the left branch
p to occur before transitions on the right branch ¢ (rules and-advl and
and-adv2). Then, if one of the sides terminates, the composition is simply

substituted by the other side (rules and-nopl and and-nop2):

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

65 VI2. Operational semantics

(a#b VvV m=n)

(IS] # s)

isBlocked(n, S, p)

isBlocked(n, S, p)

isBlocked(n, S, p) N isBlocked(n,
isBlocked(n, S,p) A isBlocked(n,

false (mem, await,

isBlocked(n,a : S, awaiting(b,m

isBlocked(n, S, emitting(s
isBlocked(n, S, (p ; q
isBlocked(n, S, (p Q loop q
isBlocked(n, S, (p and q
isBlocked(n, S, (p or q
isBlocked(n, S,

,q)
;)

)
)
)
)
)
)

S
S

)=
)
)
)
)
)
)

emit, break, if,loop)

Figure V1.2: The recursive predicate isBlocked is true only if all branches in
parallel are hanged in awaiting or emitting expressions that cannot transit.

(S;p) — (5".1)

S pandq) — (8 @ andqy @bl
isBlocked(n, S,p) , (S,q) — (5',q")

S wandq) — (8 Gandgy @rdadv?)

(5. (mem(id) and)) —> {S.q) (and-nop1)

(5. (p and mem(id))) —> (S.) (and-nop2)

n

(S, (break and q)) — (S, (clear(q) ; break)) (and-brk1l)

n

szlocked(.S, p)
(S, (p and break)) —> - (S, (clear(p) ; break))

(and-brk2)

The deterministic behavior of the semantics relies on the isBlocked
predicate, defined in Figure VI.2 and used in rule and-adv2, requiring the
left branch p to be blocked in order to allow the right transition from ¢ to
¢'. An expression becomes blocked when all of its trails in parallel hang in
awaiting and emitting expressions.

The last two rules and-brkl and and-brk2 deal with a break in each of

the sides in parallel. A break should terminate the whole composition in order

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

Chapter VI. The semantics of Céu

clear(fin p) =
clear(p ; q) = ear(p)
clear(p @ loop q)) = clear(p)
clear(p and q) = clear(p) ; clear(q)
clear(p or q) = clear(p) ; clear(q)
clear(_) = mem(id)

66

a reaction chain.

Figure VI.3: The function clear extracts fin expressions in parallel and put
their bodies in sequence.

to escape the innermost loop (aborting the other side). The clear function
in the rules, defined in Figure VI.3, concatenates all active fin bodies of
the side being aborted (to execute before the and rejoins). Note that there
are no transition rules for fin expressions. This is because once reached, an
fin expression only executes when it is aborted by a trail in parallel. In
Section VI.3(c¢), we show how an fin is mapped to a finalization block in
the concrete language. Note that there is a syntactic restriction that an fin

body cannot emit or await—they are guaranteed to completely execute within

Most rules for parallel or compositions are similar to and compositions:

(S,p) — (5, p")

n

(S (porq) — (5,0 or q))

isBlocked(n,S,p), (S,q) — (S'.q)
(St or q)) — (5" (por)

(S, (mem(id) or q)) — (9, clear(q))

n

isBlocked(n, S, p)
(S, (p or mem(id))) — (S, clear(p))

(S, (break or q) — (5, (clear(q) ; break))

n

isBlocked(n, S, p)
(S, (p or break)) — (S, (clear(p) ; break))

(or-advl)

(or-adv2)

(or-nopl)

(or-nop2)

(or-brk1)

(or-brk2)

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

67 VIL.3. Concrete language mapping

For a parallel or, the rules or-nopl and or-nop2 must terminate the
composition, and also apply the function clear to the aborted side, in order to
properly finalize it.

A reaction chain eventually blocks in awaiting and emitting expressions
in parallel trails. If all trails hangs only in awaiting expressions, it means that
the program cannot advance in the current reaction chain. However, emitting
expressions should resume their continuations of previous emit in the ongoing
reaction, they are just hanged in lower stack indexes (see rule emit). Therefore,
we define another relation that behaves as the previous if the program is not
blocked, and, otherwise, pops the stack:

(S,p) — (5P isBlocked(n, s: S, p)

n

(S,p) == (5".1) (s:9,p) == (5,p)

To describe a reaction chain in CEU, i.e., how a program behaves in reaction to

a single external event, we use the reflexive transitive closure of this relation:
(8,p) == (5".1)

Finally, to describe the complete execution of a program, we need multiple

“invocations” of reaction chains, incrementing the sequence number:

(fe].p) == (0.9

*

<[€2]7p/> :2> <H7p”>

Each invocation starts with an external event at the top of the stack and
finishes with a modified program and an empty stack. After each invocation,

the sequence number is incremented.

V1.3 Concrete language mapping

Although the reduced syntax presented in Figure VI.1 is similar to
the concrete language in Figure II1.1, there are some significant mismatches
between CEU and the formal semantics that require some clarification. In this
section, we describe an informal mapping between the two.

Most statements from CEU map directly to the formal semantics, e.g.,
if —if, ?;7+— 'Y, loop > loop, par/and — and, par/or — or. (Again,
we are not considering side-effects, which are all mapped to the mem semantic

construct.)

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

Chapter VI. The semantics of Céu 68

(a) await and emit

The await and emit primitives of CEU are slightly more complex in
comparison to the formal semantics, as they support communication of values
between emits and awaits. In the two-step translation below, we start with
the program in CEU, which communicates the value 1 between the emit and
await in parallel (left-most code). In the intermediate translation, we include
the shared variable e_ to hold the value being communicated between the two
trails in order to simplify the emit. Finally, we convert the program into the

equivalent in the formal semantics, translating side-effect statements into mem

expressions:
par/or do par/or do <...> ; mem ; emit (e)

<...0> <...> or

emit e => 1; e =1; await (e) ; mem ; mem
with emit e;

v = await e; with

_printf ("sd\n",v) ; await e;
end v = e_;

_printf ("$d\n",v) ;
end

Note that a similar translation is required for external events, i.e., each
external event has a corresponding variable that is explicitly set by the

environment before each reaction chain.

(b) First-class timers

To encompass first-class timers, we need a special TICK event that should
be intercalated with each other event occurrence in an application (e.g. el,
e2):

(TICK],p) == ([l
{le1],p") == ({[.p")

(TICK]p") == ([l.p")
([e2],p") == ([.p"")

The TICK event has an associated variable TICK_ (as illustrated in the
previous section) with the time elapsed between the two occurrences of external

events.

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

69 VIL.3. Concrete language mapping

The translation in two steps from a timer await to the semantics is as

follows:

var int tot = 10000;
loop do
await TICK;
tot = tot — TICK_;
if tot <= 0 then
dt = tot;
break;

dt = await 10ms;

end

end

(c) Finalization blocks

mem;
loop (
await (TICK) ;
mem;
if mem then
mem;
break
else

nop

The biggest mismatch between CEU and the formal semantics is regard-

ing finalization blocks, which require more complex modifications in the pro-

gram for a proper mapping using the fin semantic construct. The code that

follows uses a finalize to safely _release the reference to ptr kept after the

call to _hold:

do
var int* ptr = <...>;
await A;
finalize
_hold(ptr);
with
_release (ptr);
end
await B;
end

In the translation to the semantics, the first required modification is to

catch the do-end termination to run the finalization code. For this, we translate

the block into a par/or with the original body in parallel with a fin to run

the finalization code:

par/or do

var intx*x ptr = <...>;
await A;
_hold(ptr);
await B;
with
{ fin
_release (ptr); }

end

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

Chapter VI. The semantics of Céu 70

In this intermediate code (mixing the syntaxes), the fin body will
execute whenever the par/or terminates, either normally (after the await B)
or aborted from an outer composition (rules and-brk1, and-brk2, or-nopl,
or-nop2, or-brkl, and or-brk2 in the semantics). However, the fin will also
(incorrectly) execute even if the call to _hold is not reached in the body due to
an abort before awaking from the await A. To deal with this issue, for each fin

we need a corresponding flag to keep track of code that needs to be finalized:

1 f = 0;

2 par/or do

3 var intx ptr = <...>;
4 await A;

5 _hold (ptr) ;

6 f_ = 1;

7 await B;

s with

9 { f£fin

10 if £ then

11 _release (ptr);
12 end }

13 end

The flag is initially set to false (line 1), avoiding the finalization code to
execute (lines 9-12). Ounly after the call to _hold (line 5) that we set the flag
to true (line 6) and enable the fin body to execute. The complete translation
from the original example in CEU is as follows:
mem; // f£_ =20
(

mem; // ptr = <...>

await (A) ;

mem; // _hold (ptr)
mem; // £ =1
await (B) ;
or
fin
if mem then // if £_
mem // release _ptr
else

nop

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

