PUC-RIo - Certificacdo Digital N° 0921318/CA

v

Evaluation

In this chapter we present a quantitative evaluation of CEU. Our assump-
tion is that when considering CEU for system-level development, programmers
would face a tradeoff between code simplicity and efficient resource usage. For
this reason, we evaluate source code size, memory usage, event-handling re-
sponsiveness, and battery consumption for a number of standardized protocols
in TinyOS [39]. We use code size as a metric for code simplicity, complemented
with a qualitative discussion regarding the eradication of explicit state vari-
ables for control purposes. By responsiveness, we mean how quickly programs
react to incoming events (to avoid missing them). Memory, responsiveness are
important resource-efficiency measures to evaluate the negative impact with
the adoption of a higher-level language. In particular, responsiveness (instead
of total CPU cycles) is a critical aspect in reactive systems, specially those
with a synchronous execution semantics where preemption is forbidden. We
also discuss battery consumption when evaluating responsiveness.

Our criteria to choose which language and applications to compare with

CEU are based on the following guidelines:

— Compare to a resource-efficient programming language in terms of mem-

ory and speed.

— Compare to the best available codebase, with proved stability and
quality.

— Compare relevant protocols in the context of WSNs.

— Compare the control-based aspects of applications, as CEU is designed

for this purpose.
— Compare the radio behavior, the most critical and battery-drainer com-

ponent in WSNs.

Based on these criteria, we chose nesC as the language to compare, given
its resource efficiency and high-quality codebase!'. In addition, nesC is used

as benchmark in many systems related to CEU [14, 27, 5, 4]. In particular,

!TinyOS repository: http://github.com/tinyos/tinyos-release/

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

Chapter V. FEvaluation 52

| Code size] | Céu features] | Memory usage

Céu globals local © oo first rallel | Max. Céu Ccéu
Applicati L |tok data class ;P2 ber | | ROM RAM

Component pplication anguage| |tokens R ol 5 : events | ¢ r:: ‘comp. :trl:ag Ol D R
nesC 383 4 5 18896 1295

CTP TestNetwork -23% 2;5:6 2 3 5 8 9% 2%
Céu 295 2 20542 1319
nesC 418 2 8 12266 1252

SRP TestSrp -30% 2;2,2-i 1 - 1 3 5% -3%
Céu 291 4 12836 1215
nesC 342 2 1 12708 393

DRIP TestDissemination -25% 4 1 - 1 5 8% 4%
Céu 258 - - 13726 407
nesC 519 1 2 10546 283

CC2420 RadioCountToLeds 27% 33 1 - 2 4 2% 3%
Céu 380 - - 10782 291
nesC 477 2 2 3504 72

Trickle TestTrickle -69% 2,5 - 2 3 6 22% 22%
Céu 149 - - 4284 88

Figure V.1: Comparison between CEU and nesC for the implemented appli-
cations.

The column group Code size compares the number of language tokens and global
variables used in the sources; the group Céu features shows the number of times each
functionality is used in each application; the group Memory usage compares ROM
and RAM consumption.

the work on Protothreads [14] is a strong reference in the WSN community,
and we adhere to similar choices in our evaluation. All chosen applications are
reference implementations of open standards in the TinyOS community [39]:
the receiving component of the CC2/20 radio driver; the Trickle timer; the
SRP routing protocol; the DRIP dissemination protocol; and the routing
component of the CTP collection protocol. They are representative of the
realm of system-level development for WSNs, which mostly consists of network
protocols and low-level system utilities: a radio driver is mandatory in the
context of WSNs; the trickle timer is used as a service by other important
protocols [31, 20]; routing, dissemination, and collection are the most common
classes of protocols in WSNs.

We took advantage of the component-based model of TinyOS and all of
our implementations use the same interface provided by the nesC' counterpart.
This approach has two advantages: first, we could reuse existing applications
in the TinyOS repository to test the protocols (e.g. RadioCountToLeds or
TestNetwork); second, sticking to the same interface forced us to retain the
original architecture and functionality, which also strengths our evaluation.

Figure V.1 shows the comparison for Code size and Memory usage
between the implementations in nesC and CEU. For memory usage, detailed in
Section V.2, we compare the binary code size and required RAM. For code size,
detailed in Section V.1, we compare the number of tokens used in the source
code. For responsiveness, detailed in Section V.3, we evaluate the capacity to

promptly acknowledge radio packet arrivals in the C'C'2420 driver.

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

53 V.1. Code size

V.1 Code size

We use two metrics to compare code complexity between the implemen-
tations in CEU and nesC': the number of language tokens and global variables
used in the source code. Similarly to comparisons in related work [5, 14|, we
did not consider code shared between the nesC and CEU implementations (e.g.
predicates, struct accessors, etc.), as they do not represent control function-
ality and pose no challenges regarding concurrency aspects.

Note that the languages share the core syntax for expressions, calls, and
field accessors (based on C'), and we removed all verbose annotations from
the nesC implementations for a fair comparison (e.g. signal, call, command,
etc.). The column Code size in Figure V.1 shows a considerable decrease in
the number of tokens for all implementations (around at least 25%).

Regarding the metrics for number of globals, we categorized them in state
and data variables.

State variables are used as a mechanism to control the application flow
(on the lack of a better primitive). Keeping track of them is often regarded as
a difficult task, hence, reduction of state variables has already been proposed
as a metric of code complexity in a related work [14]. The implementations
in CEU, not only reduced, but completely eliminated state variables, given
that all control patterns could be expressed with hierarchical compositions of
activities assisted by internal-event communication.

Data variables in WSN programs usually hold message buffers and
protocol parameters (e.g. sequence numbers, timer intervals, etc.). In event-
driven systems, given that stacks are not retained across reactions to the
environment, all data variables must be global?. Although the use of local
variables does not imply in reduction of lines of code (or tokens), the smallest
the scope of a variable, the more readable and less susceptible to bugs the
program becomes. In the CEU implementations, most variables could be nested
to a deeper scope. The column local data variables in Figure V.1 shows the
depth of each new local variable in CEU that was originally a global in nesC
(e.g. “2;5;6” represents globals that became locals inside blocks in the 2nd, 5th,
and 6th depth level).

The columns under Céu features in Figure V.1 point out how many times
each functionality has been used in the implementations in CEU, helping to
identify where the reduction in size comes from. As an example, Trickle uses
2 timers and 3 parallel compositions, resulting in at most 6 trails active at

the same time. The use of six coexisting trails for such a small application

2In the case of nesC, we refer to globals as all variables defined in the top-level of a
component implementation block, which are visible to all functions inside it.

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

Chapter V. FEvaluation 54

is justified by its highly control-intensive nature, and the almost 70% code

reduction illustrates the huge gains with CEU in this context.

V.2 Memory usage

Memory is a scarce resource in motes and it is important that CEU does
not pose significant overheads in comparison to nesC. We evaluate ROM and
RAM consumption by using available testing applications for the protocols in
the TinyOS repository. Then, we compiled each application twice: first with
the original component in nesC, and then with the new component in CEU.
Column Memory usage in Figure V.1 shows the consumption of ROM and
RAM for the generated applications. With the exception of the Trickle timer,
the results in CEU are below 10% in ROM and 5% in RAM, in comparison
with the implementations in nesC. Our method and results are similar to those
for Protothreads [14], which is an actively supported programming system for
the Contiki OS [13].

Note that the results for Trickle illustrate the footprint of the runtime
of CEU. The RAM overhead of 22% actually corresponds to only 16 bytes:
1 byte for each of the maximum 6 concurrent trails, and 10 bytes to handle
synchronization among timers. As the complexity of the application grows, this
basic overhead tends to become irrelevant. The SRP implementation shows a
decrease in RAM, which comes from the internal communication mechanism
of CEU that could eliminate a queue. Note that both TinyOS and CEU define
functions to manipulate queues for timers and tasks (or trails). Hence, as our
implementations use components in the two systems, we pay an extra overhead
in ROM for all applications.

We focused most of the language implementation efforts on RAM opti-
mization, as it has been historically considered more scarce than ROM [32].
Although we have achieved competitive results, we expected more gains with
memory reuse for blocks with locals in sequence, because it is something that
cannot be done automatically by the nesC' compiler. However, we analyzed
each application and it turned out that we had no gains at all from blocks
in sequence. Our conclusion is that sequential patterns in WSN applications
come either from split-phase operations, which always require memory to be
preserved (between the request and the answer); or from loops, which do reuse

all memory, but in the same way that event-driven systems do.

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

55 V.3. Responsiveness

V.3 Responsiveness

A known limitation of languages with synchronous and cooperative ex-
ecution is that they cannot guarantee hard real-time deadlines [12, 29]. For
instance, the rigorous synchronous semantics of CEU forbids non-deterministic
preemption to serve high priority trails. Even though CEU ensures bounded
execution for reactions, this guarantee is not extended to C' function calls,
which are usually preferred for executing long computations (due to perfor-
mance and existing code base). The implementation of a radio driver purely in
CEU raises questions regarding its responsiveness, therefore, we conduct two
experiments in this section. The experiments use the COOJA simulator [15]
running images compiled to TelosB motes.

In the first experiment, we “stress-test” the radio driver to compare its
performance in the CEU and nesC implementations. We use 10 motes that
broadcast 100 consecutive packets of 20 bytes to a mote that runs a periodic
time-consuming activity. The receiving handler simply adds the value of each
received byte to a global counter. The sending rate of each mote is 200ms
(leading to a receiving average of 50 packets per second considering the 10
motes), and the time-consuming activity in the receiving mote runs every
140ms. Note that these numbers are much above typical WSN applications:
10 neighbours characterizes a dense topology; 20 bytes plus header data is
close to the default limit for a TinyOS packet; and 5 messages per second is
a high frequency on networks that are supposedly idle most of the time. We
run the experiment varying the duration of the lengthy activity from 1 to 128
milliseconds, covering a wide set of applications (summarized in Table V.1).
We assume that the lengthy operation is implemented directly in C' and cannot
be easily split in smaller operations (e.g., recursive algorithms [12, 29]). So, we
simulated them with simple busy waits that would keep the driver in CEU
unresponsive during that period.

Figure V.2 shows the percentage of handled packets in CEU and nesC' for
each duration. Starting from the duration of 6ms for the lengthy operation, the
responsiveness of CEU degrades in comparison to nesC' (5% of packet loss).
The nesC driver starts to become unresponsive with operations that take 32ms,
which is a similar conclusion taken from TOSThreads experiments with the
same hardware [29]. Table V.1 shows the duration of some lengthy operations
specifically designed for WSNs found in the literature. The operations in the
group with timings up to 6ms could be used with real-time responsiveness in
CEU (considering the proposed high-load parameters).

Although we did not perform specific tests to evaluate CPU usage, the

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

Chapter V. FEvaluation 56

90%

——e— C5|)

- mm NesC

80%
70%
60%

50%

40%
1ms 2ms 4ms 8ms 16ms 32ms 64ms 128ms

Figure V.2: Percentage of received packets depending on the duration of the
lengthy operation.

Note the logarithmic scale on the z-axis. The packet arrival frequency is 20ms. The
operation frequency is 140ms. In the (left) green area, CEU performs similarly to
nesC. The (middle) gray area represents the region in which nesC' is still responsive.
In the (right) red area, both implementations become unresponsive (i.e. over 5%
packet losses).

] Operation \ Duration ‘
Block cypher [26, 18] 1ms
MD?5 hash [18] 3ms
Wavelet decomposition [41] 6ms
SHA-1 hash [1§] 8ms
RLE compression [38] 70ms
BWT compression [38] 300ms
Image processing [37] 50-1000ms

Table V.1: Durations for lengthy operations is WSNs.
CEU can perform the operations in the green rows in real-time and under high loads.

experiment suggests that the overhead of CEU over nesC is very low. When
the radio driver is the only running activity (column lms, which is the same
result for an addition test we did for Oms), both implementations loose packets
with a difference under 3 percentage points. This difference remains the same
up to 4-ms activities, hence, the observed degradation for longer operations
is only due to the lack of preemption, not execution speed. Note that for
lengthy operations implemented in C, there is no runtime overhead at all, as
the generated code is the same for CEU and nesC' (i.e. CEU and nesC just call
).

In the second experiment, instead of running a long activity in parallel,
we use a 8-ms operation tied in sequence with every packet arrival to simulate

an activity such as encryption. We now run the experiment varying the rate

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

57 V.4. Battery consumption

100%
A~ ———e— C A
90% e
80% — g m— eSC
70%
60%

50%

40%
60ms 50ms 40ms 30ms 20ms 10ms

Figure V.3: Percentage of received packets depending on the sending frequency.
Each received packet is tied to a 8-ms operation. CEU is 100% responsive up to a
frequency of 30ms per packet.

in the 10 sending motes from 600ms to 100ms (i.e., 60ms to 10ms receiving
rate if we consider the 10 motes). Figure V.3 shows the percentage of handled
packets in CEU and nesC' for each rate of message arrival. The results show
that CEU is 100% responsive up to frequency of 33 packets per second, while
nesC up to 50 packets.

The overall conclusion from the experiments is that the radio driver in
CEU performs as well as the original driver in nesC under high loads for
programs with lengthy operations of up to 4ms, which is a reasonable time
for control execution and simple processing. The range between 6ms and 16ms
offers opportunities for performing more complex operations, but also requires
careful analysis and testing. For instance, the last experiment shows that the
CEU driver can process in real time messages arriving every 33ms in sequence
with a 8-ms operation.

Note that our experiments represent a “stress-test” scenario that is atypi-
cal to WSNs. Protocols commonly use longer intervals between message trans-
missions together with mechanisms to avoid contention, such as randomized
timers [31, 20]. Furthermore, WSNs are not subject to strict deadlines, being

not classified as hard real-time systems [32].

V.4 Battery consumption

Battery consumption is critical in WSNs, given that motes usually have
no other source of energy and, in the case of being deployed in remote locations,
cannot have the batteries replaced.

In order to evaluate battery consumption in CEU in comparison to nesC,
we adapted the experiments of Section V.3. The parameters were adjusted

to make the implementations in the two languages behave the same, i.e., the

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

Chapter V. FEvaluation 58

Experiment 1 Experiment 2
nesC Céu nesC/Céu nesC Céu nesC/Céu
Total (J) 1.53 1.52 1.01 2.28 227 1.00
Active (J) 0.04 0.03 456 1.38 1.38 1.00
Idle (J) 1.49 1.49 1.00 0.89 0.89 1.00

Figure V.4: Battery consumption for nesC' and CEU in the two experiments.
The consumption line "Active" for the Experiment 1 is negligible, hence, the ratio
between nesC and CEU should not be considered.

receiving node should receive the same amount of packets during the same
period.

For the first experiment, we made each sending node transmit 75 mes-
sages during 150s, resulting in around 625 received packets (considering the
losses) in the receiving mote, which also performs a 1-ms heavy activity every
1.5 seconds. In this experiment, the CPU is idle most of the time and the
battery is consumed by the radio hardware. For the second experiment, we
included a 2-ms heavy activity after every received packet, making the battery
to be also consumed by the CPU. Figure V.4 shows the battery consumption
(total and with active and idle CPU) for the two experiments and for both
implementations.

We did not expect a noticeable difference in battery usage between CEU
and nesC| because, even considering the support for multiple lines of execution
in CEU, the compiler generates simple event-driven code in C', not requiring
threads or complex runtime apparatus. In fact, the results are virtually the
same for both I/O and CPU-bound experiments.

V.5 Discussion

CEU targets control-intensive applications and provides abstractions that
can express program flow specifications concisely. Our evaluation shows a
considerable decrease in code size that comes from logical compositions of
trails through the par/or and par/and constructs. They handle startup and
termination for trails seamlessly without extra programming efforts. We believe
that the small overhead in memory qualifies CEU as a realistic option for
constrained devices. Furthermore, our broad safety analysis, encompassing all
proposed concurrency mechanisms, ensures that the high degree of concurrency
in WSNs does not pose safety threats to applications. As a summary, the
following safety properties hold for all programs that successfully compile in
CEu:

— Time-bounded reactions to the environment (Sections III.1 and II1.6).

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

59 V.5. Discussion

— Reliable weak and strong abortion among activities (Sec-
tions I11.1 and II1.2).

No concurrency in accesses to shared variables (Section II1.2).
— No concurrency in system calls sharing a resource (Section I11.3).

— Finalization for blocks going out of scope (Section II1.4).

Auto-adjustment for timers in sequence (Section II1.5).

— Synchronization for timers in parallel (Section II1.5).

These properties are desirable in any application and are guaranteed as
preconditions in CEU by design. Ensuring or even extracting these properties
from less restricted languages requires significant manual analysis.

Even though the achieved expressiveness and overhead of CEU meet the
requirements of WSNs, its design imposes two inherent limitations: the lack
of dynamic loading which would forbid the static analysis, and the lack of
hard real-time guarantees. Regarding the first limitation, dynamic features are
already discouraged due to resource constraints. For instance, even object-
oriented languages targeting WSNs forbid dynamic allocation [4, 40].

To deal with the second limitation, which can be critical in the presence of
lengthy computations, we can consider the following approaches: (1) manually
placing pause statements in unbounded loops; (2) integrating CEU with a
preemptive system. The first option requires the lengthy operations to be
rewritten in CEU using pause statements so that other trails can be interleaved
with them. This option is the one recommended in many related work that
provide a similar cooperative primitive (e.g. pause [6], PT_YIELD [14], yield [27],
post [19]). Considering the second option, CEU and preemptive threads are not
mutually exclusive. For instance, TOSThreads [29] proposes a message-based
integration with nesC' that is safe and matches the semantics of CEU external

events.

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

VO/8TETZ60 oN [enbig ogdeouad - or4-dNd

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

