PUC-RIo - Certificacdo Digital N° 0921318/CA

IV
Demo applications

In this chapter, we present two demos that explore the high-level and
safety capabilities of CEU described in the previous chapter. Our goal is
to present full commented applications that help understanding and getting
familiar with the language. The applications are somewhat simple (70 and 170
lines), but complete enough to expose the programming techniques promoted
by CEU.

The first demo targets commercially available 16-bit WSN nodes, such as
micaZ and telosb'. The second demo uses the Arduino open-source platform?,
in order to experiment with custom third-party hardware. Both platforms have
low processing power and memory capacity (16Mhz CPU, 32Kb Flash, and
4Kb SRAM), showing that CEU is applicable to highly constrained platforms.

IV.1 WSN ring

In the first demo, we implement a fixed-ring topology with N motes
placed side-by-side which should all follow the same behavior: receive a message
with an integer counter, show it on the LEDs, wait for 1 second, increment
the counter, and forward it to the mote on its right. Because the topology
constitutes a ring, the counter will be incremented forever while traversing the
motes. If a mote does not receive a message within 5 seconds, it should blink
the red LED every 500 milliseconds until a new message is received. The mote
with ¢d=0 is responsible for initiating the process at boot time and recovering
the ring from failures. On perceiving a failure, it should wait for 10 seconds
before retrying the communication.

Figure 1V.1 implements the communicating trail, which continuously
receives and forwards the messages. The code is an endless loop that first
awaits a radio message (line 2), gets a pointer to its data buffer (line 3), shows

the received counter on the LEDs (line 4), and then awaits 1s (line 5) before

Thttp://www.xbow. com
?http://arduino.cc


DBD
PUC-Rio - Certificação Digital Nº 0921318/CA


PUC-RIo - Certificacdo Digital N° 0921318/CA

Chapter IV. Demo applications 44

1 loop do

2 var _message_t#* msg = await RADIO_RECEIVE;
3 var intx cnt = _Radio_getPayload (msqg) ;
4 _Leds_set (xcnt) ;

5 await 1s;

6 xcnt = *xcnt + 1;

7 finalize

8 _Radio_send((_NODE_ID+1) %N, msqg) ;
9 with

10 _Radio_cancel (msq) ;

11 end

12 await RADIO_SENDDONE;

13 end

Figure IV.1: Communicating trail for the WSN ring.

incrementing the counter in the message (line 6) and forwarding it to the next
mote (line 7-12).

The program uses several services provided by the underlying operating
system ([23]), which are all non-blocking C' functions for LEDs and radio
manipulation.

The finalization block (lines 7-11) ensures that regardless of how the
communicating trail is composed with the rest of the application (and even-
tually aborted by it), the msg buffer will be safely released while waiting for a
RADIO_SENDDONE acknowledge from the radio driver.

Because this code does not handle failures, it is straight to the point and
easy to follow. Actually, this is the final code for this task, as error handling
is placed in a parallel trail.

To handle failures, we define in Figure IV.2 a monitoring trail (lines 4-22)
in parallel with the communicating trail. Lines 8 to 20 describe the network-
down behavior. After 5 seconds of inactivity are detected in the sub-trails in
parallel (lines 6 and 8), two new activities run in parallel: one that retries
communication every 10 seconds by signaling the internal event retry (lines
8-11); and another that blinks the red LED every 500 milliseconds (lines 13-17).

The trick to restore the normal behavior of the network is to await event
RADIO_RECEIVE (line 6) in the par/or (line 5) with the network-down behavior
to abort it whenever a new message is received. By surrounding everything
with a loop (line 4), we ensure that the error detection is continuous.

Finally, we implement in Figure IV.3 the initiating/retrying process that
sends the first message from mote with id=0. Again, we place the code (lines
6-20) in parallel with the other activities. As this process is only handled by
the mote with id = 0, we start by checking it (line 6). If this is not the case,

we simply await forever on this trail (line 19). Otherwise, the loop (lines 7-17)


DBD
PUC-Rio - Certificação Digital Nº 0921318/CA


PUC-RIo - Certificacdo Digital N° 0921318/CA

45 1V.1. WSN ring

par do
<...> // COMMUNICATING TRAIL (previous code)
with
loop do
par/or do
await RADIO_RECEIVE;
with
await 5s;
par do
loop do
emit retry; // only captured by mote 0
await 10s;
end
with
_Leds_set (0) ; // clear LEDs
loop do
_Leds_ledOToggle () ;
await 500ms;
end

© 0 N 3 s W N

e e e e e e
© 0w N 3 s W N = O

end

¥
o

end
end

™)
-

™
%)

end

M
w

Figure IV.2: Monitoring trail for the WSN ring.

sends the first message as soon as the mote is turned on (line 12). It then
waits for a retry emit (line 16) to loop and resend the initial message. Remind
that event retry is emitted on network-down every 10 seconds (line 10 of
Figure IV.2).

The static analysis of CEU correctly warns about concurrent calls to
_Radio_send (line 12) wvs. _Leds_set and _Leds_ledOToggle (lines 15,17 of
Figure IV.2), which all execute after the program detects 5 seconds of inactivity
(line 6 of Figure IV.2). However, because these functions affect different devices
(i.e. radio vs. LEDs), they can be safely executed concurrently. The following
annotation (to be included in the program) states that these specific functions
can be called concurrently with deterministic behavior, allowing the program
to be compiled without warnings:

safe _Radio_send with
_Leds_set, _Leds_ledOToggle;

This example shows how complementary activities in an application can
be written in separate and need not to be mixed in the code. In particular,
error handling (monitoring trail) need not interfere with regular behavior
(communicating trail), and can even be incorporated later. To ensure that
parallel activities exhibit deterministic behavior, the CEU compiler rejects

harmful concurrent C' calls by default.


DBD
PUC-Rio - Certificação Digital Nº 0921318/CA


PUC-RIo - Certificacdo Digital N° 0921318/CA

Chapter IV. Demo applications 46

1 par do

2 <...> // COMMUNICATING TRAIL

3 with

4 <...> // MONITORING TRAIL

5 with

6 if _NODE_ID == 0 then

7 loop do

8 var _message_t msg;

9 var intx cnt = _Radio_getPayload (&msqg) ;
10 *cnt = 1;

11 finalize

12 _Radio_send(l, &msqg);
13 with

14 _Radio_cancel (&msq) ;
15 end

16 await retry;

17 end

18 else

19 await FOREVER;

20 end

21 end

Figure IV.3: Retrying trail for the WSN ring.

As a final consideration, we can extend the idea of compositions by
combining different applications together. In the context of WSNs, it is usually
difficult to physically recover motes in a deployed network, and by combining
multiple applications in a single image, we can switch their execution remotely
via radio. The archetype in Figure I'V.4 illustrates this idea. The input event
SWITCH (line 1) is used to request application switches remotely.® Initially, the
code behaves as application 1 (lines 7-9), but is also waiting for a SWITCH request
in parallel (line 5). Whenever a new request occurs, the par/or terminates,
aborts the running application, and restarts as the requested application. The
statement await FOREVER (line 13) ensures that a terminating application does
not reach the end of the par/or and restarts itself.

The same idea can be used to reboot a mote remotely, in the case of a

strange behavior in an application.

IV.2 Spaceship game

In the next demo, a spaceship game, we control a ship that moves through
space and has to avoid collisions with meteors until it reaches the finish line.
Although this application is not networked, it is still embedded and reactive,

using timers, buttons, and an LCD with real-time feedback. We use an Arduino

3 We are assuming the existence of an hypothetical high-level event SWITCH that abstracts
the radio protocol for requests to change the current running application.


DBD
PUC-Rio - Certificação Digital Nº 0921318/CA


PUC-RIo - Certificacdo Digital N° 0921318/CA

47 1V.2. Spaceship game

1 input int SWITCH;

2 wvar int cur_app = 1;

3 loop do

4 par/or do

5 cur_app = await SWITCH;

6 with

7 if cur_app == 1 then

8 <...> // CODE for APP1
9 end

10 if cur_app == 2 then

11 <...> // CODE for APP2
12 end

13 await FOREVER;

14 end

15 end

Figure TV.4: Retrying trail for the WSN ring.

€+ 79588 meteors

pofts
!

Figure IV.5: The “spaceship” game

connected to a third-party two-row LCD display with two buttons to exhibit
and control the spaceship. Figure IV.5 shows the picture of a running quest.

We describe the behavior of the game, along with its implementation, fol-
lowing a top-down approach. The outermost loop of the game, in Figure IV.6,
is constituted of CODE 1, which sets the game attributes such as globals code
and dt; CODE 2 with the central game loop; and CODE 3 with the “game over”
animation. Every time the loop is executed, it resets the game attributes (line
5), generates a new map (line 7), redraws it on screen (line 8), and waits for a
starting key (line 9). Then, the program executes the main logic of the game
(line 11), until the spaceship reaches the finish line or collides with a meteor.
Depending on the result held in win, the “game over” code (line 13) may display
an animation before restarting the game.

The game attributes (CODE 1 in Figure IV.7) change depending on the
result of the previous iteration of the outermost loop. For the first game

execution and whenever the spaceship collides with a meteor, variable win is


DBD
PUC-Rio - Certificação Digital Nº 0921318/CA


PUC-RIo - Certificacdo Digital N° 0921318/CA

Chapter IV. Demo applications 48

var int dt; // inverse of game speed
var int points; // number of steps alive
var int win = 0; // starting the game

loop do
<...> // CODE 1: set game attributes

_map_generate () ;
_redraw(x, y, points);
await KEY; // starting key

© 00 N 3 o s W N =

= e
N O

<...> // CODE 2: the central loop

=
=W

<...> // CODE 3: game over
end

-
ot

Figure TV.6: Outermost loop for the game.

// CODE 1: set game attributes
var int y = 0; // ship coordinates
var int x = 0; // restart every phase

if not win then
dt = 500;
points = 0;
else
if dt > 100 then
dt = dt — 50;

© 00 N O Ut s W N

=
o

end

-
=

end

—
%]

Figure TV.7: Sets the game attributes.

false, hence, the attributes are reset to their initial values (lines 6-7) Otherwise,
if the player reached the finish line, then the game gets faster, keeping the
current points (lines 9-11).

The central loop of the game (CODE 2 in Figure IV.8) moves the spaceship
as time elapses and checks whether the spaceship reaches the finish line or
collides with a meteor. The code is actually split in two loops in parallel: one
that runs the game steps (lines 3-19), and the other that handles input from
the player to move the spaceship (lines 21-29). Note that we want the spaceship
to move only during the game action, this is why we did not place the input
handling in parallel with the whole application.

The game steps run periodically, depending on the current speed of the
game (line 4). For each loop iteration, x is incremented and the current state
is redrawn on screen (lines 5-6). Then, the spaceship is checked for collision
with meteors (lines 8-11), and also with the finish line (lines 13-16). In either


DBD
PUC-Rio - Certificação Digital Nº 0921318/CA


PUC-RIo - Certificacdo Digital N° 0921318/CA

49 1V.2. Spaceship game

1 // CODE 2: the central loop

2 par/or do

3 loop do

4 await (dt)ms;

5 x =X + 1;

6 _redraw(x, y, points);

7

8 if MAP[y][x] == "#’ then

9 win = 0; // a collision
10 break;

11 end

12

13 if x == _FINISH then

14 win = 1; // finish line
15 break;

16 end

=
o =

points = points + 1;

19 end

20 with

21 loop do

22 var int key = await KEY;
23 if key == _KEY UP then
24 y = 0;

25 end

26 if key == _KEY_DOWN then
27 y = 1;

28 end

29 end

30 end;

Figure IV.8: The game central loop.

of the cases, the central loop terminates with win set to the proper value, also
canceling the input handling activity. The points are incremented before each
iteration of the loop (line 18).

To handle input events, we wait for key presses in another loop (line 22)
and change the spaceship position accordingly (lines 24, 27). Note that there
are no possible race conditions on variable y (i.e., lines 6,8 vs. 24,27) because
the two loops in the par/or statement react to different events (i.e., time and
key presses).

After escaping the central loop, we run the code of Figure IV.9 for the
“game over” behavior, which starts an animation if the spaceship collides with
a meteor. The animation loop (lines 6-13) continuously displays the spaceship
in the two directions, suggesting that it has hit a meteor. The animation is
interrupted when the player presses a key (line 3), proceeding to the game
restart. Note the use of the _lcd object, available in a third-party C++ library
shipped with the LCD display.

This demo makes extensive use of global variables, relying on the de-


DBD
PUC-Rio - Certificação Digital Nº 0921318/CA


PUC-RIo - Certificacdo Digital N° 0921318/CA

© 00 N 3 o s W N =

e
= o

12
13
14
15

Chapter IV. Demo applications

// CODE 3: game over
par/or do

await KEY;
with
if !'win then
loop do
await 100ms;
_lcd.setCursor (0,
_lcd.write('<");
await 100ms;
_lcd.setCursor (0,
_lcd.write(">");
end
end
end

20

Figure IV.9: The “game over” behavior for the game.

terministic concurrency analysis guaranteed by the CEU compiler. We used a

top-down approach to illustrate the hierarchical compositions of blocks of code.

For instance, the “game over” animation (lines 6-13) is self-contained and can

be easily adapted to a new behavior without considering the other parts of the

program.


DBD
PUC-Rio - Certificação Digital Nº 0921318/CA




