PUC-RIo - Certificacdo Digital N° 0921318/CA

ITI
The design of Céu

CEU is a concurrent language in which multiple lines of execution—
known as trails—continuously react to input events from the environment.
Waiting for an event halts the running trail until that event occurs. The envi-
ronment broadcasts an occurring event to all active trails, which share a single
global time reference (the event itself). The fundamental distinction between
CEU and prevailing multi-threaded designs is the way threads are combined in
programs. CEU provides Esterel-like syntactic hierarchical compositions, while
most multi-threaded systems typically only support top-level definitions for
threads (i.e., they cannot be nested). Figure III.1 shows a compact reference
of the syntax of CEU, which helps to follow the examples in this chapter.

We start the chapter with the fundamental design decisions behind
CEU’s execution model, namely the uniqueness of external events and de-
terministic scheduler (Section II1.1). Then, we discuss how they enable safe
concurrency support for shared memory and native C' function calls (Sec-
tions I11.2 and IIL.3). We further introduce some new programming features
that match CEU’s synchronous and safety-oriented design: local scope finaliza-
tion (Section IIL.4), first-class timers (Section II1.5), and a stack-based com-
munication mechanism (Section II1.6). We finish with a discussion that sum-

marizes the chapter by comparing CEU with Esterel (Section IT1.7).

I11.1 The execution model of Céu

CEU is grounded on a precise definition of “logical time” as a discrete
sequence of external input events: a sequence because only a single input event
is handled at a logical time; discrete because reactions to events are guaranteed
to execute in bounded time (here the “physical” notion of time, to be discussed

further). The execution model for CEU programs is as follows:

1. The program initiates the “boot reaction” in a single trail.

2. Active trails execute until they await or terminate. This step is named a

reaction chain, and always runs in bounded time.

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

Chapter III. The design of Céu 26

// DECLARATIONS

input <type> <id>; // external event
event <type> <id>; // internal event
var <type> <id>; // variable

// EVENT HANDLING
await <id>; // awaits event
emit <id>; // emits event

// COMPOUND STATEMENTS

<. .o.> 5 <.00> // sequence
if <...> then <...> // conditional
else <...> end
loop do <...> end // repetition
break // (escape loop)
finalize <...> // finalization
with <...> end

// PARALLEL COMPOSITIONS

par/and do <...> // rejoins on termination of both sides
with <...> end
par/or do <...> // rejoins on termination of any side
with <...> end
par do <...> // never rejoins
with <...> end

// C INTEGRATION

£0; // C call (prefix “')
native do <...> end // block of native code
pure <id>; // pure annotation

safe <id> with <id>; // safe annotation

Figure I11.1: Syntax of CEU.

3. The program goes idle and the environment takes control.

4. On the occurrence of a new external input event, the environment awakes

all trails awaiting that event. It then goes to step 2.

The synchronous execution model of CEU is based on the hypothesis that
internal reactions run infinitely faster in comparison to the rate of external
events [36]. An internal reaction is the set of computations that execute when
an external event occurs. Conceptually, a program takes no time on step 2
and is always idle on step 3. In practice, if a new external input event occurs
while a reaction chain is running (step 2), it is enqueued to run in the next
reaction. When multiple trails are active at a logical time (i.e. awaking on the
same event), CEU schedules them in the order they appear in the program
text. This policy is somewhat arbitrary, but provides a priority scheme for

trails, and also ensures deterministic and reproducible execution for programs,

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

27 II1.1. The execution model of Céu

which is important for simulation purposes. A reaction chain may also contain
emissions and reactions to internal events, which are presented in Section ITI.6.

The synchronous model is applicable to typical WSN applications, which
are most of the time waiting for events (e.g. timers and network packets) to
perform a fast reaction (e.g. forwarding a packet or blinking a LED) before

going idle again.

1 input void A, B, C;
2 par/and do

3 // trail 1

4 <.l // <...> represents non—awaiting statements
5 await A;

6 Looo0>

7 with

8 // trail 2

9 Looo>

10 await B;

11 <..00>

12 with

13 // trail 3

14 <. 00>

15 await A;

16 <...>

17 await B;

18 par/and do

19 // trail 3
20 <...>

21 with

22 // trail 4
23 <..0>

24 end

25 end

Figure I11.2: A CEU program to illustrate the scheduler behavior.

To illustrate the behavior of the scheduler of CEU, the execution of the
program in Figure I11.2 is depicted in the diagram of Figure I11.3. The program
starts in the boot reaction and is split in three trails. Following the order of
declaration, the scheduler first executes ¢rail 1 until it awaits A in line 5; then
trail 2 executes until it awaits B in line 10; then {rail 3 is scheduled and
also awaits A, in line 15. As no other trails are pending, the reaction chain
terminates and the scheduler remains idle until the occurrence of A: trail 1
awakes, executes and terminates; and then trail & executes and waits for B in
line 17. Trail 2 remains suspended, as it is not awaiting A. During this reaction,
new instances of events A, B, and C' occur and are enqueued to be handled in
the reactions that follow. As A happened first, it is used in the next reaction.
However, no trails are awaiting it, so an empty reaction chain takes place. The

next reaction dequeues event B: trail 2 awakes, executes and terminates; then

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

Chapter III. The design of Céu 28

A AC B,* C,*
L4 ’ 4

t0=boot ’ S tl=A ‘ 2=A t3=B

Wm0 .. ,‘ TS P e TR 358 e ¥
trail 1 A trail 1 X
trail 2 B trail 2
— X
trail 3 idle trail 3 X trail 3
— A > B —X
trail 4 X

Figure I11.3: A sequence of reaction chains for the program in Figure I11.2.

trail 3 is split in two and both terminate. The program terminates and does
not react to the pending event C'. Note that each step in the logical time line
(t0, t1, etc.) is identified by the event it handles. Inside a reaction, trails only

react to that identifying event (or remain suspended).

(a) Bounded execution

Reaction chains should run in bounded time to guarantee that programs
are responsive and can handle upcoming input events from the environment.
Similarly to Esterel [10], CEU requires that each possible path in a loop body
contains at least one await or break statement, thus ensuring that loops never

run in unbounded time. Consider the examples that follow:

loop do loop do
if <cond> then if <cond> then
break; break;
end else
end await A;
end
end

The first example is refused at compile time, because the if true branch
may never execute, resulting in a tight loop (i.e., an infinite loop that does not
await). The second variation is accepted, because for every iteration, the loop
either breaks or awaits.

Enforcing bounded execution makes CEU inappropriate for algorithmic-
intensive applications that require unrestricted loops (e.g., cryptography, image
processing). However, CEU is designed for control-intensive applications and we
believe this is a reasonable price to pay in order to achieve higher reliability.
We evaluate the responsiveness of the radio driver when this restriction is
(intentionally) relaxed and discuss alternatives adopted in other synchronous

languages in Section V.3.

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

29 II1.1. The execution model of Céu

(b) Parallel compositions and abortion

The use of trails in parallel allows that programs wait for multiple
events at the same time. Furthermore, trails await without loosing context
information, such as locals and the program counter, what is a desired behavior
in concurrent applications. [1]

CEU supports three kinds of parallel constructs regarding how they rejoin
in the future: a par/and requires that all trails in parallel terminate before
proceeding to the next statement; a par/or requires that any trail in parallel
terminates before proceeding to the next statement, aborting all awaiting
sibling trails; finally, a par never rejoins and should be used when trails in
parallel are supposed to run forever (if all trails in par terminates, the scheduler
forcedly halts them forever). To illustrate how trails rejoin, consider the two

variations of the following archetype:

loop do loop do
par/and do par/or do
<...> Loo0o0>
with with
await 100ms; await 100ms;
end end
end end

In the par/and variation, the block marked as <...> in the first trail
(which may contain nested compositions with await statements) is repeated
every 100 milliseconds at minimum, as both sides must terminate before re-
executing the loop. In the par/or variation, if the block does not terminate
within 100 milliseconds, it is restarted. These archetypes represent, respec-
tively, the sampling and timeout patterns, which are very common in reactive
applications.

The code in Figure II1.4 is extracted from our implementation of the
CC2420 radio driver and uses a par/or to control the start/stop behavior of
the radio. The input events CC2420_START and €C2420_STOP (line 1) represent
the external interface of the driver with a client application (e.g. a protocol).
The driver enters the top-level loop and awaits the starting event (line 3); once
the client application makes a start request, the driver spawns two other trails:
one to await the stopping event (line 5), and another to actually receive radio
messages in a loop (collapsed in line 9). As compositions can be nested, the
receiving loop can be as complex as needed, including other loops and parallel
constructs. However, once the client requests to stop the driver, the trail in
line 5 awakes and terminates, causing the par/or also terminate and abort the

receiving loop. In this case, the top-level loop restarts and waits for the next

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

Chapter III. The design of Céu 30

input wvoid CC2420_START, CC2420_STOP;
loop do
await CC2420_START;
par/or do
await CC2420_STOP;
with
// loop with other nested trails
// to receive radio packets
<...>

© 00 N 3 o s W N =

end
end

e
= o

Figure III.4: Start/stop behavior for the radio driver.
The occurrence of CC2420_STOP (line 5) seamlessly aborts the receiving loop (col-
lapsed in line 9) and resets the driver to wait for the next CC2420_START (line 3).

request to start the radio (line 3, again).

The par/or construct of CEU is regarded as an orthogonal preemption
primitive |7] because the two sides in the composition need not be tweaked with
synchronization primitives or state variables in order to affect each other. In
contrast, it is known that traditional (asynchronous) multi-threaded languages
cannot express thread abortion safely |7, 35]. For instance, it is not safe to

terminate a thread holding a lock.

(c) Reasoning about concurrency

The blinking LED of Figure I1.2 in CEU illustrates how synchronous
parallel constructs lead to a simpler reasoning about concurrency aspects in
comparison to the other implementations. As reaction times are assumed to be
instantaneous, the blinking loop takes exactly 3 seconds (i.e., 2s 4 1s). Hence,
after 20 iterations, the accumulated time becomes 60 seconds and the loop
terminates concurrently with the 1-minute timeout in parallel. Given that the
loop appears first in the code, the scheduler will restart it and turn on the
LED for the last time. Then, the 1-minute timeout is scheduled, aborts the
whole par/or, and turns off the LED. This reasoning is actually reproducible in
practice, and the LED will light on exactly 21 times for every single execution
of this program. First-class timers are discussed in more detail in Section I1L.5.
Note that this static control inference is impossible in asynchronous languages,
given that internal reactions take an unpredictable time (as illustrated in
Figure I1.1). Even in the other implementations of Figure I1.2, this control
inference cannot be easily extracted, specially considering the presence of two

different timers.

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

31 II1.2. Shared-memory concurrency

The behavior for the LED timeout just described denotes a weak abortion,
because the blinking trail had the chance to execute for the last time. By
inverting the two trails, the par/or would terminate immediately, and the
blinking trail would not execute, denoting a strong abortion [7]. CEU not only
provides means to choose between weak and strong abortion, but also detects
the two conflicting possibilities and issues a warning at compile time (to be

discussed in Section II1.2).

II1.2 Shared-memory concurrency

WSN applications make extensive use of shared memory, such as for han-
dling memory pools, message queues, routing tables, etc. Hence, an important
goal of CEU is to ensure a reliable execution for concurrent programs that
share memory. Concurrency in CEU is characterized when two or more trail
segments in parallel execute during the same reaction chain. A trail segment
is a sequence of statements followed by an await (or termination).

In the first code fragment that follows, the two assignments to x run con-
currently, because both trail segments are spawned during the same reaction
chain. However, in the second code fragment, the assignments to y are never
concurrent, because A and B are different external events and the respective

segments can never execute during the same reaction chain:

var int x=1; input void A, B;
par/and do var int y=0;
X =x + 1; par/and do
with await A;
X = X % 2; y =y + 1;
end with
await B;
Yy =Y * 2;
end

Note that although the variable x is accessed concurrently in the first
example, the assignments are both atomic and deterministic: the final value
of x is always 4 (i.e. (1+ 1) % 2)). Remember from Section III.1 that trails are
scheduled in the order they appear and run to completion (i.e., until they await
or terminate). However, programs with concurrent accesses to shared memory
are suspicious, because an apparently innocuous reordering of trails modifies
the semantics of the program; for instance, the previous example would yield
3 with the trails reordered, i.e., (1 %2+ 1).

We developed a compile-time temporal analysis for CEU in order to detect

concurrent accesses to shared variables, as follows: if a variable is written in

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

Chapter III. The design of Céu 32

a trail segment, then a concurrent trail segment cannot read or write to that
variable, nor dereference a pointer of that variable type. An analogous policy
is applied for pointers vs variables and pointers vs pointers. The algorithm for
the analysis holds the set of all events in preceding await statements for each
variable access. Then, the sets for all accesses in parallel trails are compared
to assert that no events are shared among them. Otherwise the compiler warns
about the suspicious accesses.

Consider the three examples in Figure IT1.5. The first code is detected
as suspicious, because the assignments to x and p (lines 11 and 14) may be
concurrent in a reaction to A (lines 6 and 13); In the second code, although two
of the assignments to y occur in reactions to A (lines 4-5 and 10-11), they are
not in parallel trails and, hence, are safe. Note that the assignment in reaction
to B (line 8) is safe given that reactions to different events cannot overlap
(due to the single-event rule). The third code illustrates a false positive in our
algorithm: the assignments to z in parallel can only occur in different reactions
to A (lines 5 and 9), as the second assignment awaits two occurrences of A, while
the first trail assigns and terminates in the first occurrence.

We also implemented an alternative algorithm that converts a CEU
program into a deterministic finite automata. The resulting DFA represents all
possible points a program can reach during runtime and, hence, eliminates all
false positives. However, the algorithm is exponential and may be impractical
in some situations. For this reason, we opted for the simpler algorithm. That
being said, the simpler static analysis does not detect false positives in any of
the implementations to be presented in Section V and executes in negligible
time, suggesting that the algorithm is practical.

Conflicting weak and strong abortions, as introduced in Section III.1,
are also detected with the proposed algorithm. Besides accesses to variables,
the algorithm also keeps track of trail terminations inside a par/or, issuing a
warning when they can occur concurrently. This way, the programmer can be
aware about the conflict existence and choose between weak or strong abortion.

The proposed static analysis is only possible due to the uniqueness of
external events within reactions and support for syntactic compositions, which
provide precise information about the flow of trails (i.e., which run in parallel
and which are guaranteed to be in sequence). Such precious information cannot
be inferred when the program relies on state variables to handle control, as

typically occurs in event-driven systems.

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

33

II1.3. Integration with C

1 input void A; input void A, B; input void A;
2 wvar int x; var int vy; var int z;
3 var intx p; par/or do par/and do
4 par/or do await A; await A;
5 loop do y = 1; z = 1;

6 await A; with with

7 if <cnd> then await B; await A;
8 break; y = 2; await A;
9 end end z = 2;

10 end await A; end

11 x = 1; y = 3;

12 with

13 await A;

14 *p = 2;

15 end

Figure II1.5: Automatic detection for concurrent accesses to shared memory.
The first example is suspicious because x and p can be accessed concurrently (lines 11
and 14). The second example is safe because accesses to y can only occur in sequence.
The third example illustrates a false positive in our algorithm.

II1.3 Integration with C

Most existing operating systems and libraries for WSNs are based on
C, given its omnipresence and level of portability across embedded platforms.
Therefore, it is fundamental that programs in CEU have access to all function-
ality the underlying platform already provides.

In CEu, any identifier prefixed with an underscore is repassed as is
to the C' compiler that generates the final binary. Therefore, access to C'
is seamless and, more importantly, easily trackable. CEU also supports na-
tive blocks to define new symbols in C' as Figure I11.6 illustrates. Code inside
“native do ... end” is also repassed to the C' compiler for the final generation
phase. As CEU mimics the type system of C', values can be easily passed back
and forth between the languages.

C calls are fully integrated with the static analysis presented in Sec-
tion 1.2 and cannot appear in concurrent trails segments, because CEU has
no knowledge about their side effects (e.g. calls that access the same LED).
Also, passing variables as parameters is regarded as read accesses to them,
while passing pointers as write accesses to those types (because functions may
dereference and assign to them). This policy increases considerably the num-
ber of false positives in the analysis, given that many functions can actually be
safely called concurrently. Therefore, CEU supports explicit syntactic annota-
tions to relax the policy. They are illustrated in Figure I11.7, and are described

as follows:

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

Chapter III. The design of Céu 34

native do

#include <assert.h>

int T = 0;

int inc (int i) {

return I+i;

}
end
native _assert (), _inc(), _I;
_assert (_inc (_I));

© 00 N 3 o s W N =

Figure I11.6: A CEU program with embedded C definitions. The globals I and
inc are defined in the native block (lines 3 and 4), and are imported by CEU in line
8. C symbols must be prefixed with an underline to be used in CEU (line 9).

pure _abs(); // side—effect free
safe _lLeds_led0Toggle with // ’1ed0’ vs "ledl’ is safe

N

3 _Leds_ledlToggle;
4 var intx bufl, buf2; // point to different buffers
5 safe bufl with buf2; // "bufl’ vs ’'buf2’ is safe

Figure II1.7: Annotations for C' functions.

Function abs is side-effect free and can be concurrent with any other function. The
functions _Leds_ledOToggle and _Leds_led1Toggle can execute concurrently. The
variables bufl and buf2 can be accessed concurrently (annotations are also applied
to variables).

— The pure modifier declares a C' function that does not cause side effects,
allowing it to be called concurrently with any other function in the

program.

— The safe modifier declares a pair of variables or functions that do not

affect each other, allowing them to be used concurrently.

CEU does not extend the bounded execution analysis to C' function calls.
On the one hand, C calls must be carefully analyzed in order to keep programs
responsive. On the other hand, they also provide means to circumvent the
rigor of CEU in a well-marked way (the special underscore syntax). Evidently,
programs should only resort to C' for simple operations that can be assumed
to be instantaneous, such as non-blocking I/O and struct accessors, but never

for control purposes.

II1.4 Local scopes and finalization

Local declarations for variables bring definitions closer to their use in
programs, increasing the readability and containment of code. Another benefit,

specially in the context of WSNs, is that blocks in sequence can share the

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

35 II1.4. Local scopes and finalization

same memory space, as they can never be active at the same time. The
syntactic compositions of trails allow the CEU compiler to statically allocate
and optimize memory usage: memory for trails in parallel must coexist; trails
that follow rejoin points reuse all memory.

However, the unrestricted use of locals may introduce subtle bugs when
dealing with pointers and C functions interfacing with device drivers. Given
that the execution of system software outlives the scope of any local variable,
a pointer passed as parameter to a system call may be held by a device driver
for longer than the scope of the referred variable, leading to a dangling pointer.

The code snippet in Figure I11.8 was extracted from our implementation
of the CTP collection protocol [39]. The protocol contains a complex control
hierarchy in which the trail that sends beacon frames (lines 11-16) may be
aborted from multiple par/or trails (all collapsed in lines 3, 5, and 9). Now,
consider the following behavior: The sending trail awakes from a beacon timer
(line 11). The local message buffer (line 12) is prepared and passed to the radio
driver (line 13-15). While waiting for an acknowledgment from the driver (line
16), the protocol receives a request to stop (line 3) that aborts the sending
trail and makes the local buffer go out of scope. As the radio driver runs
asynchronously and still holds the reference to the message (passed in line
15), it may manipulate the dangling pointer. A possible solution is to cancel
the message send in all trails that can abort the sending trail (through a call
to AMSend_cancel). However, this would require expanding the scope of the
message buffer, adding a state variable to keep track of the sending status, and
duplicating the code, increasing considerably the complexity of the application.

CEU provides a safer and simpler solution with the following rule: C
calls that receive pointers require a finalization block to safely handle referred
variables going out of scope. This rule prevents the previous example to
compile, forcing the relevant parts to be rewritten as

1 native nohold _AMSend_getPayload() ;

2 Loo00>

3 var _message_t msg;

4 <...>

5 finalize

6 _AMSend_send (..., &msg, ...);
7 with

8 _AMSend_cancel (&msq) ;

9 end

10 <...>

First, the nohold annotation informs the compiler that the referred C'

function does not require finalization code because it does not hold references

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

Chapter III. The design of Céu 36

1 Loo00>

2 par/or do

3 <.l // stops the protocol or radio
4 with

5 <ol // neighbour request

6 with

7 loop do

8 par/or do

9 <...> // resends request

10 with

11 await (dt) ms; // beacon timer expired
12 var _message_t msg;

13 payload = _AMSend_getPayload (&msg, ...);
14 <prepare the message>

15 _AMSend_send (..., &msg, ...);

16 await CTP_ROUTE_RADIO_SENDDONE;

17 end

18 end

19 end

Figure I11.8: Unsafe use of local references.

The period in which the radio driver manipulates the reference to msg passed by
_AMSend_send (line 15) may outlive the lifetime of the variable scope, leading to an
undefined behavior in the program.

(line 1). Second, the finalize construct (lines 5-9) automatically executes the
with clause (line 8) when the variable passed as parameter in the finalize
clause (line 6) goes out of scope (i.e., the block the variable is defined
terminates). Therefore, regardless of how the sending trail is aborted, the
finalization code politely requests the OS to cancel the ongoing send operation
(line 8).

All network protocols that we implemented in CEU use this finalization
mechanism for message sends. We looked through the TinyOS code base
and realized that among the 349 calls to the AMSend.send interface, only 49
have corresponding AMSend.cancel calls. We verified that many of these sends
should indeed have matching cancels because the component provides a stop
interface for clients (i.e., at any time the protocol can receive a request to stop
immediately). In nesC, because message buffers are usually globals, a send
that is not properly canceled typically results in an extra packet transmission
that wastes battery. However, in the presence of dynamic message pools, a
misbehaving program can change the contents of a (not freed) message that is
actually about to be transmitted, leading to a subtle bug that is hard to track.

The finalization mechanism is fundamental to preserve the orthogonality
of the par/or construct, i.e., an aborted trail does not require clean up code

outside it.

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

37 I11.5. First-class timers

I11.5 First-class timers

Activities that involve reactions to wall-clock time' appear in typical code
patterns of WSNs, such as timeouts and sensor sampling. However, support for
wall-clock time is somewhat low-level in existing languages, usually through
timer callbacks or sleep blocking calls. In any concrete system implementation,
however, a requested timeout does not expire precisely with zero-delay, a fact
that is usually ignored in the software development process. We define the
difference between the requested timeout and the actual expiring time as the
residual delta time (delta). Without explicit manipulation, the recurrent use
of timed activities in sequence (or in a loop) may accumulate a considerable
amount of deltas that can lead to incorrect behavior in programs.

The await statement of CEU supports wall-clock time and handles deltas
automatically, resulting in more robust applications. As an example, consider

the following program:

var int v;
await 10ms;
v = 1;
await 1ms;
v = 2;

Suppose that after the first await request, the underlying system gets
busy and takes 15ms to check for expiring awaits. The CEU scheduler will
notice that the await 10ms has not only already expired, but delayed with
delta=5ms. Then, the awaiting trail awakes, sets v=1, and invokes await 1ims.
As the current delta is higher than the requested timeout (i.e. bms > lms),
the trail is rescheduled for execution, now with delta=4ms.

CEU also takes into account the fact that time is a physical quantity
that can be added and compared. For instance, for the program that follows,
although the scheduler cannot guarantee that the first trail terminates exactly
in 11ms, it can at least ensure that the program always terminates with v=1:

par/or do
await 10ms;

<.o.> // any non—awaiting sequence

await 1ms;

v = 1;
with
await 12ms;
v = 2;
end

! By wall-clock time we mean the passage of time from the real world, measured in hours,
minutes, seconds, milliseconds, etc

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

Chapter III. The design of Céu 38

The time reference for await statements is always the beginning of the
reaction chain: timers starting in parallel share the same reference. Also,
remember that any non-awaiting sequence is considered to take no time in
the synchronous model. Hence, the first trail is guaranteed to terminate before
the second trail, because 10+ 1 < 12. A similar program in a language without
first-class support for timers, would depend on the execution timings for the
code marked as <...>, making the reasoning about the execution behavior
more difficult. The importance of synchronized timers becomes more evident
in the presence of loops, like in the introductory example of Figure I1.2 in
which the first trail is guaranteed to execute exactly 21 times before being
aborted by the timer in the second trail.

Note that in extreme scenarios, small timers in sequence (or in a loop)
may never “catch up” with the external clock, resulting in a delta that increases
indefinitely. To deal with such cases, the current delta is always returned from
an await and can be used in programs:
loop do

var int late = await 1lms;
if late < 1000 then

<.l // normal behavior
else

<...> // abnormal behavior

end

end

I11.6 Internal events

CEU provides internal events as a signaling mechanism among parallel
trails: a trail that invokes await e can be awoken in the future by a trail that
invokes emit e.

In contrast with external events, which are handled in a queue, internal
events follow a stack policy in order to provide a limited but safe form
of subroutines. In practical terms, this means that a trail that emits an
internal event pauses until all trails awaiting that event completely react to it,
continuing to execute afterwards. Another difference to external events is that
internal events occur in the same reaction chain they are emitted, i.e., an emit
instantaneously matches and awakes all corresponding await statements that
were invoked in previous reaction chains?.

The stacked execution for internal events introduces support for a re-

stricted form of subroutines that cannot express recursive definitions (either

2Tn order to ensure bounded reactions, an await statement cannot awake in the same
reaction chain it is invoked.

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

39 II1.6. Internal events

1 event int send;

2 par do

3 <...>

4 await DRIP_KEY;

5 emit send => 0; // broadcast data

6 with

7 Looo0>

8 await DRIP_TRICKLE;

9 emit send => 1; // broadcast meta

10 with

11 <. 00>

12 var _message_t* msg = await DRIP_DATA_ RECEIVE;
13 <...>

14 emit send => 0; // broadcast data

15 with

16 loop do

17 var int isMeta = await send;

18 <...> // send data or metadata (contains awaits)
19 end

20 end

Figure I11.9: A loop that awaits an internal event can emulate a subroutine.
The send “subroutine” (lines 16-19) is invoked from three different parts of the
program (lines 5, 9, and 14).

directly or indirectly), resulting in bounded memory and execution time. Fig-
ure I11.9 shows how the dissemination trail from our implementation of the
DRIP protocol simulates a function and can be invoked from different parts
of the program (lines 16-19), just like a subroutine. The await send (line 17)
represents the function entry point, which is surrounded by a loop so that it
can be invoked repeatedly. The DRIP protocol distinguishes data and meta-
data packets and disseminates one or the other based on a request parame-
ter. For instance, when the trickle timer expires (line 8), the program invokes
emit send=>1 (line 9), which awakes the dissemination trail (line 17) and starts
sending a metadata packet (collapsed in line 18). Note that if the trail is al-
ready sending a packet, then the emit will not match the await and will have
no effect (the nesC implementation uses an explicit state variable to attain
this same behavior).

This form of subroutines has some significant limitations:

Single instance: Calls to a running subroutine have no effect. As noted in
the example of Figure 1I1.9, a subroutine that awaits on its body may

miss further calls to it (in some cases this behavior is actually desired).

Single calling: Further calls to a subroutine in a reaction chain also have

no effect. Even if a subroutine terminates within a reaction chain (i.e.

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

Chapter III. The design of Céu 40

reaches the await again), other emit invocations are ignored until the
next reaction chain. Remember that await statements must be awaiting
before the reaction chain starts to be awoken and that emit statements

are immediately broadcast (i.e., they are not buffered).

No recursion: Recursive calls to a subroutine also have no effect. For the
same reason of the single instance property, a trail cannot be awaiting

itself while running and the recursive call is ignored.

No concurrency: If two trails in parallel try to call the same subroutine,
the static analysis warns about non-determinism. Even if the warning is
ignored, the call from the first trail takes effect (based on deterministic

scheduling), while the second call fails on the single call property.

CEU provides no support for standard functions for a number of reasons:

— The interaction with other CEU control primitives is not obvious (e.g.,

executing an await or a par/or inside a function).

— They would still be restricted in some ways given the embedded context

(e.g. no recursion or closures).

— Programs can always recur to C' when absolutely necessary.

Regardless of the limitations, this form of subroutines is widely adopted
in CEU programs, given that they were designed to work with the other control
mechanisms. One should keep in mind that the typical reactive organization
of programs (awaiting an external stimulus, reacting to it, and going back to
awaiting) does not demand recursive subroutines.

Internal events also provide means for describing more elaborate control
structures, such as exceptions. The code in Figure II1.10 handles incoming
packets for the CC2420 radio driver in a loop. After awaking from a new
packet notification (line 4), the program enters in a sequence to read the bytes
from the hardware buffer (lines 8-16). If any anomaly is found on the received
data, the program invokes emit next to discard the current packet (lines 10 and
14). Given the execution semantics of internal events, the emit continuation is
stacked and awakes the trail in line 6, which terminates and aborts the whole
par/or in which the emitting trail is paused. Therefore, the continuation for

the emit never resumes, and the loop restarts to await a next packet.

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

41 II1.7. Differences to FEsterel

1 <.00>

2 event void next;

3 loop do

4 await CC_RECV_FIFOP;

5 par/or do

6 await next;

7 with

8 <...> // (contains awaits)
9

if rxFrameLength > _MAC_PACKET_SIZE then
emit next; // packet is too large

—-
o

end
< .0 // (contains awaits)
if rxFramelength == 0 then
emit next; // packet is empty

R
W N =

end
<..0> // (contains awaits)
end

= e
N o W

end

-
0o

Figure I11.10: Exception handling in CEU.
The emit’s in lines 10 and 14 raise an exception to be caught by the await in line 6.
The emit continuations are discarded given that the surrounding par/or is aborted.

I11.7 Differences to Esterel

A primary goal of CEU is to support reliable shared-memory
on top of a deterministic scheduler and effective safety analysis (Sec-
tions I11.1, I11.2 and II1.3). Esterel, however, does not support shared-memory
concurrency because “if a variable is written by some thread, then it can nei-
ther be read nor be written by concurrent threads” |6]. Furthermore, Esterel is
deterministic only with respect to reactive control, i.e., “the same sequence of
inputs always produces the same sequence of outputs” |6]. However, the order
of execution for side-effect operations within a reaction is non-deterministic:
“if there 1s no control dependency and no signal dependency, as in "call f1()
[l call f20)", the order is unspecified and it would be an error to rely on
it” [6].

In Esterel, an external reaction can carry simultaneous signals, while
in CEU, a single event defines a reaction. The notion of logical time in
Esterel is similar to that of digital circuits, in which multiple wires (signals)
can be queried for their status (present or absent) on each clock tick. CEU
more closely reflects event-driven programming, in which occurring events are
sequentially and uninterruptedly handled by the program. This design decision
is fundamental for the temporal analysis of Section TI1.2.

Esterel makes no semantic distinctions between internal and external

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

Chapter III. The design of Céu 42

signals, both having only the notion of presence or absence during the entire

reaction [7]. In CEU, however, internal and external events behave differently:

— External events can be emitted only by the environment, while internal

events only by the program.

— A single external event can be active at a logical time, while multiple

internal events can coexist within a reaction.

— External events are handled in a queue, while internal events follow a

stacked execution policy.

In particular, the stack-based execution policy for internal events in CEU
enables a limited but safe form of subroutines and an exception-handling
mechanism, as discussed in Section II1.6.

Apart from these fundamental differences to Esterel, CEU introduces
first-class timers with a convenient syntax and predictable behavior (Sec-
tion IIL.5), and also finalization blocks to safely handle memory going out
of scope (Section I11.4).

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

