PUC-RIo - Certificacdo Digital N° 0921318/CA

I1
Overview of programming models

Concurrent languages can be generically classified in two major execution
models. In the asynchronous model, the program activities (e.g. threads and
processes) run independently of one another as result of non-deterministic
preemptive scheduling. In order to coordinate at specific points, these activities
require explicit use of synchronization primitives (e.g. mutual exclusion and
message passing). In the synchronous model, the program activities (e.g.
callbacks and coroutines) require explicit control/scheduling primitives (e.g.
returning or yielding). For this reason, they are inherently synchronized, as
the programmer himself specifies how they execute and transfer control.

In this chapter we give an overview of these models, focusing on the
synchronous model, given that CEU and most related work targeting WSNs [19,
14, 28, 33, 27, 4, 5] (detailed in Chapter VIII) are synchronous.

II.1 Asynchronous model

The asynchronous model of computation can be classified according to
how independent activities communicate and synchronize. In shared memory
concurrency, communication is via global state, while synchronization is via
mutual exclusion. In message passing, both communication and synchroniza-
tion happen via exchanging messages.

The default behavior of activities being independent hinders the develop-
ment of highly synchronized applications. As a practical evidence, Figure II.1
shows a simple application that blinks two LEDs in parallel with different fre-
quencies'!. We implemented it in two asynchronous styles and also in CEU.
For shared memory concurrency, we used a multithreaded RTOS?, while for
message passing, we used an occam variation for Arduino [25].

The LEDs should blink together every 3 seconds (least common denom-
inator between 600ms and 1s). As we expected, even for such a simple appli-

IThe complete source code and a video demos for the application can be found at

http://www.ceu-lang.org/TR/#blink.
2http://www.chibios.org/dokuwiki/doku.php?id=start

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

Chapter II. Overview of programming models 18

// OCCAM—PI // ChibiOSs // Ceu
PROC main () void threadl () { par do
CHAN SIGNAL sl,s2: while (1) { loop do
PAR sleep (600) await 600ms;

14
14

PAR toggle (11) _toggle (11);
tick (600, sl1!) } end
toggle (11, s17?) } with
PAR void thread2 () { loop do
tick (1000, s2!) while (1) { await 1s;
toggle (12, s27?) sleep (1000) ; _toggle (12);
toggle (12); end
} end
}
void setup () {

create (threadl) ;
create (thread?) ;

}

Figure I1.1: Two blinking LEDs in OCCAM-PI, ChibiOS and CEU.

Each line of execution in parallel blinks a LED with a fixed (but different) frequency.
(The LEDs are connected to I/O ports 11 and 12.) Every 3 seconds both LEDs should
light on together. After a couple of minutes of execution, only the implementation
in CEU remains synchronized.

cation, the LEDs in the two asynchronous implementations lost synchronism
after some time of execution. The CEU implementation remained synchronized
for all tests that we have performed.

The implementations are intentionally naive: they just spawn the activ-
ities to blink the LEDs in parallel. The behavior for the asynchronous imple-
mentations of the blinking application is perfectly valid, as the preemptive
execution model does not ensure implicit synchronization among activities. In
a synchronous language, however, the behavior must be predictable, and loos-
ing synchronism is impossible by design. We used timers in this application,
but any kind of high frequency input would also behave nondeterministically
in asynchronous systems.

Note that even though the implementations are syntactically similar,
with two endless loops in parallel, the underlying execution models between
CEU and the two others are antagonistic, hence, the different execution
behavior.

Although this application can be implemented correctly with an asyn-
chronous execution model, it circumvents the language style, as timers need
to be synchronized in a single thread. Furthermore, it is common to see sim-

ilar naive blinking examples in reference examples of asynchronous systems?,

3 Example 1 in the RTOS DuinOS v0.3: http://code.google.com/p/duinos/.
Example 3 in the occam-based Concurrency for Arduino v20110201.1855: http://

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

19 11.2. Synchronous model

suggesting that LEDs are really supposed to blink synchronized, a guarantee

that the language cannot provide (as shown with the examples).

I1.2 Synchronous model

In this section, we present a review of some synchronous languages and
programming techniques that more closely relate to CEU. We refer back to
them in detail in Chapter VIII to discuss specific features and differences that
require a deeper knowledge about CEU.

Event-driven programming

Event-driven programming is usually employed as a technique in general-
purpose languages with no specific support for reactivity. Because only a single
line of execution and stack are available, programmers need to deal with the
burden of manual stack management and inversion of control. [1]

In the context of WSNs, the programming language nesC [19] offers
event-driven programming for the TinyOS operating system [23]. The concur-
rency model of nesC' is very flexible, supporting serialization among callbacks
(the default and recommended behavior), and also asynchronous callbacks that
interrupt others. To deal with race conditions, nesC supports atomic sections
with a semantics similar to mutual exclusion in asynchronous languages. We
use nesC as the output of the CEU compiler to take advantage of the existing
ecosystem for WSNs with TinyOS.

Cooperative multithreading

Cooperative multithreading is an alternative approach to preemptive
multithreading where the programmer is responsible for scheduling activities
in the program (known as coroutines [34]). With this approach, there are no
possible race conditions on global variables, as the points that transfer control
in coroutines are explicit (and, supposedly, are never inside critical sections).

In the context of WSNs, Protothreads [14] offer lightweight cooperative
multithreading for embedded systems. Its stackless implementation reduces
memory consumption but precludes support for local variables. Furthermore,
Protothreads provide no static safety warranties: programs can loop indefi-
nitely, and accesses to globals are unrestricted.

Finite state machines

The use of finite state machines (FSMs) is a classic technique to im-
plement reactive applications, such as network protocols and graphical user
interfaces. A contemporary work [28] targets WSNs and is based on the Stat-

echarts formalism [22].

concurrency. CC/.

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

Chapter II. Overview of programming models 20

F'SMs have some known limitations. For instance, writing purely sequen-
tial flow is tedious [28], requiring programmers to break programs up in mul-
tiple states with a single transition connecting each of them. Another inherent
problem of FSMs is the state explosion phenomenon, which can be alleviated
in some designs that support hierarchical FSMs running in parallel [28].

Synchronous languages

The family of reactive synchronous languages* is an established alterna-
tive to C' in the field of safety-critical embedded systems [3]. Two major styles
of synchronous languages have evolved: in the control-imperative style (e.g.
Esterel [10]), programs are structured with control flow primitives, such as
parallelism, repetition, and preemption; in the dataflow—declarative style (e.g.
Lustre [21]), programs can be seen as graphs of values, in which a change to a
value is propagated through its dependencies without explicit programming.

CEU is strongly influenced by Esterel in its support for hierarchical
compositions of activities and reactivity to events. However, some fundamental
differences exist, and we discuss them in detail in Section IT1.7.

Esterel designers usually advocate that Esterel programs are similar to
their specification [8, 10]. Such claim is exemplified with the specification and

implementation that follow:

Emit the output 0 as soon as both the inputs A and B have been

received. Reset the behavior whenever the input R is received.

module ABRO:
input A, B, R;
output O;
loop
[await A await B];
emit O
each R

end

The program first defines its input and output signals. Then, it enters in
a loop that is restarted on each R received. The loop body first awaits both A
and B, and then emits 0.

In Esterel, || is the parallel operator, while ; is the sequencing operator.
This way, await A and await B run in parallel, and emit 0 is only executed
after both awaits return. The await primitive suspends the running activity

until the given signal is emitted somewhere.

4 The term synchronous is convoluted here: Synchronous languages evidently follow the
synchronous programming model, but multi-purpose languages (e.g., Java and C) can also
behave synchronously by applying techniques such as event-driven programming and state
machines.

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

21 I1.3. Programming models in WSNs

The communication units in Esterel are the signals. A signal is equivalent
to an event of event-driven programming, and can be instantly broadcast to
the entire application, waking up its listeners. Signals are emitted with the emit
primitive and caught with await and other temporal constructs like loop-each.
The emit command may pass a value along with the signal, as in emit X(1).
The value of a signal may be accessed prefixing it with ?, asinv := v + 7X.

Esterel supports a rich set of preemption constructs, used to structure
activities in hierarchies. The following example 8|, uses the every-do-end,
loop-each, and abort-when constructs:
module Runner:

input Morning, Step, Second, Meter, Lap;

every Morning do

abort
loop
abort <RunSlowly> when 15 Second;
abort
every Step do
<Jump> <Breathe>
end
when 100 Meter;
<FullSpeed>
each Lap
when 2 Lap
end
end

Conventional variables are also supported in Esterel, however they can-
not be freely shared between concurrent statements. In a statement like
[v:=11|l v :=21, the value of v would become non-deterministic, a sit-
uation that is not acceptable in Esterel’s semantics. If a variable is written in

any parallel activity, it cannot be read or written elsewhere.

II.3 Programming models in WSNs

A WSN application has to handle a multitude of concurrent events,
such as timers and packet transmissions, keeping track of them according to
its specification. From a control perspective, programs are composed of two
main patterns: sequential, i.e., an activity with two or more sub-activities
in sequence; and parallel, i.e., unrelated activities that eventually need to
synchronize. As an example, an application that alternates between sampling a
sensor and broadcasting its readings has a sequential pattern (with an enclosing
loop); while using a 1-minute timeout to interrupt an activity denotes a parallel

pattern.

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

Chapter II. Overview of programming models 22

/* nesC */ /* Protothreads */
event void Boot.booted() { int main () {
call Tl.start (0) PT INIT(&blink);
call T2.start (60000) timer_set (&timeout, 60000) ;
} while (
event void Tl.fired () { PT_SCHEDULE (blink ()) &&
static int on = 0; ltimer_ expired(timeout)
if (on) {)
call Leds.ledO0Off (); leds_off (LEDS_RED) ;
call Tl.start (1000); <...> // CONTINUE
} else { }
call Leds.ledOOn(); PT THREAD blink () {
call Tl.start (2000); while (1) {
} leds_on (LEDS_RED) ;
on = !on timer_set (&timer, 2000) ;
} PT WAIT (expired(&timer)) ;
event void T2.fired () { leds_off (LEDS_RED) ;
call Tl.cancel(); timer_set (&timer, 1000) ;
call Leds.ledOOff (); PT_WAIT (expired(&timer));
<...> // CONTINUE }
} }
/¥ CRU */
par/or do

loop do
_Leds_1ed0On () ;
await 2s;

_Leds_ledOOff () H _ - - oin
await 1s;
end
with o)
await 1min;
end

_Leds_1ed0Off ();
<...> // CONTINUE

Figure I1.2: “Blinking LED” in nesC, Protothreads, and CEU.

Figure I1.2 presents the three synchronous programming (sub-)models
commonly used in WSNs through a simple concurrent application. It shows the
implementations in nesC [19], Protothreads [14], and CEU for an application
that continuously turns on a LED for 2 seconds and off for 1 second. After
1 minute of activity, the application turns off the LED and proceeds to
another activity (marked in the code as <...>). The diagram on the bottom-
right of Figure I1.2 describes the overall control behavior for the application.
The sequential programming pattern is represented by the LED alternating
between the two states, while the parallel pattern is represented by the 1-
minute timeout.

The first implementation, in nesC, which represents the event-driven

model, spawns two timers “in parallel” at boot time (Boot.booted): one to

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

PUC-RIo - Certificacdo Digital N° 0921318/CA

23 I1.3. Programming models in WSNs

make the LED blink and another to wait for 1 minute. The callback T1.fired
continuously toggles the LED and resets the timer according to the state
variable on. The callback T2.fired executes only once, canceling the blinking
timer, and proceeds to <...>. Overall, we argue that this implementation has
little structure: the blinking loop is not explicit, but instead relies on a static
state variable and multiple invocations of the same callback. Furthermore,
the timeout handler (T2.fired) requires specific knowledge about how to
stop the blinking activity, and the programmer must manually terminate it
(Tl.cancel()).

The second implementation, in Protothreads, which represents the multi-
threaded model [14, 9], uses a dedicated thread to make the LED blink in a loop.
This brings more structure to the solution. The main thread also helps a reader
to identify the overall sequence of the program, which is not easily identifiable
in the event-driven implementation without tracking the dependencies among
callbacks. However, it still requires bookkeeping for initializing, scheduling and
rejoining the blinking thread after the timeout (inside the while condition).

The third implementation, in CEU, which represents the synchronous-
language model, uses a par/or construct to run the two activities in parallel:
an endless loop to blink the LED, and a single statement that waits for
1 minute before terminating. The par/or stands for parallel-or and rejoins
automatically when any of its trails terminates. We argue that the hierarchical
structure of CEU more closely reflects the control diagram and ties the two
activities together, implying that (a) they can only exist together; (b) they
always start together (c) they always terminate together. Besides the arguably
cleaner syntax, the additional control-flow information that can be inferred
from the program is the base for all features and safety guarantees introduced
by CEU.

The use of timers in the example of Figure 11.2 illustrates split-phase
control operations typically found in WSN applications [23], which require a
pair of request and answer to/from the underlying system (e.g. T1.start and
T1i.fired). As other examples, requesting sensor readings and forwarding radio
packets also require split-phase operations and would be programmed similarly

to timers in each of the three models of Figure 11.2.

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

VO/8TETZ60 oN [enbig ogdeouad - or4-dNd

DBD
PUC-Rio - Certificação Digital Nº 0921318/CA

