PUC-RIo - Certificacdo Digital N° 0921318/CA

I
Introduction

Wireless Sensor Networks (WSNs) are composed of a large number
of tiny devices (known as “motes”) capable of sensing the environment and
communicating. They are usually employed to continuously monitor physical
phenomena in large or unreachable areas, such as wildfire in forests and air
temperature in buildings. Each mote features limited processing capabilities,
a short-range radio link, and one or more sensors (e.g. light and temperature)
[2].

WSNs are usually designed with safety and (soft) real-time requirements
under constrained hardware platforms. At the same time, developers demand
effective programming abstractions, ideally with unrestricted access to low-
level functionality. These particularities impose a challenge to WSN-language
designers, who must provide a comprehensive set of features requiring correct
and predicable behavior under platforms with limited memory and CPU. As
a consequence, WSN languages either lack functionality or fail to offer a small
and reliable programming environment.

System-level development for WSNs commonly follows one of three major
programming models: event-driven, multi-threaded, or synchronous. In event-
driven programming [23, 13|, each external event can be associated with a
short-lived function callback to handle a reaction to the environment. This
model is efficient, but is known to be difficult to program [1, 14]. Multi-
threaded systems emerged as an alternative in WSNs, providing traditional
structured programming in multiple lines of execution [14, 9]. However, the
development process still requires manual synchronization and bookkeeping
of threads [30]. Synchronous languages [3] have also been adapted to WSNs
and offer higher-level compositions of activities with a step-by-step execution,
considerably reducing programming efforts [27, 28|.

Despite the increase in development productivity, WSN system languages
still fail to ensure static safety properties for concurrent programs. However,
given the difficulty in debugging WSN applications, it is paramount to push
as many safety guarantees to compile time as possible |32]. Shared-memory

concurrency is an example of a widely adopted mechanism that typically relies


DBD
PUC-Rio - Certificação Digital Nº 0921318/CA


PUC-RIo - Certificacdo Digital N° 0921318/CA

Chapter 1. Introduction 14

on runtime safety primitives only. For instance, current WSN languages ensure
atomic memory access either through runtime barriers, such as mutexes and
locks [9, 33], or by adopting cooperative scheduling which also requires explicit
yield points in the code |27, 14]. In either case, there is no additional static
guarantees or warnings about unsafe memory accesses.

We believe that programming WSNs can benefit from a new language
that takes concurrency safety as a primary goal, while preserving typical
multi-threading features that programmers are familiarized with, such as
shared memory concurrency. We present CEU!, a synchronous system-level
programming language that provides a reliable yet powerful set of abstractions
for the development of WSN applications. CEU is based on a small set
of control primitives similar to Esterel’s [10], leading to implementations
that more closely reflect program specifications. As a main contribution, we
propose a static analysis that permeates all language mechanisms and detects
safety threats, such as concurrent accesses to shared memory and concurrent
termination of threads, at compile time. In addition, we introduce the following
new safety mechanisms: first-class timers to ensure that timers in parallel
remain synchronized (not depending on internal reaction timings); finalization
blocks for local pointers going out of scope; and stack-based communication
that avoids cyclic dependencies. Our work focuses on concurrency safety, rather
than type safety.”

In order to enable the static analysis, programs in CEU must suffer some
limitations. Computations that run in unbounded time (e.g., compression,
image processing) cannot be elegantly implemented [36], and dynamic loading
is forbidden. However, we show that CEU is sufficiently expressive for the
context of WSN applications. We successfully implemented the C'C2420 radio
driver [39], and the DRIP, SRP, and CTP network protocols [39]* in CEU. In
comparison to nesC [19], the implementations reduced the number of source
code tokens by 25%, with an increase in ROM and RAM below 10%.

The rest of the thesis is organized as follows: Chapter II introduces
CEU through comparisons with state-of-the-art languages representing the
prevailing concurrency models used in WSNs. Chapter I11 details the design of
CEU, motivating and discussing the safety aspects of each relevant language

feature. Chapter IV presents two demo applications, exploring the safe and

LCéu is the Portuguese word for sky.

2 We consider both safety aspects to be complementary and orthogonal, i.e., type-safety
techniques [11] could also be applied to CEU.

3 DRIP is a data dissemination protocol to reliably deliver data to every node in the
network. SRP is a routing protocol to deliver packets from an origin node to a destination
node. CTP is a collection protocol to deliver packets from any node to a collection of roots
in a network.


DBD
PUC-Rio - Certificação Digital Nº 0921318/CA


PUC-RIo - Certificacdo Digital N° 0921318/CA

15

high-level programming style promoted by the language. Chapter V evaluates
the implementation of some network protocols in CEU and compares some of
its aspects with nesC (e.g. memory usage and tokens count). We also evaluate
the responsiveness of the radio driver written in CEU. Chapter VI presents a
formal semantics of CEU restricted to its control primitives, which comprises
most novelties and challenging parts of our design. Chapter VII discusses key
aspects of the implementation of CEU, such as the static analysis algorithm
and stackless lines of execution. Chapter VIII discusses related work to CEU.

Chapter IX concludes the thesis and makes final remarks.


DBD
PUC-Rio - Certificação Digital Nº 0921318/CA


VO/8TETZ60 oN [enbig ogdeouad - or4-dNd


DBD
PUC-Rio - Certificação Digital Nº 0921318/CA




