
6

Final Considerations

“The mission given is a mission accomplished!
-----------------

”

Kleinner Farias
PhD classmate - class 2009 - PUC-Rio

Composition properties play a role in the stability of advanced programming

techniques. When programs evolve without taking into consideration the

effects of these properties, their stability tends to decrease. As a consequence,

programs become difficult to maintain and evolve if developers are not aware

of composition properties. This occurs mainly because it is not trivial to

identify and understand certain composition properties. Then, our intention

is to provide developers with support for managing composition properties.

Measurement frameworks are the traditional means for characterizing and

quantifying the basic properties of a program.

A number of metrics have been proposed to quantify changes in evolving

programs. However, most of these metrics are defined based only on the

properties of modules. This means that existing metrics are not sensitive to the

composition properties. In turn, the understanding of composition properties is

hindered because conventional modularity metrics are not able to quantify the

impact of composition properties on program stability. In order to understand

this impact, a formalism on composition properties is required. Based on this

formalism, metrics can be created to quantify composition properties and study

their impact on the program stability.

Finally, it is also recognized that many of these composition properties should

be identified at earlier development stages; for instance, explicitly describing

such properties in design models. However, there is no investigation on the

benefits of specifying composition properties yet at the design level. For

instance, there is no study investigating if explicit composition modeling

supports developers in dealing with changes through software maintenance

and evolution.

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA



Chapter 6. Final Considerations 121

6.1

Revisiting the Thesis Contributions

In this thesis we discussed the need of managing composition properties in

order to better manage the program stability. Therefore, we claim that quanti-

tative assessments of advanced programming techniques should be rooted not

only on quantifying module properties. In fact, composition code assessment

must be guided by the understanding of the composition properties that exert

influence on program stability.

Based on a set of composition properties (Chapter 4), which are harmful for

program stability, this research work defines a basic terminology and a mea-

surement framework to support the quantification of composition properties.

In addition, we evaluate the availability of the explicit composition models on

performing program changes. Hence, the contributions of this work, as stated

in Chapter 1, are:

– Empirical Findings on the Role of Modularity in Indicating

Software Stability (Chapter 3).We carried out a number of empirical

studies in order to evaluate whether modularity is a good indicator

of composition-enriched programs stability. Our investigation (Chapters

3) was accomplished using three different systems (see Appendix A).

These studies provided evidence that composition-enriched programs

modularity is not a good indicator of their stability. In addition, it

was possible to compare the effectiveness, in terms of stability, of each

composition mechanism. This analysis is a novel contribution as there is a

lack of a general understanding that more modular composition-enriched

programs tends to be more stable.

– Composition Measurement Framework (Chapter 4). Based on the

proposed formalism, we defined a composition measurement framework

for supporting the characterization and the quantification of composition

properties by means of a suite of composition metrics. It was developed

to be applied to any advanced programming language. The detailed

measurement framework is presented in Chapter 4. This framework is

evaluated so far using AOP and FOP techniques. It is a contribution

because it captures the nuances of composition properties regardless

advanced programming techniques, which have been so far completely

misunderstood. Finally, we design and implement a tool, named CoMMes,

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA



Chapter 6. Final Considerations 122

which supports the composition properties quantification by means of

the proposed framework (Chapter 4).

– Empirical Findings about Maintenance Improvements with

Explicit Composition Modeling (Chapter 5). We carried on an

Internet-based experiment towards the benefits of making the composi-

tion properties specification available to developers at the composition

design level. Our investigation took into consideration evolving recur-

ring scenarios of different evolving application (see Appendix A). Two

groups of developers participated in the experiment: one group using a

plain UML composition design and the other one using a UML composi-

tion design enriched with composition properties details. This experiment

provides evidences that the availability of the composition properties

specification alleviates the developers’ effort in maintaining composition-

enriched programs focusing on their stability.

6.2

Future Work

In spite of the contributions of this thesis described in Section 6.1, there are

many other directions for and future work, some of which are described in the

following paragraphs.

Additional Studies on Composition Properties. The evaluation studies

provided evidence of the existing correlation between composition prop-

erties and stability. However, it is necessary to undertake additional

studies in order to (i) assess the measurement framework in different

contexts, such as Compose* (COMPOSE PROJECT, 2012), and (ii) use

and evaluate our framework in the context of other quality attributes,

such as error-proneness. We also aim at studying the composition prop-

erties impact on two different domains: the dependency of features in

SPL applications and code anomalies. The study of feature dependency

is particularly interesting because features often depend on each other

in intricate forms, making the code hard to maintain. At the same time,

maintainable aspect-oriented systems are still a challenge for software de-

velopers. In fact, the expressive power of AOP mechanisms might facili-

tate the introduction of certain code anomalies that emerge in the source

code, such as god class (PIVETA et al.,2006, SRIVISUT et al.,2007,

BERTRAN et al.,2007), whether these composition properties can lead

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA



Chapter 6. Final Considerations 123

to code anomalous in the program source code. Regarding explicit com-

position modeling, further studies are still required to confirm our results

on the impact of this modelling strategy on the realization of maintenance

programming tasks. The main reason for this is that we need to better

understand whether UML+ models also play a role when using other

composition techniques, such as feature-oriented programming.

Composition Measurement Framework Refinement. These additional

studies would enable us to reveal any extensions needed in our com-

position framework. This extension is particularly important to validate

the generality of our framework. In addition, this extension can also con-

tribute for the identification of additional composition properties that

are harmful to composition-enriched program stability.

Tool Support. At least two improvements are needed to make CoMMes

usable in practice: (i) creating a graphical interface for it, and (ii)

incorporating more sophisticated strategies for identifying and mapping

composition properties. This way, the tool CoMMes could be integrated

to popular IDE, such as Eclipse, in a way that developers could be aware

of the composition properties while developing their software projects.

UML profile. The last study provided evidence that developers tend to gen-

erate more stable programs when models enriched with composition

properties are available. Based on this need, an UML profile that pro-

vides support for properly modeling these properties is required. One of

the major advantages of this UML profile would be the ability to sys-

tematically introduce further advanced programming techniques without

having to re-create the whole modeling environment.

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA




