
5

Design Models with Composition Properties

“Look back and see your way! Remember where
you came from and see where you are now.”

Roberta Arcoverde

Her last words before I left Rio

Advanced Programming techniques, such as AOP (KICZALES et al., 1997)

and FOP (ARACIC et al., 2006) are increasingly providing composition mech-

anisms to enable the flexible definition of module composition. They are

moving away from supporting only simple composition mechanisms, such

as method calls. This promotes a shift in the structure of software de-

signs: while complexity is factored out of software modules, the com-

position design is much more complex (BERGMANS and AKSIT, 1992,

KICZALES et al., 1997, KUZNIARZ et al., 2004, RAJAN and KEVIN, 2005,

ARACIC et al., 2006). Because of this new complexity flavor, software changes

might become harder to realize (Chapter 4). Almost inevitably, software devel-

opers need to reason about the properties of module composition in order to

accomplish software changes. Developers may need to analyze design artifacts

to understand the composition code properties and implement the changes.

Chapter 4 discussed that the module composition has a number of properties.

However, these properties composition are not directly supported by modeling

languages as discussed in Chapter 2. As consequence, the following question

emerges: does the availability of design specification of composition code prop-

erties contribute to stability of composition-enriched programming tasks?

This question was previously answered by (DZIDEK et al., 2008) in the con-

text of object-oriented programming tasks using Unified Modeling Language

(UML). According to them, the UML-visual representation of a system’s de-

clation contributes to software maintenance tasks. However, nothing is said

in the literature about the impact of making available UML design models

that show different kinds of composition details, which allow us to express the

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 5. Design Models with Composition Properties 97

nuances of their properties (e.g., composition scope). Unfortunately, the rea-

soning about composition code properties is often hampered by the fact that

most developers do not express critical composition code properties in their

models. However, in the vast majority of cases, detailed models are harm-

ful for code change (CLARKE, 2009). This happens because explicit informa-

tion could actually create so much noise that the models become too complex

(CLARKE, 2009, FARIAS et al., 2012). Nevertheless, our assumption is that

having a more detailed UML design (BRIAND, 2003), where composition code

properties are more explicitly specified, will successfully support developers in

maintaining their programs, thus improving the quality of the realized changes.

This chapter aims at assessing the impact of using UML design models at

different kinds of composition details on the quality of program change tasks. It

answers the fourth research question of this thesis (RQ4 in Section 1.3), which

state: Does the availability of richer composition modeling lead to better code

stability than mainstream modeling? This goal is achieved through the design

and execution of an Internet-based experiment (Section 5.3). This experiment

involved 28 participants (intermediate to senior-level) that were required to

perform individually the same four maintenance tasks to an evolving game

application. In order to evaluate the impact of the composition specification

on the realization of programming tasks, the participants were divided in

two subgroups of 14 participants each. In addition to the same source code,

the first group had access to a complementary composition design in plain

UML notation and the second one had access to a complementary design in

an enriched UML notation, the so-called UML+ (Section 5.2). Section 5.1

motivates the use of design models enriched with composition code properties.

Section 5.4 discusses the experiment results. Section 5.5 compares the goal of

this experiment with related work. Section 5.6 identifies the threats to validity

of this experiment. Finally, Section 5.7 summarizes the chapter.

5.1

Motivating Example

As explained in Chapter 4, the scope of a module composition is a property that

refers to the set of modules taking part in such a composition. Let us consider

a composition realized by a single method call update(M1.setX()) in a given

module M2. The scope of this composition is defined by three modules, namely

M1, M2, and M3. The operation update(M1.setX()) updates the value of the

attribute x declared in module M1. However, let us consider that the original

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 5. Design Models with Composition Properties 98

value of x is used by another module M3. Thus, other update operations over

x cannot be ignored by M3 as the correct execution of these two modules

depends on the computation of the correct value of x. Then, the scope of the

aforementioned composition is not limited to M1 and M2; M3 also implicitly joins

the composition, but it is not directly visible in the composition statement.

The situation is likely to get more complicated if M3 is, for instance, an aspect.

If the composition scope is not well understood, it can impact negatively on the

program maintenance. Then, developers might need to rely on design models,

such as sequence diagrams, to understand the composition scope.

Understanding the composition scope is a key factor to manage the effect

of updating the attribute x in M1 over the program. Thus, the scope must

be specified unambiguously in the composition design. Unfortunately, main-

stream UML modeling does provide support to express the composition code

properties. This way, an enriched UML notation is required to explicit the com-

position code properties in the composition design in the attempt of making

developers generate programs more stable.

5.2

UML+ Notation

We chose UML as the design modelling language in our study due to its

popularity. It is well-known and widely used in industry and academy re-

search settings. Additionally, due to its wide adoption in software projects

we did not need to provide any “artificial” training to the participants.

For each programming task, class and sequence diagrams were provided.

Both of them were presented at different kinds of details: UML and UML+,

where the latter provides complementary information about the composi-

tion code. UML+ refers to those diagrams that make the composition code

properties more explicit to developers (Chapter 4). With UML+, aspect-

oriented design models are represented using the notation proposed by Chavez

et al. (CHAVEZ and LUCENA, 2002, CHAVEZ et al., 2005). Table 5.1 de-

scribes the UML+ design model representation proposed by Chavez et al.

(CHAVEZ and LUCENA, 2002, CHAVEZ et al., 2005) using the example pro-

vided in Figure 5.1.

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 5. Design Models with Composition Properties 99

F
ig
u
re

5.
1:

D
es
ig
n
M
o
d
el

in
U
M
L
+

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 5. Design Models with Composition Properties 100

Table 5.1: UML+ Notation

AOP Notation Description

<<aspect>>

It defines an aspect through a special stereotype
for UML classes. In Figure 5.1, examples of as-
pects are GameStatus, GameCustomization.

<<precede>>

It defines an order between two aspects that affect
the same joinpoint. The aspect on the start of
the arrow executes before the aspect touching the
arrow’s head.

<<crosscut>>

It defines the crosscutting relationship between
the composition modules and the other modules.
In this case, the aspect GameStatus crosscuts the
classes GameController

<<require>>

It provides an explicit dependency between two
aspects; this means that a given aspect requires
the presence of another.

<<pointcutname
− > operations>>

It defines the operations that are affected by an
advice. In this case, we have an advice that is
executed after the operation click (<setData − >

setStatus>) declared in the GameController.

The additional composition information in UML+ models was introduced via

existing UML notations, such as stereotypes and comment boxes. Moreover,

UML abstractions are well aligned with the key abstractions of AspectJ. This

language was chosen because it supports both (i) conventional programming

mechanisms for module composition, such as inheritance, which are very

directly supported by UML, and (ii) advanced composition mechanisms, such

as pointcuts and intertype declaration, which are not directly represented by

UML.

5.3

Experimental Design

The experiment follows the standard Between-Subject design as each group

performed the experiment with exactly one treatment: UML and UML+

models. We chose this design for several reasons: (i) we aim at comparing

the effectiveness of using UML and UML+ for realizing a set of programming

tasks (Section 5.3.3) in the same application, (ii) as the application was the

same, participants could not be part of both groups using UML and UML+

due to learning-related side effects, (iii) to reduce the threat on the use of

this design, the separate groups were equally created, treated and composed

of participants with equivalent expertise (see Section 5.3.4), and (iv) due to

practical reasons, such as execution time restrictions and availability of suitable

applications.

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 5. Design Models with Composition Properties 101

Figure 5.2 illustrates in detail the design in five steps: (1) we picked participants

for the experiment; (2) after we assigned them to the UML and UML+ groups;

(3) we treated the experiment’s independent variables (Section 5.3.6); (4)

we compared the experiment results in terms of stability and finally, (5) we

interpreted the results statistically in order to test our hypotheses (Section

5.3.1). The main elements of our experiment design encompass: the research

question and hypotheses (Section 5.3.1); the object of our experiment (Section

5.3.2); the design of the change tasks (Section 5.3.3); the participants involved

in the experiment (Section 5.3.4), the experimental procedures (Section 5.3.5);

and the variables and analysis (Section 5.3.6).

Participant
Selection

UML Models

c
o
m

p
a
re

UML+ Models

Programming Tasks
Stability

Programming Tasks
Stability

Hypothesis
Analysis

Participant
Assignment

ResultsTreatment

Population
Participants

Pick participants
for experiment

Carry out
statistical
analysis

Assign
participants
to groups

Perform Experiment

UML group

UML+ group

Interpretation
of Results

21 3 4 5

Figure 5.2: Experiment Design

5.3.1

Research Questions and Hypotheses

Our experiment aims at analyzing whether the influence of design models

enriched with composition details affects the quality of changes made in

software maintenance tasks. Based on that, we define the following research

question:“Does the availability of richer composition modeling lead to better

code stability than mainstream modeling?” In order to answer this question, we

compare the quality of code changes made by maintainers when using either

plain UML models (named UML group) or enriched UML models (named

UML+ group).

The refinement of our research question consists of terms of a null hypothesis,

denoted H1, which can be formulated as follows:

H1: Code change quality with UML is the same as code change

quality with UML+.

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 5. Design Models with Composition Properties 102

The hypothesis is defined to test the impact of realizing change tasks on a

program when either UML or UML+ design models are available. Through

this hypothesis, it is possible to evaluate whether the variation in the “change

quality” is influenced (or not) by the use of UML+ or UML models. The notion

of change quality measured in our study is presented in Section 5.3.6.

5.3.2

Object

We selected four code change tasks for the experiment. The tasks (Section

5.3.3) mimic recurring maintenance scenarios that emerged in the project his-

tory of four evolving applications: MobileMedia (5KLOC), iBatis (110KLOC),

HealthWatcher (5KLOC) and GameUP (3KLOC). The change tasks were ex-

tracted from these projects. These applications were chosen as the objects of

our analysis as they were, in fact, implemented in AspectJ. More details about

these applications can be found in Appendix A.

We designed the programming tasks in the experiment using only the GameUP

application as it encompasses representative scenarios of maintenance program-

ming tasks. In addition, its design follows the MVC decomposition, a well-

known architecture in industry and academy (BUSCHMANN et al., 1996).

This means that the participants will not spend much of their time trying

to become familiar with the overall design decomposition. Therefore, they can

mostly concentrate their effort on the realization of the code change tasks (Sec-

tion 5.3.3). Still, the design models can support them on learning the global

design decisions, including the constraints governing module composition.

GameUP architecture is divided into three layers by following the MVC

(model-view-controller) structure. The MVC architecture provides a low cou-

pling between the modules present in each layer. In this way, the modules that

implement GameUP interface are completely decoupled from the modules that

implement GameUp controllers. Similarly, the controller modules are architec-

turally decoupled from data modules. Consequently, the MVC architecture

facilitates the process of changing the existing source code of modules in each

layer by separating the different responsibilities of the game application.

The interaction between the GameUP and the users is realized by the modules

that implement the GameUP screens, such as MainFrame and BoardFrame

(Appendix A). The access to the game functionalities is performed through the

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 5. Design Models with Composition Properties 103

controllers, such as GameController and BoardController. Data are persisted

via classes that belong to the Model layer.

5.3.3

Task Design

In order to define the code change tasks, we followed three important cri-

teria: (i) they should be representative of recurring program maintenance

scenarios that require the use of composition mechanisms, (ii) they should

be diverse enough to require reasoning on module composition code prop-

erties (Chapter 4), (iii) it should be doable to complete the set of tasks in

the limit of one hour; and (iv) they should be representative of program-

ming scenarios where the understanding of composition code properties is

required. To this end, we defined four tasks on program maintenance. All

the tasks require reasoning about the modules and their composition code

properties. They also require different types of changes, such as refactorings

and functionality increments (TOURWE et al., 2003, FERRARI et al., 2010,

ENDRIKAT and HANENBERG, 2011). Therefore, these are maintenance

tasks where the use of UML+ models could play a role. We also focused on this

limited, albeit significant, set of tasks in order to follow the design guidelines

for controlled experiments, i.e., we could not demand more than one hour of

work.

In addition, in order to fulfil our fourth criterion, we revisited re-

search work, independently performed by several researchers in the

community (BERGMANS and AKSIT, 1992, RAJAN and KEVIN, 2005,

CAMILLERI et al., 2009, KATZ and KATZ, 2009, SCHAEFER et al., 2010,

BURROWS et al., 2010), who observed that changes made in the com-

position code are the cause of maintenance problems. Katz et al.

(KATZ and KATZ, 2009), for instance, discuss the role of “invasive as-

pects” in software maintenance (explored in task 3). The problem of “invasive

aspects”, although realized through different implementation mechanisms,

have their counterparts in hybrid FOP languages (PREHOFER, 1997) (e.g.,

CaesarJ), composition filters (BERGMANS and AKSIT, 1992), and delta-

oriented programming (SCHAEFER et al., 2010). We had to focus on AOP

in our experiment as both (i) it does not require artificial training (see Figure

5.3), and (ii) it has been used in development of industrial applications given

its popularity (JBOSS, 2013, SPRING, 2013).

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 5. Design Models with Composition Properties 104

For each task (Table 5.2 and Appendix C), we provided both a class and a

sequence diagram with the relevant design elements. These diagrams can be

found in Appendix C. Regarding the tasks, we have chosen to work with open

questions instead of multiple-choice ones in order to avoid resorting to simply

guessing and to make them more representative under the perspective of real

maintenance scenarios. Each task consisted of a request to change slices of

code involving module composition. The expected answer in each task is made

up by a number of required steps (operations). For each answer in a task,

the participant can earn from 0 to 1 point, depending on the number of steps

performed correctly (Section 5.3.5).

Table 5.2: Description of the Tasks

Task Description

T1

The GameUP developers must evolve the games with a new functionality, which
consists of displaying a new screen before the match starts, where the player
can specify whether the game will be played on the network or not. This new
functionality must be implemented through a method named setupGame()

using AspectJ mechanisms. The existing method startGame() is in charge of
initializing the game.

T2

The player’s status is indicated by a colored button. When the button is green
(status=0) it indicates that the player can play. If the button is red (status=1)
the player cannot play due to some restrictions and another match must be
started. Having said this, you are required to add a new functionality which
aims to change the button color to yellow (status=2) when a player suffers a
penalty and passes your next turn on to your opponent. This new functionality
must be implemented in a separate aspect using an after returning advice.

T3

The current version of Game UP allows both saving the board configuration
in JPG format and informing the player about the result of such operation by
message on the screen. The GameUP developers need your help to evolve the
source code below in order to allow saving the game in XML format in addition
to the JPG format.

T4

Help GameUP developers to add the method int saveScore() to the class
PersistentData using AspectJ’s mechanisms. This method aims at providing
a new functionality, which is to save the player’s score at the end of each game
match.

To successfully realize the tasks, it is required that the participants (Section

5.3.4) understand and observe the composition code properties underlying

the composition code. For instance, in the UML+ class diagram of task T2

(Figure 5.1) the UML note in class Player helps (as a recall mechanism) the

programmer to reason about the program elements affected by the use of after

returning mechanism. This UML note highlights important information about

the implicit and wide scope (Chapter 4) of after returning advice over the

affected modules. An overview of the expected modifications is presented in

Table 5.3.

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 5. Design Models with Composition Properties 105

Table 5.3: Tasks vs. Code Change

Task Manipulating Program Elements - Necessary Modifications

T1
T1 requires at least the addition of one module and the modification of two
other modules, which represent 30% of the code involved in the composition.

T2
This task requires modification in at least two modules. To be more specific
this task requires the change of operations implicitly related to other modules.
Approximately, 60% of the code involved in the composition is modified.

T3
This task requires the addition of one module and modification in two other
ones. T3 requires modification in 50% of the modules involved in the composi-
tion.

T4
At a minimum, T4 requires the addition of one new module, the modification
of another one. This task is directly associated with the expressiveness power of
composition mechanisms. In this task, at least 50% of the modules are modified.

5.3.4

Participants

The Internet-based experiment involved 28 participants: 22 Ph.D. students,

4 M.Sc. students, 2 postdocs in Computer Science from different Brazilian

Universities and companies. All the students had experience with software de-

velopment in industry. In particular, 71.42% of the participants have worked

for more than two years in the industry. We tried to diversify the partic-

ipant’s profiles as we understand that a group made up entirely by stu-

dents might not represent developer population as stated by Di Penta et al.

(DI PENTA et al., 2007). All the participants were invited to participate with-

out any obligation to accept the invitation. All of them have a good level of

experience (at least two years) in working with AspectJ, the chosen program-

ming language (see Figure 5.3).

The participants were asked to answer a questionnaire in order to assess

their level of expertise in areas that are essential in the experiment. For

instance, they were questioned about their knowledge about Java, AOP, UML

and software maintenance. Using a five-point Likert scale, we quantified the

participant’s level of expertise per field varying from 0 (no knowledge) to 4

(expert). In particular, we required a maximum score of 2 for all fields. The

result is illustrated in Figure 5.3. The participants of each group (UML or

UML+) were chosen randomly. The random distribution of the participants is

presented in Table 5.4 regarding the expertise level and groups.

5.3.5

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 5. Design Models with Composition Properties 106

Figure 5.3: Average Expertise of the Participant Groups

Table 5.4: Participant Distribution: Expertise vs. Groups

Procedures

The participants were required to fill in an Internet-based questionnaire about

their technical skills given their different locations. Based on their answers, we

designed the experiment to be performed in 60-minute Internet-based sessions.

The total execution time was determined by running a pilot experiment. Each

session had four scenarios on the maintenance of composition code. Considering

the high level of the participant’s knowledge and in order to avoid bias towards

the tasks, no tutorial or training on the required technologies were needed. We

divided the participants into two groups of 14 participants each: one group

using UML design diagrams and the other one using UML+ design diagrams.

It is important to highlight that the participants were not familiar with the

experimental design goal.

For the first group, the maintenance tasks (Section 5.3.3) were given to them,

along with the plain UML diagrams and the corresponding slice of source code,

which refers to the existing code relevant to the task. The second group receives

the same tasks given to the first group. In addition, we provide UML+ design

diagrams, where information about composition code properties is explicitly

represented. These models were enriched with the use of stereotypes and UML

notes to explicit represent information related to composition code properties.

The diagrams contained all the information about module and compositions

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 5. Design Models with Composition Properties 107

properties required to answer each task. The premise behind the separation

of each group in two subsets aims at answering our research question (Section

5.3.1).

At the end of the experiment they were required to give their opinion on points

such as time pressure and difficulty of the tasks. The participants were required

to realize the experiment within 60 minutes. We decided to establish this time

limit in order to prevent the participants from interrupting the experiment

and restarting it later. We just estimated a time of 60 minutes in order to

not get the participants tired and, thus, affect their performance. Fortunately,

the adjustments in the complexity of the tasks promoted a desired effect as

none of the participants reached the execution time estimate (60 minutes) to

finish the experiment. The minimum and maximum execution time was 50

and 57 from UML+ participant and 51 and 55 minutes from UML participant

respectively, except one UML+ participant who exceeded this time and needed

5 additional minutes. As a consequence, time was not taken into consideration

in this experiment.

The experiment procedures can be summarized in three steps: (i) filling the

Internet-based technical skill questionnaire (Appendix B), (ii) performing

the code change tasks, and (iii) filling in the feedback questionnaire. The

latter helped us to conduct a qualitative analysis and justify the quantitative

differences between the UML and UML+ groups. In order to know if the

participants took advantage of the provided UML-based design models, a set

of questions was posed to them at the end of the experiment and also on the

feedback questionnaire. These questions are summarized in Table 5.5.

Table 5.5: Summary of Quality Questions

Question (Q) UML UML+

Q1: Did the scope of the pointcuts affect the realization
of tasks?

2/14 3/14

Q2: Did the occurrence of multiples aspects sharing the
same joinpoint make the realization of tasks harder?

3/14 2/14

Q3: Did the existence of different types of modules, i.e.,
classes and aspects affect the realization of tasks?

0/14 0/14

Q4: Did the dependency among aspects and classes,
which are highly based on the program language syntax,
affect the realization of tasks?

10/14 12/14

Q5: Did the occurrence of methods with similar signa-
ture pattern (e.g., names starting with the prefixes ”set”
and ”get”) make the realization of tasks harder?

9/14 7/14

Q6: Did you take advantage of Class diagrams? 12/14 12/14
Q7: Did you take advantage of Sequence Diagrams? 10/14 12/14

Q8: Did you take advantage of composition code prop-
erties specifications?

- 11/14

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 5. Design Models with Composition Properties 108

We can summarize the procedures in four steps as illustrated in Figure 5.4:

(i) the participants answered a technical skill questionnaire to capture their

background and expertise; (ii) a set of tasks was designed and realized by

two groups of participants: those who used UML models and those who

used UML+; (iii) the answers were analyzed; (iv) at the end, a feedback

questionnaire was filled in by the participants. It is important to highlight

that a set of tasks was designed and realized by a small group of participants

in a pilot experiment. Based on the pilot experiment feedback, we adjusted the

experiment in different ways, such as number of tasks and the required total

execution time.

[expertise > 2]Technical Skills
Questionnaire

Feedback
Questionnaire

Tasks
(Plain UML)

Analysis of
the Answers

Tasks
(Enriched UML)

Figure 5.4: The Experimental Overview

5.3.6

Variable and Analysis

The independent variables in our experiment are the UML-based design

models. Based on them we consider one dependent variable in our experiment:

the change quality (or solution quality) provided in each programming task.

There is more than one solution available and they are associated with varying

degrees of change. The given answer is evaluated considering the number of

acceptable steps to realize each task. The change quality of each answer is

measured as follows. Firstly, we transform the answers into quantitative values.

An entire correctly answered task is worth 1 point. Wrong answers count

negatively. Thus, if the task contains 5 operations, each correct operation is

worth 0.2 point. If the final score received in the task is 1 point, we classify

it as correct. If it is between 0 and 1, not inclusive, we classify it as partially

correct. Finally, if the final score is equal to 0 we classify it as incorrect.

The slice of code provided in Code 5.1 was given to the participants in task

T1. In this task they were required to add a new method setupGame() using

AspectJ mechanisms (see code slices provided in 5.1). In order to realize this

operation, it was expected at least 3 operations: (1) add a new aspect; (2)

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 5. Design Models with Composition Properties 109

introduce a pointcut expression to advise the method startGame() (line 04

- Code 5.1) before its call, and (3) include the new aspect in the declare

precedence statement within the aspect ExecutionOrder (lines 10 to 12). In

this case each operation is worth approximately 0.33, which is the resulting

value for the math operation 1 divided by 3 (total of operations). After

analyzing the participants’ answers, a feedback questionnaire was applied. The

goal was to understand both the level of satisfaction regarding the experiment

execution and the relevance of the UML+ and UML models during the tasks.

Code 5.1: Slice of Code in Task 1 using AspectJ

01 class MainFrame {

02 int s t a tu s ;

03 GameController c o n t r o l l e r ;

04 void startGame () {

05 . . .

06 Con t r o l l e r . s e tS ta tu s (s t a tu s) ;

07 }

08 void stopGame () { // s top the game }

09 }

−−−

10 aspect ExecutionOrder {

11 de c l a r e precedence : BoardStartup , NickNameDefinit ion

12 }

5.4

Discussion

This section presents and discusses the experimental results. First, we present

the statistical test used in our analysis in Section 5.4.1. A qualitative discussion

follows in Section 5.4.2. Finally, we summarize the main findings of our

experiment in Section 5.4.3. The UML-based models of the tasks can be found

in Appendix C.

5.4.1

Statistical Test

The statistical tests were used to evaluate the hypotheses listed in

Section 5.3.1. To this end, we used the R language and environment

(R-ENVIRONMENT, 2012). First, we verified whether the sample was

normalized by applying the Shapiro test. After that, we applied t-test and

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 5. Design Models with Composition Properties 110

Mann-Whitney; this latter is used when the sample distribution was not

normal. Given that the samples were not normalized, we selected the non-

parametric Mann-Whitney test to analyst our hypothesis (Section 5.3.1). We

used a confidence level of 95% (α=0.05). The statistical results are summarized

in Table 5.6. In a nutshell, the UML+ group had 44.70% more acceptable so-

lutions than the UML group. This means that our hypothesis can be accepted

(Section 5.3.1).

Table 5.6: Descriptive Statistics of the Experimental Results

Group Min Max Avg Mean Diff Shapiro
p-value

Mann-
Whitney
p-value

Solution
Quality

UML 0.57 4.00 2.39 2.28
44.70

0.242
0.021

UML+ 2.62 4.00 3.46 3.75 0.006

UML+ vs. UML: Change Quality. Tables 5.7 and 5.8 summarize respec-

tively the performance of all participants and the statistical analysis per task.

The values of each task vary from zero to 1, in which case the participant had

a fully-acceptable solution to a given task. Figure 5.5 illustrates the quality

distribution of the 56 answers from each group (14 participants answering 4

questions). As illustrated in this figure, there is a significant advantage in favor

of the group that worked with UML+ design models. For instance, none of the

UML+ participants had a hit rate less than 25%. More importantly, the major-

ity of UML+ participants provided answers with hit rate superior to 50%, but

with a trend towards the range of 75-100%. The same consistent performance

was not achieved by the UML group, where: (i) the hit rate tended to vary

from poor (0-25%) to very good (76-100%), and (ii) most of the participants

achieved a hit rate in the range of 26-50%.

In Table 5.8 we present statistical data of our analysis per task. The average

values presented in the second and third columns refer to the quality of the

change given by all the participants of each group (UML and UML+). The

most significant difference is 59.61%, which was identified for task T2 with a

p-value of 0.003. We observed that most of the participants in the UML group

were not conscious about the modules affected by the new advice required by

the change. In this task, a new advice with an after returning semantics was

added to the existing code in order to advise join point shadows placed in the

class GameController. Figure 5.1 illustrates this example. The advice changes

the attribute status by reference and its new value is incorrectly manipulated

by the class Player. The participant did not realize that the composition scope

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 5. Design Models with Composition Properties 111

also includes the class Player. Similarly to tasks T2, T3 and T4 are equally

statistically relevant with p-values equal to 0.036 and 0.025, respectively.

Table 5.7: Participants’ Performance Per Programming Task

Task 1 Task 2 Task 3 Task 4
ID(*) UML UML+ UML UML+ UML UML+ UML UML+

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.00 1.00 0.80 1.00 1.00 1.00 1.00 1.00
4 1.00 1.00 0.40 0.75 1.00 1.00 1.00 1.00
5 0.75 1.00 0.50 0.75 0.80 1.00 0.75 1.00
6 0.75 1.00 0.60 1.00 0.75 1.00 0.66 1.00
7 0.75 0.75 0.66 1.00 0.75 1.00 1.00 1.00
8 0.50 1.00 0.40 1.00 0.50 1.00 0.32 1.00
9 0.50 0.80 0.40 0.75 0.32 0.75 0.32 0.75
10 0.32 0.66 0.66 0.75 0.32 0.75 0.50 0.75
11 0.25 0.80 0.00 0.50 0.00 0.66 0.32 0.75
12 0.32 0.66 0.40 0.75 0.32 0.75 0.50 0.80
13 0.32 0.60 0.25 0.75 0.25 0.75 0.50 0.80
14 0.25 0.50 0.25 0.66 0.25 0.66 0.25 0.80

AVG 0.62 0.84 0.52 0.83 0.59 0.88 0.65 0.90

Table 5.8: Descriptive Statistics Per Task

Task UML UML+ % Diff
Mann-
Whitney

Task 1 0.62 0.84 35.48 0.051
Task 2 0.52 0.83 59.61 0.003

Task 3 0.59 0.88 49.15 0.036
Task 4 0.65 0.90 38.46 0.025

In these tasks, the use of stereotypes to highlight the advised operations helps

the participants recall the role of each module on the composition. In task

T1 the scenario was different. Our statistical test indicated that in this task

the availability of UML+ models (with enhanced composition information) did

not make any difference in terms of the change quality. This happens because

the information associated with the composition makes explicit the required

execution order between aspects. As this information could be inferred from the

UML models as well, the difference was not significant. Thus, the conclusion is

that the composition models bring benefits in the realization of tasks regardless

of their degree of complexity. Corroborating with our answer, the participants’

feedback attested this. When asked about the tasks design, participants from

both groups pointed out that tasks T2 and T4 presented a higher complexity

when compared to the others. This consideration strengthens our perception

that the explicit composition details in design models exert a positive influence

regardless of the tasks complexity.

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 5. Design Models with Composition Properties 112

Figure 5.5: Average Percentage of Change Quality vs. Number of Answers
Provided

5.4.2

Qualitative Discussion

In terms of the change quality, the highest gain with UML+ was observed in

task T2. This task requires that the participant takes into consideration that

there are multiple modules affected by a single pointcut-advice pair. However,

this broadly-scoped impact of the composition code properties is only implicit

in the code and in the UML models. The pointcut-advice pair added to the task

T2 affected the value of the attribute status in the class Player. Thus, the

gains reached in task T2 are associated with the composition details provided in

the UML+ design models. These details make evident the scope associated with

the use of the composition mechanism after returning, which was previously

explained in Section 5.4.1.

UML+ group succeed in the realization of tasks. The benefits associated

with the availability of UML+ design diagrams are attested by the participants.

When asked “which were the characteristics present in the source code and

also in the UML-based diagrams that make the changes more difficult to be

performed?”, 35.7% of the participants from the UML group answered both

“the lack of information associated with the aspects” and “the dependency 1:n

between aspects and classes”. This claim about the lack of information was

not mentioned by any participant of the UML+ group, which makes us infer

that this lack of information is associated with the need of declaration of

composition code properties (Chapter 4).

In addition, it should be noted that the tasks T2 and T4 were pointed out

by the participants as the most difficult ones. Interestingly, these same tasks

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 5. Design Models with Composition Properties 113

were the ones that the UML+ group performed much better than the UML

group. These results might suggest that the additional composition information

available in UML+ design models became more useful as the task complexity

increased. From our quantitative results we point out two main findings: (i)

the use of UML+ was always favorable in terms of requiring less changes

involving module composition, and (ii) the use of UML+ promotes gains in

terms of the change quality regardless of participant expertise, which varies

from intermediate to advanced (see Figure 5.3). We did not explicitly analyse

the data with respect to the experience factor. However, we could assert

that that expertise did not affect the key finding as the participants of both

groups have approximately the same level of expertise and the UML+ users

always yielded better results than UML participants. Finally, UML+ and UML

groups consisted of participants with heterogeneous expertise, with different

combinations of skills on UML, Java, AOP and maintenance (Figure 5.3).

Implicit composition code properties were detrimental to change

quality. The qualitative analysis derived from both groups (i.e., UML and

UML+ design models) is presented in Table 5.5. The questions in this table

appeared on the feedback Internet-based questionnaire (Section 5.3.5). The

number of participants who answered each question positively is indicated in

the second (UML group) and third (UML+ group) columns. For both groups,

the majority of participants answered that overall the UML design models were

useful for the realization of tasks (Q6, Q7 and Q8 - Table 5.5). When answering

the question “Which UML models were used?”, the majority of the participants

(around 70%) in UML and UML+ groups confirmed they used both class and

sequence diagrams. Only two participants for both groups said that UML

diagrams were not useful. The participants, who did not take advantage of

UML design models, explained why they have not used the models: they were

very concerned on spending more time by analyzing them and, therefore, to not

being able to realize all the tasks. Finally, a total of 9 and 17 participants used

either the sequence diagrams or class diagrams only, respectively. Regarding

the relevance of these diagrams in the execution of the tasks, the most frequent

answer was “the UML models were useful to understand how different modules

interact with each other”. In this case, different modules are related to the

involvement of both aspects and classes in a composition, which is associated

with the composition diversity (Chapter 4).

Finally, most participants indicated that the two main factors that led them to

change the existing code were: (i) the dependencies among classes and aspects

are highly based on the program language syntax, and (ii) similar pattern of

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 5. Design Models with Composition Properties 114

method signatures (see Table 5.5 - Q4 e Q5). These answers indicate that both

UML and UML+ groups were aware of changes violating existing composition

code properties. However, participants who used UML+ in their tasks also

pointed out the scope of the composition (Q1) as a detrimental factor to

generate a solution with better quality. This means that even the participants

do not have a deep understanding about the effect of these composition code

properties in evolving programs, they were able to identify them as detrimental

factors to provide acceptable solution to the program maintenance tasks.

5.4.3

Solution Quality meets Stability

The UML+ design models were consistently beneficial in terms of the change

quality. However, we observed the following phenomenon in the performance

of both groups (UML and UML+): the more changes are required to realize

a programming task (Section 5.3.3), the more prone are the participants

to introduce mistakes in their answers. Figure 5.6 illustrates the existing

correlation between the performance of the participants in terms of number

of changes (change quality) and the percentage of changes required to realize

the programming tasks. It is important to highlight that there is not only one

way in which each task can be realized to obtain a solution. For this reason,

the number of changed program elements can vary in each task.

However, taking Figure 5.5 into consideration, we can observe that the per-

centage of changes was lower in the UML+ group when compared to the UML

group. For instance, when UML+ participants were required to add the method

int saveScore() to the class PersistentData using AspectJ’s mechanisms,

some of them decided to add as well a new pointcut in the aspect BoardTracing

instead of modifying the both the existing pointcut (line 08 - Code 5.2) and

advice (lines 10 to 12 - Code 5.2). On the other hand, UML participants re-

alized the same tasks changing the pointcut expression and also the advice

of the aspect Boardtracing. In particular, this means that the participants

realized the programming task in a way that the existing code is changed more

frequently when compared to the UML+ group.

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 5. Design Models with Composition Properties 115

Code 5.2: Slice of Code from Task T4

01 class Pers i s t entData {

02 . . .

03 int saveJPG() { . . . }

04 int saveXML() { . . . }

05 . . .

06 }

−−−

07 aspect BoardTracing{

08 po intcut traceSaveBoard () : c a l l (int Pers i s t entData . save ∗()) ;

09 . . .

10 a f t e r () : traceSaveBoard () {

11 System . out . p r i n t l n (”Board Saved”) ;

12 }

13 . . .

14 }

Figure 5.6: Percentage of Changes realized by UML+ Group

5.5

Related Work

Related work can be divided into two categories: the impact of UML models on

software maintenance (Section 5.5.1), and quality analysis of programs built

with advanced programming techniques (Section 5.5.2). None of related work

discussed below analysed the impact of UML models designed with explicit

composition code properties. We provide an overview of these works and

highlight the main differences when compared to ours.

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 5. Design Models with Composition Properties 116

5.5.1

The Impact of UML Models

Previous research work explored the impact of UML models on soft-

ware maintenance (AGARWAL and SINHA, 2003, BRIAND et al., 2005,

ANDA et al., 2006, ARISHOLM et al., 2006, DZIDEK et al., 2008). All of

them claim that the availability of UML design models provides developers

with a more effective representation of several system properties. In their

experimental investigation they evaluate whether using UML is profitable

in a realistic context for a large project system. In particular, according to

them, all of the participants found the UML diagrams useful in terms of

maintenance. In addition, they also concluded that the use of UML models

establishes a better communication among software developers. Nevertheless,

all these approaches are different from ours because they have only focused

on evaluating the general benefits of UML models in object-oriented systems.

There is no evidence on what extent the use of UML models with proper

composition declation improves the maintenance of software systems when

advanced programming techniques are used. For this reason, our work is a

first attempt to empirically investigate the impact on software maintenance

when developers use UML models enriched with composition code properties.

5.5.2

Analysis of Advanced Mechanisms

Several works have analysed the use of AOP on software maintenance

and development (KASTNER et al., 2007, GREENWOOD et al., 2007,

FIGUEIREDO et al., 2008a, ALVES et al., 2006, BURROWS et al., 2011,

ENDRIKAT and HANENBERG, 2011). For instance, Figueiredo et al.

(FIGUEIREDO et al., 2008a) investigated the impact of AspectJ mechanisms

on software evolution. The authors focused on the source code analysis based

on a suite of modularity metrics. However, they do not discuss at all in terms

of the use of modeling techniques for making the composition code properties

explicit. Other works have evaluated the use of AspectJ on refactoring software

systems (e.g., (ALVES et al., 2006, KASTNER et al., 2007)). There are other

works that have investigated specific attributes; i.e., how faults are introduced

during maintenance tasks involving aspects (BURROWS et al., 2011) and the

time spent by developers to evolve and manage the complexity of composition

code (BASILI et al., 1999, ENDRIKAT and HANENBERG, 2011). However,

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 5. Design Models with Composition Properties 117

similar to Figueiredo et al. (FIGUEIREDO et al., 2008a), all these works

only investigated the impact of AspectJ mechanisms on the quality of the

source code without taking into consideration the impact of composition

code properties on the software maintenance. Also, they do not provide any

evaluation in terms of the impact of using modeling techniques on software

maintenance. Thus, our work is different from the aforementioned ones as

we are interested in analyzing how the UML models with composition code

properties are effective to assist developers on software maintenance tasks.

5.6

Threats to Validity

Some relevant threats to validity and the manners in which we have addressed

them are discussed as follows (WOHLIN et al., 2000).

Internal Validity. Threats to internal validity reside on the participant’s

expertise, participant’s assignment bias, task bias and time restriction. Re-

gardless of the fact that the participants may not be sufficiently expert, we

have reduced this threat through a priori application of a technical skills ques-

tionnaire. It intends to assess the participants’ expertise degree on dealing

with the technologies involved in the study. According to the results of this

questionnaire, we selected the participants with score equal or superior to 2 for

all fields, which means a similar and high knowledge level. These procedures

were important given the between-subject nature of the experiment design.

Another question concerns the fair distribution of the participant’s knowl-

edge. In fact, they were randomly distributed to each group. However, this

threat was minimized since all of them have a high level of knowledge (score

>=3) about the involved technologies (see Figure 5.3 and Table 5.4). Another

prominent criticism is about the motivation of the participants and also their

knowledge about the experimental goal. These criticisms are mitigated by the

fact that all participants participated on a voluntary basis and although they

could guess, they were not familiar with the research questions and hypothesis

(Section 5.3.1). Another threat is associated with the assignment bias as we

have a Between-Subject experiment. This threat was reduced as we selected

participants with good and similar expertise. A final threat relies on the time

to perform the tasks and their degree of difficulty. We attempted to mitigate

this threat performing one pilot study with four extra participants who had

the same level of knowledge required to attend the experiment. Based on their

performance it was possible to adjust the level of difficulty and the required

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 5. Design Models with Composition Properties 118

time to perform each task. With respect to the composition specification, it is

true that the use of a detailed composition specification (UML+) could make

the program maintenance hard to perform. In fact, we tried to select design

slices that had many non-trivial characteristics of aspect-oriented designs (as-

pect inheritance, multiple aspects with global quantification - i.e., resulting in

many crosscut relationships). On the other hand, we also considered that some

good modeling practices were applied. In addition, we are considering the con-

text here where the programmer is supported by a tool to navigate through the

models and code, and it is, therefore, focusing only on the modules involved

in maintenance task.

External Validity. External validity involves the extent to which the results

of a study can be applied. In order to minimize this threat, we chose devel-

opers with heterogeneous backgrounds who are, at most, professional develop-

ers and postgraduate students as well (HOLT et al., 1987, HÖst et al., 2000,

ARISJOLM and SJOBERG et al., 2004). In addition, the evolving tasks by

themselves can be considered a threat as they can be considered far from real

evolving software scenarios. We tried to neutralize this threat with the choice

of the application. When we decided to work with applications from well-

known domains such as mobile devices and games, we took into consideration

the facility of simulating real scenarios. This means that the functionalities

discussed in our experiment mitigate the real functionality of cell phones and

card games. In addition, as we are using programming scenarios from different

subject applications (Section 5.3.2), we tend to generate more reliable results.

Generalization of results also depends on the scale of the tasks considered

in the experiment. For context of this experiment design, the changes are,

in fact, not expected to affect too many modules. On the contrary, the

context of the tasks was assumed to one where developers were concerned

with modularity principles; this is also why advanced programming techniques

were applied in the first place. A narrow scope of changes was also adopted for

the experiment tasks as the target program was representative of those where

good programming/design practices are adopted (e.g., the MVC architecture

style and other design patterns in the case of the application used in the

experiment). Hence, the maintenance tasks indeed did not require a high

number of changes. We also tried to reduce the threat associated with this

point mimicking maintenance scenarios of real applications (Section 5.3.2).

Construct Validity. The threat to construct validity includes the method-

ology used both for quantifying changes and reusability degree. In order to

reduce this threat, we used a set of composition metrics that allowed us to

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 5. Design Models with Composition Properties 119

predict changes and reusability from each task point of view. We adopted these

metrics because all of them were empirically found to have correlation with

design change. In addition, they enabled us to make a more objective compar-

ison with outcomes of relevant previous studies (FIGUEIREDO et al., 2008a)

(Chapter 2). Another factor that contributes to neutralize is the data collec-

tion process. In this process, we consider partially correct answers following

the criteria presented in Section 5.3.5.

5.7

Summary

A considerable part of software design is dedicated for the composition of

two or more modules. The implication is that changes made later in the

implementation often require some reasoning about module composition code

properties. However, these properties are often not explicitly specified in design

artifacts. Moreover, they cannot be easily inferred from the source code either.

As a result, implicit composition code properties may represent a major source

of software maintenance complexity. This fact is particularly true with the

advent of advanced programming techniques, which are increasingly providing

advanced mechanisms to enable flexible module composition. However, there

is little empirical knowledge on how design models with explicitly-specified

composition code properties can improve software maintenance tasks.

An Internet-based experiment was carried out in order to investigate the

contributions associated with the availability of composition-enriched (UML+)

design models during maintenance programming tasks (Section 5.3). The UML

models were used to support the program change tasks and they had a different

degree of module composition information. Half of the participants realized the

programming tasks using plain UML models. The second half realized the same

programming tasks using UML+ diagrams (Section 5.3.5).

Our results showed that, regardless of participants’ expertise, developers who

had an UML+ model outperformed the other case in terms of leading to

better change quality. In addition, a complementary analysis highlighted the

correlation between the change quality and the number of required changes to

perform the tasks. Users of composition-enhanced models consistently yielded

better results when compared to users of plain UML models. The use of explicit

composition specification also led to an average increase of 44.7% in the quality

of the change produced by the experiment participants.

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

