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Composition Measurement Framework

“Do one task after another and do not
stop until the end.”

----------------
Camila Nunes

PhD classmate - class 2009 - PUC-Rio

There is growing evidence that composition properties impact on pro-

gram stability (Chapter 3). This impact is such that overcomes the im-

pact of measurable module properties typically used in OO measure-

ment. Unfortunately, the effects of composition properties on evolving pro-

grams are not well understood. This misunderstanding is mainly due to

the lack of measurement frameworks to quantify composition properties.

Existing frameworks (BARTOLOMEI et al., 2006, SANTANNA et al., 2003,

BRIAND et al., 1999) and metrics suite (ZHAO, 2004) are focused on quan-

tifying properties of programs and their modules only. Some researchers have

recently proposed metrics for programs structured with composition mech-

anisms. However, they are only intended to measure the properties of pro-

gram modules, such as their coupling and cohesion (GARCIA et al., 2005,

GREENWOOD et al., 2007, KUMAR et al., 2009). As a result, there is not

even an understanding about basic characteristics comprising composition

code. Without this knowledge, it is not possible to define a metrics suite in-

tended to compute composition properties. It is not possible either to study

their impact on program evolvability. In other words, the composition prop-

erties analysis is still in its infancy and it lacks the definition of measurement

framework.

This chapter presents a framework aimed at characterizing and computing

composition properties (Section 4.2). It complements the answer given to RQ1

in Chapter 3 on how to objectively analyze the impact of using composition

mechanisms on program stability. In addition, it answers the third research

question of this thesis (RQ3 in Section 1.3), which states: What is the

impact of composition properties on program stability? The requirements of the
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measurement framework are presented in Section 4.2. The proposed framework

consists of terminology (Section 4.2) and a metrics suite (Section 4.3) for

composition code, which can be used in programs structured with diverse

sets of composition mechanisms. It is not the intention of our framework

to capture all possible properties of composition code; instead, it focuses on

three significantly-different dimensions of composition code complexity. Some

known limitations of the proposed framework are presented in Section 4.8. We

studied the role of the measurement framework to support stability analysis

of 34 releases pertaining to six software projects (Section 4.6). The programs

were structured with two different advanced programming techniques: AOP

and FOP. These techniques were chosen as they support a wide variety

of composition mechanisms. They enabled us to understand the impact of

composition code on program evolvability in different contexts. The framework

evaluation is presented in Section 4.6. Related work and threats to validity

associated with our framework are presented in Sections 4.7 and 4.9. Finally,

Section 4.10 summarizes this chapter.

4.1

Measurement Framework Requirements

The purpose of the measurement framework is to improve the efficiency of

quantifying composition properties regardless of the advanced programming

technique. By means of this measurement framework developers will be able

to better understand code composition properties. The characterization is the

starting point for promoting the quantification of composition properties by

defining a suite of composition metrics (Section 4.2.2). Our aim is providing

developers with support for analyzing composition properties when they are

implementing and changing the software.

To reach this goal it is necessary to guarantee that two important require-

ments are being addressed: (i) given the complexity of the composition code

the framework should be simple in order to facilitate its use, and (ii) the

framework also needs to be generic enough to be used with different advanced

programming techniques and their composition mechanisms. In order to make

it easy-to-use we deployed effort in representing all the framework elements

trough few intuitive concepts, which are relevant to manage composition prop-

erties. These names are associated with a basic terminology, which allows de-

velopers to easily distinguish the quality attributes related with composition

properties and thus, compare different metrics using it. Due to its generality,
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the framework can be instantiated for different advanced programming tech-

niques. The measurement framework proposed in this thesis is evaluated in

Section 4.6.

4.2

Terminology and Composition Properties

The proposed framework consists of basic concepts and a metrics suite for

composition code. First, we present the basic terminology (Section 4.2.1) to

describe key properties of composition code (Section 4.2.2) in a consistent

manner. The examples provided in this section are based on the CaesarJ

programming language (ARACIC et al., 2006) notation.

4.2.1

Terminology

We seek to define a terminology that is, as much as possible, lan-

guage independent and extensible. We have chosen set theory to formal-

ize our terminology because it has been largely used in other works for

the definition of metrics (BRIAND et al., 1999, BARTOLOMEI et al., 2006,

FIGUEIREDO et al., 2009). Moreover, set theory has an expressive power that

allow us to capture the essence of each composition property. A basic set of

concepts related to composition code is presented in Figure 4.1. It defines the

relationships between different components of a program, such as module and

program elements, and the composition properties.
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Figure 4.1: Composition Code Measurement: Basic Terminology

A Running Example. For illustration purposes, Figure 4.2 illustrates a

program in the CaesarJ language. We selected this example as CaesarJ offers

a rich set of composition mechanisms; it also supports both aspect-oriented

programming (AOP) and feature-oriented programming (FOP). This program
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consists of a set of modules: classes (E1 to E5 and B1 to B4), aspects A, A1 to

A3, interface (I) and virtual classes (V1 to V6). Each module contains a set of

program elements. A program element is a sequence of statements. There exist

three types of program elements: attributes, operations and declarations. For

instance, methods and advices are classified as operations in CaesarJ; the same

applies to AOP-specific languages, such as AspectJ (KICZALES et al., 2001).

Pointcut expressions, intertype declarations and mixin composition expressions

are classified as declarations.

...

A1

B2 B1

B

I
<<interface>>

E2

E1

E3

int X;int A;

update(B1.getX( ));mF(B1.getX( ))

void mB(B1.getX( )) void setX( )

int getA( ) int getX( )

;

E5

V5

public aspect A1         A{extends

PCE p1 call(* *.m*())||

call(* *.get*())||

execution(* *.set*()));

...

E4

A2

}PCE = PointCut Expression

Composition Interception

public aspect A3{

declare precedence: A1, A2;

}

}

A3
B5 B4

B3

public aspect

void      int

A2 {

B.mB(    x){

...

}

<<abstract>>

A

V1V1

V1

V2

V2

V3 V4V5

V6

Composition
code

Figure 4.2: Program in CaesarJ

A pointcut selects well-defined points (joinpoints) of the program flow that

should be extended by pieces of code called advice. Aspect inheritance pro-

vides a simple mechanism of pointcut overriding and advice inheritance. To

use inheritance between aspects it is required to define an abstract aspect, with

one or more abstract pointcuts, and with advice on the pointcut. Pointcuts-

advice dynamically affects program flow whereas intertype declarations operate

statically, at compile-time, affecting a program’s modules hierarchy. Inter-type

declarations may declare members or change the inheritance relationship be-

tween classes. In Figure 4.2 the aspect A2 introduces the method mB( ) in the

module B2. As the aspects A1 and A2 intercept the same point in B2 (method

getA()), the order of the interception needs to be specified. The aspect A3,

using a mechanism of declare precedence, defines such an order: A1 has prece-

dence over A2. Besides, there are also several other composition mechanisms

to implement FOP concepts such as virtual classes, mixin composition and

wrappers. Virtual classes are inner classes of another outer class. They behave

like virtual methods and thus can be overridden in a subclass of the outer

class. In Figure 4.2, the class E4 has an inner class V1, which overrides V1

in E1 by inheritance relationship. Thus, in CaesarJ, a module can be created
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by composing several CaesarJ classes using simple and multiple inheritance

mechanisms.

The basic concepts of our framework (Figure 4.1) are formalized through the

definitions 1 to 4 and illustrated using the example presented in Figure 4.2.

Definition 4.1 (Module and Program Element) A module M is a sequence of

program elements, EM . A program element can be an attribute, an operation

or a declaration. Let AttM be the set of attributes of M, OpM be the set

of operations of M and DecM be the set of declarations of M, EM :=

AttM ∪OpM ∪DecM .

By means of composition mechanisms, program elements supported by distinct

programming languages can be combined, so that they can work together.

Taking into consideration the example illustrated in Figure 4.2, we can

highlight the following composition mechanisms: pointcut in A1, intertype-

declaration in A2, declare precedence in A3 and virtual classes in E1, E2, E3,

E4 and E5.

Definition 4.2 (Composition Mechanism) Given two languages, L1 and L2, a

composition mechanism is a mean to combine one or more program elements

implemented in either L1 or L2.

A program can be made up of a set of modules from L1 and L2, which are

combined by means of composition mechanisms. L1 and L2 can be either

different or the same languages depending on the programming language at

hand. For instance, L1 and L2 are different in most of the AOP languages,

such as CaesarJ, AspectJ and its dialects. As far as AspectJ is concerned, L1

is considered to be Java, used to define the classes; whereas L2 comprises the

set of constructs to define aspects. In subject-oriented programming languages,

such as Hyper/J (HASSOUN and CONSTANTINIDES, 2003), L1 and L2 are

the same language, i.e. Java; the only difference is the set of composition

mechanisms. The code generated by the use of composition mechanisms is

called composition code. In Figure 4.2, the composition code is made up by

the modules in the light grey area.

Definition 4.3 (Program and Composition Code) A program P consists of a

set of modules, M. There exist, two subsets of modules: Mb, the set of modules

of L1 and Me, the set of modules of L2 where M := Mb ∪Me. A composition,

Com, is a set of modules MCom := Mcb ∪ Mce, where Mcb ⊂ Mb, Mce ⊂ Me,

Mcb 6= ∅ ∧Mce 6= ∅.
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Program elements, which belong to the composition code, depend between

them. A composition dependency is an ordered pair of program elements which

defines either a direct or indirect relationship between the elements.

Definition 4.4 (Composition Dependency) A composition dependency, Dij,

between two program elements ei and ej is defined as a 4-tuple (ei, ej,mi,mj),

where ei ∈ Emi ∧ ej ∈ Emj. Dij, is considered indirect when there is a

relationship between ei and ej characterizing a transitive closure of Dij. On the

other hand, Dij is considered direct when there is direct relationship between

ei and ej.

In Figure 4.2 the composition dependencies are illustrated by the composi-

tion interceptions. The dependency between the pointcut p1 (aspect A1) and

the method setX() (class B1) is an example of direct dependency as this

relationship is declared in the implementation of A1 (* *.set*()). An ex-

ample of indirect dependency is illustrated between E2 and E3. The method

update(B1.getX()) in E2 updates the value of the attribute X in B1. There

is no reference to E3 in E2. However, as E3 uses the attribute X, there is an

indirect dependency between E2 and E3.

4.2.2

Composition Properties

Composition code entails new dimensions of complexity in a program. The

essence of composition code relies on the understanding of its properties.

Therefore, programs are built to have certain properties, which may exert

an impact on the quality attributes, such as software stability (Section 4.6).

Composition code is characterized by at least three basic properties: diversity,

scope and volatility. The realization of such properties on the source code

is discussed using the example provided in Figure 4.2. In order to make our

discussion more concrete, we used CaesarJ as example; i.e. L1 and L2, are

respectively instantiated by Java and the set of CaesarJ constructs to support

both AOP and FOP.

Composition Diversity. Composition code encompasses a significant diver-

sity of modules. The term diversity refers to the amount and type of different

modules that comprise the composition code. The example of Figure 4.2 il-

lustrates how diverse the composition code can be. In this example, there are

different modules supported by L2 (e.g. virtual classes and aspects) and L1

(e.g., Java classes and interfaces) used to realize the composition.
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Taking into consideration the example illustrated in Figure 4.2, the compo-

sition diversity is characterized by the dependency among different modules:

three concrete aspects (A1, A2 and A3), one abstract aspect (A), six virtual

classes (V1 to V6) and one interface (I). In order to compose different modules

the programmers need to have in their mind the different forms of modules

dependency. For instance, direct dependencies are explicit in the code of Java

classes and thus their execution order is pre-defined. On the other hand, the

aspects can be dependent among them with no explicit reference. This form of

dependency among different modules requires a special treatment. Considering

the example in Figure 4.2, a precedence mechanism (aspect A3) needs to be

defined as the aspects A1 and A2 share a same declaration (joinpoints). The

aspect A3 is in charge of defining the correct interception order of A1 and A2 in

B2. An extensive reasoning about the composition code is inevitable in these

cases in order to manage the composition diversity. For instance, the pointcut

declaration (PCE call (* .m*()) intercepts all the calls to methods of Java

classes whose name begins with m (*.m*()). These calls are scattered through

many modules of the program (e.g., B2 and E3). Thus, programmers need to

analyze the names of all the methods in order to confirm that the composition

was correctly implemented and no wrong method has been picked out. In other

words, this means to avoid that implicit rules of the composition (e.g., the set

of modules that belong to the composition) are broken.

Composition Scope. Composition code is a set of modules implemented

by two programming languages, L1 and L2 respectively. In this context, the

term scope refers to the extent of the enclosing context where the program

elements of L2 are associated with. In the example illustrated in Figure 4.2,

the composition scope is defined from the modules supported by L2

In order to understand the scope of the composition in Figure 4.2, it is essential

to understand that the operation update(B1.getX()) in E2 updates the value

of the attribute x declared in module B1. However, the original value of x is

used by E3 (operation mF(..)). Thus, the update of x by D cannot be ignored

by E3 as these two modules depend on the manipulation of the correct value

of x. Then, E2 explicitly impacts on B1 and also implicitly impacts on E3. For

this reason, we can say that the global scope of E2 is B1 and E3. In addition,

there can exist a long dependency chain of some modules connected with the

composition code. For instance, the dependency of E2 with B1 is an example of

long dependency chain and such a dependency generates a scenario that may

affect the quality of the composition code. Changes on the top of the chain

tend to be propagated in the other modules.
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Composition Volatility. Composition dependencies are established in order

to prepare the existing program code; otherwise, the composition of modules

from L1 and L2, cannot work properly. The term volatility refers to the extent

that these dependencies are broken when a single change is made in the

composition code.

In order to analyze the composition volatility in Figure 4.2, it is important to

take into consideration the existing composition dependencies. For instance,

the use of wildcards (star notation) in A1 creates dependencies among A1

and the Java classes that implement methods get and set. The aspect A1

uses wildcards aiming at intercepting all the methods that begin with m (*

*.m*()) and get (* *.get*()). The PCE is based on the syntax of the

source code and during the evolution process the syntax can be changed. In

other words, names of methods can change and new methods that begin with

m or get can be added. As a consequence, when the application tends to evolve,

the PCE needs to be modified.

4.3

The Measurement Suite

This section presents a metrics suite that relies on the terminology presented in

Section 4.2.1. The metrics are intended to quantify the composition properties

(Section 4.2.2). The goal is also to provide support for studying and assessing

the impact of composition measures on quality attributes of evolving programs,

such as software stability (Figure 4.3). The composition code is the input

to the measurement process, which is in turn quantified through the set of

composition metrics.

We defined four metrics for composition code, namely: Local Impact (LoI),

Global Impact (GoI), Composition Volatility (CoV), and Depth of Depen-

dency Chain (DDC). An overview of these metrics is presented in Table 4.1.

It provides brief definitions of the metrics and their association with the com-

position properties (Section 4.2.2), which they are intended to measure. Each

metric is described in terms of: (i) an informal definition (Table 4.1), (ii) a

formal definition based on the terminology presented in Section 4.2.1, and (iii)

an illustrative example.

The existing relationship between the composition properties (Section 4.2.2)

and the composition metrics are illustrated in Table 4.1, column 2 respectively.

The metrics LoI and GoI are directly associated with the extension of the
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composition scope in a program. Therefore, they are used to quantify the

scope property of the composition code. The broken dependencies in program

elements are quantified by the CoV metric. In addition, as the DDC metric

quantifies the length of dependency chain it operates as another indicator of

volatility. Quantification of breakings in the source code is also a reflection of

the diversity of modules involved in the composition. As the number of modules

increases, thus the number of dependencies and breakings are expected to

increase as well.

Figure 4.3: Measurement Framework Overview

Table 4.1: Composition Metrics

Metric Composition

Property

Metric Definition

LoI Scope The ratio between the numbers of program elements

affected by the composition divided by the total of

program elements.

GoI Scope Quantifies the composition scope by counting all the

program elements affected through the use of compo-

sition mechanisms.

CoV Volatility and

Diversity

Quantifies the dependencies broken in the composition

code while preparing it so that composition mechanisms

can be properly applied.

DDC Volatility Quantifies the depth of dependency chain for each pro-

gram element.

For the formal definition of the metrics, let’s consider m ∈ M such that

(i) DDm be the set of program elements that represent direct dependencies

of m and (ii) IDm be the set of program elements that represent indirect

dependencies of m. In addition, let us also consider that for the set of program

element of M , there are sets of added program elements, Eadd,M , removed

program elements, Erem,M , and modified program elements, Emod,M .
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Local Impact (LoI) Metric. Given a program P , for each module m ∈ M

the LoI impact of m can be defined LoIP , m = |DDm|/|EM |. As a result, LoI

of a program P can be defined as LoIP,Me
=

∑

m∈Me LoIP,m.

Code 4.1 shows the main function pseudocode for LoI metric. The data

representation is realized by the list program elements (line 2), which is

initialized by InitValues() (line 5). In this function the data representations

are retrieved from the analyzer. The loop (lines 6 to 13) calculates the LoI

metric. For each program element in the program, it is calculated the number

of other elements it is depended on. The current element (line 8) is catched and

all the references to it are obtained (line 9). References to itself are removed by

the operation remove(..) (line 10). The total of reference is obtained by the size

of the list exp refs (line 11). Finally, the the percentage of LoI is calculated

in line 14.

Code 4.1: LoI main function

01 f loat l o ca l Impact {

02 L i s t program elements ;

03 int to ta l p rogram e l ements ;

04 f loat l o i m e t r i c ;

05 In i tVa lue s ( ) ;

06 while ( int i = 0 ; i < par s e r . getElements ( ) . s i z e ( ) ; i++) {

07 int LoI = 0 ;

08 program elements = par s e r . getElements ( ) . getElementAt ( i ) ;

09 L i s t e xp r e f s = program elements . getElementsReference ( ) ;

10 e xp r e f s . remove ( program elements . getName ( ) ) ;

11 LoI = exp r e f s . s i z e ( ) ;

12 t o t a l = t o t a l + LoI + 1 ;

13 }

14 return l o i m e t r i c = t o t a l / to ta l p rogram e l ement s ;

15 }

Considering the example of Figure 4.2, we have four modules directly affected

by the composition: E1, E2, B2 and B1 as there are explicit references to them.

Let’s consider program elements as modules affected by the invocation of just

one program element. As the whole example has sixteen modules, the ratio

between directly affected modules and number total of modules is 0.25, which

is equivalent to 25% of the code. Lower values for this metric mean that the

code affected by this composition is located in a few modules. For instance, this

measure might be useful to indicate that changes in the composition code are

likely to impact less modules and, therefore, better sustain the code stability.

Global Impact (GoI) Metric. This metric is a generalization of LoI. Given

a program P , for each module m ∈ M the GoI impact of m can be defined
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GoIP,m = |DDm| + |IDm|/|EM |. As a result, GoI of a program P can be

defined as GoIP,Me =
∑

m∈Me GoIP,m.

The relative value of this metric considers the total number of program ele-

ments involved. For the example illustrated in Figure 4.2, the entire composi-

tion directly affects the modules E1, E2, B2 and B1. The modules E3 and E4

are considered indirectly-affected as the values of parameter X used by it is

modified by E2. Thus, the GoI value to the example illustrated in Figure 4.2

is the sum of the number of affected elements divided by total of elements.

This relation is equal to 0,38 (38%). This means that the composition code is

impacting 38% of the modules of the program.

Code 4.2 shows the main function pseudocode for a GoI metric. The idea

behind the function is the same as that described in Listing 1 (LoI metric). The

only difference is that the list of references retrieved for GoI metric encompasses

now direct and indirect references (Section 4.2.1). The process of recovery is

implemented by the function getTotElementsReference() (line 9).

Code 4.2: GoI main function

01 f loat global Impact {

02 L i s t program elements ;

03 int to ta l p rogram e l ements ;

04 f loat go i me t r i c ;

05 In i tVa lue s ( ) ;

06 while ( int i = 0 ; i < par s e r . getElements ( ) . s i z e ( ) ; i++) {

07 int GoI = 0 ;

08 program elements = par s e r . getElements ( ) . getElementAt ( i ) ;

09 L i s t t o t a l r e f s = program elements . getTotElementsReference ( ) ;

10 t o t a l r e f s . remove ( program elements . getName ( ) ) ;

11 GoI = t o t a l r e f s . s i z e ( ) ;

12 t o t a l = t o t a l + GoI + 1 ;

13 }

14 return go i me t r i c = t o t a l / to ta l p rogram e l ement s ;

15 }

Composition Volatility (CoV) Metric. Given a program P , for each

module m ∈ M , the CoV of m can be defined as CoVP,m = |Eadd,m| +

|Emod,m|+ |Erem,m|. As a result, the CoV of an entire program P can be defined

as CoVP,Me =
∑

m∈Me CoVP,m.

For the example illustrated in Figure 4.2, in order to add the composition

modules (A, A1, A2, A3, E3 and E2) to the program, the module B1 was modified.

Thus, the value for this metric is 7, which was calculated from the sum of

manipulated program elements. Lower values for this metric is better because
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this means that less code was necessary to implement the composition which

can imply in less modification.

Code 4.3 shows the main function pseudocode for a CoV metric. The list of

current and previous program elements as well as the number of manipulated

program elements are represented in lines 2 to 6. The loop (lines 8 to 11)

quantify the number of manipulated program elements. One program element

is considered added when it did not exist in the previous list of elements (olde).

If an element has its behavior modified it is labeled is modified and thus added

to the listmode. Program elements have their signature modified are considered

new ones. The number of elements removed is calculated in line 13. Finally,

the effort of composition is given by the equation presented in line 14.

Code 4.3: CoV main function

01 int c ompo s i t i o nVo l a t i l i t y ( ) {

02 L i s t program elements ;

03 L i s t o l d e ;

04 L i s t mod e ;

05 L i s t add e ;

06 L i s t rem e ;

07 In i tVa lue s ( ) ;

08 while ( int i = 0 ; i < par s e r . getElements ( ) . s i z e ( ) ; i++) {

09 i f ( program elements ( i ) . s t a tu s ( )==mod) mod e .Add( i ) ;

10 else ( program elements ( i ) . s t a tu s ( )==add ) add e .Add( i ) ;

11 }

12 i f ( l e g th ( o l d e )−( l e g th ( o l d e )−l e g th ( add e ) ) )>=0)

13 rem e .Add( i )

14 return l enght (mod e + add e + rem e ) ;

15 }

Depth of Dependency Chain (DDC) Metric. Given a program P , for

each module m ∈ M , the DDCP,m of m can be defined length(m), where

length(m) =

{

0 if m /∈ DD ∨m /∈ ID

maxlength(m+ 1) otherwise

This metric takes into consideration modules directly and indirectly affected.

Each dependence chain has a root and leaves. The depth of dependency of

a leaf is always greater than the root. In other words, DDC of a program

element is the distance from it to its root, which is the module itself. If multiple

dependencies exist, then the DDC is the longest path for the distance. For the

example illustrated in Figure 4.2, the DDC of module E2 is the size of the path

from it to I.

Code 4.4 shows the main function pseudocode for a DDC metric. The loop

(line 3 - 6) implements the core of the function. The idea is to go down from
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each program element to its leaf. Each new dependence is added in a the

vector longestPath. After that, go to the next program element while exist

dependencies. Finally, the length of the vector longestPath is retrieved and

returned as the deep dependency chain of element.

Code 4.4: DDC main function

01 int deepDependencyChain (CodeElement element ) {

02 Array longestPath = new Array ( ) ;

03 while ( element . depedence ( ) ) {

04 longestPath . add ( element ) ;

05 element = element . dependence ;

06 }

07 return l enght ( longestPath ) ;

08 }

4.4

The Composition Properties Measurement Tool

The Composition Properties Measurement Tool (CoMMes) supports the task

of extracting composition program elements, distinguishing the composition

code in a given program. After the extraction process, it is possible to apply

composition metrics and thus quantify the composition properties impact on

program stability. A simplified CoMMes architecture and its user interface are

presented in Sections 4.4.1 and 4.4.2, respectively.

4.4.1

CoMMes Architecture

The CoMMes architecture is presented in terms of its components, which

are illustrated in Figure 4.4. There are three main components: composition

extractor, composition measurement model and composition metric collector.

Each component is described in the following.

Composition Metric
Collector

Composition
Extractor

Composition Measurement
Model

Composition-enriched program

Composition Measures

Figure 4.4: CoMMes Architecture
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Composition Extractor. This module is in charge of generating the composi-

tion measurement model. It takes as input programs implemented in advanced

programming language and detects their program elements. It processes the

composition-enriched program and builds the model. The current version of

the composition extractor was tested with programs implemented in AspectJ

and CaesarJ programming languages.

Composition Measurement Model. This model encompasses the data

structure defined for composition measurement purposes. It is a suitable

representation of the architecture in order to make the measures collection

easier. The data representation follows the generic conceptual meta-model

for composition programs presented in Section 4.2.1. The current version of

the composition measurement model accommodates two different advanced

programming techniques: AOP and FOP. These techniques are represented by

AspectJ and CaesarJ programming languages.

Composition Metric Collector. This module is responsible for computing

the composition metrics (Section 4.3 - Table 4.1). It takes as input the com-

position measurement model and computes the metrics for each composition

based on the algorithms presented in Section 4.3.The measure collection relies

on the algorithms presented in Section 4.3.

4.4.2

User Interface

The current version of CoMMes is built based on a command-line interface.

This means that the user interface with CoMMes is performed by issuing

commands to it in the form of successive lines of text (command lines). In

order to run CoMMes the following command is required:

CoMMes /C<ArqConst> [/B<DirBase>] [/L<ArqList>]

<ArqConst> it is a mandatory parameter. It refers to the file that contains

guidelines to generate the input files to the composition measurement

model. The default extension for the ArqConst file is .COMP. The current

version requires to inform the target composition individually.

<DirBase> it is an optional parameter. It refers to the output directory

name. When it is not informed DirBase is the current directory.
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<ArqList> it is an optional field. It refers to name of the file that contains

the output report. The default extension for ArqList is .LIST.

The command line parameters can be informed in any order. CoMMes validates

them, read the files and validate them as well. The parameters /C, /B and /L

can be informed in upper or lower case. Finally, to obtain a brief help file,

enter the command: /? or /H as follows.

CoMMes /? or CoMMes ? or CoMMes h or CoMMes /H

The <ArqConst> file contains the description of the construct to be generated

by applying the CoMMes. This file consists of comment lines and lines

associated with the composition instructions. A line of comment is identified

by a ’#’ character in the first position of the line. Lines of comments and blank

lines can occur anywhere and always will be ignored. The lines are aggregated

into a composition instruction section. The name of a section must follows the

pattern ”[<section name>]” and must be drawn from the first row position.

Anything after [End] is treated as comment. Figure 4.6 exemplifies how a

composition file can be structured.

# MobileMedia composition for feature music

[ProgramElements]

.../mobilemedia/alternative/music/AbstractMusicAspect.aj

.../mobilemedia/alternative/music/MusicAspect.aj

[End]

Figure 4.5: COM File Template

As a result, the CoMMes tool generates as output the composition metrics

values as illustrated in Figure

4.5

Application of the Measurement Framework

This section presents the study goal and research hypotheses (Section 4.5.1),

the target applications used to evaluate the proposed framework (see Appendix

A), and the study procedures (Section 4.5.2).
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Figure 4.6: CoMMes output

4.5.1

Goal and Hypotheses

The goal of this study was to evaluate to what extent composition proper-

ties are correlated with stability of evolving programs. In order to achieve this

goal, we performed a comparative analysis of how changes are correlated with

composition measures (Section 4.3). Our analysis was performed using the pro-

cedures described in Section 4.5.2. Our research aims were twofold. First, we

aim at evaluating whether the composition properties (Section 4.2.2), as quan-

tified by our metrics (Section 4.3), affect are related to the stability of evolving

programs. Second, we also aim at discussing some implementation factors that

were detrimental to program stability. In this sense, this investigation relies on

the analysis of one hypothesis (H), whose null (0) and alternative (1) definitions

are as follows:

H0: Composition properties are not related to the instability of evolving pro-

grams.

H1: Composition properties are related to the instability of evolving programs.

4.5.2

Procedures

All target application releases (Appendix A) were analyzed according to a

number of programming alignment rules. This procedure was applied to assure

equal compliance to coding styles and included functionalities. As a second

step, we also quantified the degree of stability of the target applications

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA



Chapter 4. Composition Measurement Framework 84

implementation. Program stability was quantified in terms of the program

elements changes (Chapter 3). Change propagation metrics were used with

the purpose of quantifying the degree of stability of each program element.

This means that the degree of stability is quantified by the number of

program elements manipulated (i.e., added, removed and modified) along

each program evolution. Program elements are manipulated in either (i) to

improve the program elements while preserving the existing code semantics

(e.g., refactoring operations or bug fixes) or (ii) to increment the program

in terms of new functionality. The conceptual framework is instantiated in

Table 4.2 for AspectJ and CaesarJ, which are representative examples of

contemporary programming languages.

Table 4.2: Conceptual Framework Instantiation

Framework

Component

AspectJ CaesarJ

Program AspectJ Program CaesarJ Program

Module aspect, interface and class aspect, interface, class and vir-

tual classes

Program Element Method, pointcut-advice

declarations, intertype

declarations expressions

and advices

Method, pointcut-advice decla-

rations, intertype declarations

expressions, advices and mixin

composition expressions

Property Diversity, Scope and

Volatility

Diversity, Scope and Volatility

Our third step consists in applying the composition metrics to the target

applications (Appendix A). The goal is to gather insight about the usefulness

of the composition metrics (Section 4.3). In particular, we analyzed whether

the composition metrics are related to program stability (Chapter 2). At this

step, we aim at verifying whether composition metrics are able to work as

indicators of program instabilities.

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA



Chapter 4. Composition Measurement Framework 85

4.6

Framework Evaluation

This section discusses the impact of composition properties on program

stability using our measurement framework. The data of the composition

metrics were automatically collected using our prototype tool. The proposed

framework has been applied programs structured with both FOP (CaesarJ

language) and AOP (AspectJ language) techniques. The use of both FOP

and AOP implementations in the chosen applications (Appendix A) enables

us to analyse the impact of composition properties on different scenarios. We

extend this discussion is Section 4.6.2 by comparing our composition metrics

and coupling measures.

Statistical Tests. For the statistical tests performed in Section 4.6.2, we used

the R language and environment. We applied the Kolmogorov-Smirnov test to

verify if our samples were normally distributed (DAVID, 2000). As our samples

were normalized we applied the parametric Pearson’s correlation coefficient

(DAVID, 2000); to the goal is to obtain evidence about the correlation of

the composition metrics with stability. We used a confidence level of 95% (α

= 0.05). The Pearson correlation indicates three cases: values close to +1.0

indicate a strong positive (increasing) linear relationship; values close to -1

indicate a strong negative linear relationship; and finally, values between -1

and 1 indicate the degree of linear dependence between the variables. When

the values are close to zero, this means that there is little relationship. The

statistical tests were used to accept or reject the hypotheses listed in Section

4.5.1.

4.6.1

Composition Properties vs. Stability

The more code changes are required to realize a new program change, the

more unstable its design is likely to become (KELLY, 2006). We chose to

focus our analysis on stability because it is a key quality attribute on program

evolvability (KELLY, 2006). Table 4.3 shows the correlation results between

the composition metrics and the program stability. The Pearson’s correlation

computation tests the pair (composition metric value, stability value) for each

composition metrics per program release. The analysis of these results reveals

that the composition metrics have a strong correlation with instabilities. The

high correlation is inferred as, while the maximum correlation value is 1, the
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correlation values obtained from our set of metrics vary from 0.61 (LoI metric)

to 0,90 (CoV metric). While the minimum correlation between the metric

LoI and stability is 0,61, GoI correlation values vary from 0.78 to 0.99 for

AOP releases and from 0.83 to 0.86 for FOP releases. The correlation between

stability and GoI is more expressive as GoI captures indirect dependencies

among programs elements, which are not captured by the LoI metric (Section

4.3). The metric CoV is also another strong indicator of stability. Its lowest

correlation value is 0.70. However, similar to GoI, its highest correlation value

is 0.99. As illustrated in Table 4.3, the correlation values for AOP are closer

to 1 than the same values for FOP. This occurs because the AOP composition

scope (AspectJ language) has a greater impact on the program when compared

with the FOP scope (CaesarJ language). As the correlation values are very

close to 1 (maximum), we conclude the composition properties have presented

good indicators of stability. Therefore, we can state that the hypothesis H1 is

accepted (Section 4.5.1).

Table 4.3: Correlation of composition properties with stability per system

Even though all the composition metrics (Section 4.5.2) were found to be

related to stability, those quantifying composition scope tend to work as

better indicators. According to the values in Table 4.3, we could state that

the program stability is more strongly related to metrics in the following

order (from the most to the least correlated): GoI, LoI, CoV and DDC. This

ranking reinforces that the composition scope consistently emerges as the

most significant property to explain program instabilities. We observed that

this happens because the propagation of changes from a composition program

element, for instance, is delimited by its composition code, which is quantified

by the composition scope metrics. Figures 4.8 and 4.9 illustrate some key

results for the interplay of composition properties and program stability. They

are used to support the discussion below.

The Role of “Wide” Composition Scopes on Stability. In order to

illustrate a concrete example of modification associated with composition

properties, we present a simplified slice of code extracted from iBatis (Figure

4.7). Considering this example, when a method m3() is added to the class
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C1 using AspectJ’s mechanisms the programmer needs to change the aspect

A1 (pointcut save) in a way that m3() is not intercepted by the pointcut

save. However, the scope of the composition implemented by the pointcut

save embraces 80% of the iBatis’ source code. Without knowing the impact

of composition scope generated from the pointcut save, programmers would

tend to change it inadvertently. Fortunately, the GoI metric, when applied to

the pointcut save provides insights about its composition scope impact on the

program, which is 80%. The use of wildcards leads to high GoI values, which

explain why these forms of composition are detrimental to program stability.

Figure 4.7: Slice of iBatis Code (AspectJ)

Figure 4.8: Stabiliy vs GoI for MobileMedia

We observed that composition code with higher GoI values than 20% are

considered detrimental to stability. This information is useful as it works like

a warning to programmers. Equipped with this knowledge, programmers are

able to have in their mind that changes in both pointcut save and its dependent

program elements can propagate others changes. This way, instead of changing
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the pointcut save expression to avoid the interception of the method m3(), the

programmer can start to consider the possibility of creating a new pointcut.

The creation of a new pointcut would contribute to the scope from the

existing pointcut save more constant and in turn minimize the possible changes

associated with it. Alternatively, whenever possible, programmers can decide

to realize refactoring operations before evolving the program as a strategy for

decreasing the GoI percentage and thus decreasing its side effects as well.

Figure 4.9: Stability vs. CoV for MobileMedia

The Consistency of Global Scope as Stability Indicator. Figure 4.8

illustrates the variation in instability promoted by a single composition in a

representative CaesarJ scenario. It is possible to observe that the variation

in the stability degree is reflected by the values of GoI. The GoI metric was

slightly better than the LoI metric due to the type of dependencies is dominated

for direct dependencies. It is also possible to observe that low GoI values in

one given release Ri indicate better stability in the next release (Ri+1). From

R1 to R2 the composition scope declined in 31%. Analyzing the stability of

MobileMedia modules, those affected by the composition code, from R1 to R2

we also identified a decrease of 39% in the number of changes. From R3 to

R4 both composition scope and stability continued together on a downward

trajectory.

However, overwhelmingly they increase in R5. The explanation for this is that

in R6, new types of media (audio and video) were added in MobileMedia.

As a consequence, the name of its modules, operations and declarations

were prepared through the rename operations, which were reflected by the

composition volatility, quantified by the CoV metric (Figure 4.9). Also in R5,

the depth of the composition dependency chain, DDC metric, reached the total

of 9 program elements. Changes in this dependency chain were propagated by

all the program elements which make it up. Based on indicators like these
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provided by the GoI, CoV and DDC metrics, programmers are able to know

the risk they are taking when they need to change the program elements that

belong to the scope of the composition.

Composition Volatility vs. Composition Scope. We can highlight that

to evolve the release R4, a number of refactoring operations in its program

elements was required in order to prepare its code for R5 (Figure 4.9). In

addition to the modification of existing modules and programs elements, new

ones were added to R5. This variation is captured by the CoV metric (see

Figure 4.9). The CoV metric quantifies the manipulation of elements that

occurs within the composition code and it also operates as a consistent stability

indicator. On the other hand, GoI goes further since it can be used to predict

the stability of a Ri+1 based on the scope of Ri, when Ri+1 evolves over the

composition code. The composition scope provides insights about the stability

variation. We can observe in Figure 4.8 that the percentage of the composition

scope is always aligned with the program instability variation. The propagation

of changes from the modification of a program element occurs through its

dependencies, which are captured by the composition scope metric.

Progressive Increase of Composition Diversity over Time. We also

observed an interesting phenomenon in all the systems with both AOP and

FOP: the composition diversity consistently increases through the history of all

the programs. In other words, the number of modules joining the composition

code always increases as the programs evolve. This means that the composition

code consistently embraces additional modules that were not planned to be in

the original version of the composition code. This also means that the number

of dependencies between programs involved in the composition code tends to

increase. This dependency growth can be translated into: (i) more impact with

regard to the composition scope, or (ii) more preparation of the source code

to work properly with diverse program elements and modules. This explains

why the composition code was often the source of instabilities in both AOP-

and FOP-based systems.

4.6.2

Coupling vs. Composition Measures

We selected coupling metrics to compare with our composition metrics as

stability indicator. The reason is that coupling has been widely used as an

internal quality attribute to indicate or predict the stability of programs
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(BRIAND et al., 1999, ZHAO, 2004). The coupling metric counts the occur-

rence of dependencies between modules in two directions: afferent and effer-

ent (ZHAO, 2004, BARTOLOMEI et al., 2006). In addition, we have observed

that the first quantitative evaluations for composition mechanisms are emerg-

ing (BURROWS et al., 2010, BURROWS et al., 2011). These studies often

rely on metrics that quantify the level of coupling (and other module-driven

properties) as the better indicators of program stability.

In order to analyst the existing correspondence between program stability

and both coupling and composition properties, we will take into consideration

each instance of composition specification in the code separately. Figure 4.10

illustrates a MobileMedia change scenario where the evolution behavior of two

different compositions, called C1 and C5, can be observed. C1 was included

in R2 while C5 was included in R5. We chose these releases because they

encompass all changes in MobileMedia for both compositions (C1 and C5).

For each composition, we analyzed the coupling of modules that are part of

this composition. The compositions C1 and C5 were implemented in CaesarJ.

For each composition, it is presented its percentage of coupling related to the

total coupling in the code (Figure 4.11). As illustrated the coupling of C1 is

almost the same along the evolution. This occurs because the composition C1

does not share code with other compositions. There is only a decrease in its

coupling percentage in the last releases (e.g., R6 and R7) due to the number

of modules that were added to the program. On the other hand, the coupling

of the composition C5 presents variation because C5 is coupled with other

compositions that need it to work along the evolution.

Figure 4.10: Composition Evolution
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Figure 4.11: Coupling of the Composition Code (C1 and C5)

Coupling Metrics are Agnostic to Indirect Dependencies. However, the

key deficiency of coupling metrics is the following: they do not capture most

of the indirect dependencies. As a result, they fail to indicate (or predict) the

program instabilities source on indirectly-related program elements joining a

composition. The modules presented in Figure 4.12, which are associated with

compositions C1 and C5, are highlighted by circles (M1, M2, M3 and M4 - Figure

4.12. Taking into consideration the values for coupling illustrated in Figure

4.11, we can observe that the compositions C1 and C5 are coupled with less

stable modules. However, they do not present a high percentage in terms of

coupling (Figure 4.11), which means that lower coupling may not mean better

stability.

Figure 4.12: Stability of MobileMedia per modules

4.6.3
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Other Framework Applications

The measurement framework was also evaluated in a different context: inte-

gration of different SPLs. The basic idea behind SPL integration is to foster

the reuse of previously-implemented features across a family of independently-

developed SPL with minimum change rate.

In this complementary study we analyzed whether stability of evolving SPLs

are often related (or not) to composition properties. For this purpose, we

have used the composition metrics presented in Section 4.3. This exploratory

analysis is carried out involving the stepwise integration of independently-

developed SPLs. Each feature integration was identified and implemented

on demand, meaning that none of the target SPLs was designed with the

required changes (integrations) in mind. The goal was to assess the degree of

stability achieved with AOP and FOP and identify its potential association

with composition properties (Section 4.2.2). To perform this analysis, CaesarJ

was chosen as representative of FOP for two reasons: (i) its compiler proved

to be robust during a pilot assessment, and (ii) there are public reports of

their successful adoption in industrial projects. On the other hand, AspectJ is

the most popular AOP language and many other AOP frameworks follow its

programm(ing model. Moreover AspectJ and CaesarJ support programming

mechanisms that are also part of other AOP and FOP languages.

Our findings provided evidence that composition properties, quantified by the

composition metric suite (Section 4.3), are consistent indicators of stability.

The confirmation was observed regardless of advanced programming techniques

and composition mechanisms being used. In particular, we identified that

the feature integrations cope property is the most strongly associated with

stability. In this context, the metric global impact (GoI) indicates stability.

Stability is also indicated by the feature integration volatility (CoV metric).

Therefore, our findings can better inform programmers to tame possible side

effects of feature integration structure.

The results obtained from this study were similar to those results presented

in Sections 4.6.1 and 4.6.2. This similarity makes evident that composition

properties are constant indicators of advanced program stability in different

domains.
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4.7

Related Work

Over the past few years, many measurement frameworks have been

proposed (BRIAND et al., 1999, SANTANNA et al., 2003, ZHAO, 2004,

BARTOLOMEI et al., 2006). These existing frameworks supported the eval-

uation of maintainability of AO and OO programs; they were intended to

measure specific module-centric or general program properties, such as cou-

pling, cohesion, size. For instance, Zhao (ZHAO, 2004) proposed a framework

to describe new forms of dependencies between modules in aspect-oriented

programs. This framework comprises a metrics suite for only assessing the

coupling in AO programs in terms of different types of dependencies between

aspects and classes. Bartsch and Harrison (BARTSCH and HARRISON, 2006)

extended the framework proposed by Briand et al. (BRIAND et al., 1999) for

AspectJ. They described new types of specific coupling connections in AOP,

such as coupling on advice execution, coupling on method call, coupling on

field access. Unfortunately, none of these related works focused on composi-

tion properties. They also do not take into consideration different composition

mechanisms supported by a wide range of advanced programming techniques.

Also, they did not evaluate them in terms of stability of evolving programs.

Bartolomei et al. (BARTOLOMEI et al., 2006) went one step further and pro-

posed a generic framework that captures and takes into consideration the com-

position mechanisms supported by AspectJ and CaesarJ languages. However,

their analysis relies on the coupling created by the use of these mechanisms

and how to account for them. Our framework is a further development of

their work and, hence, delivers complementary contributions because: (i) we

explored different composition properties (Section 4.2), and (ii) we assessed

and discussed the impact of these properties on stability of evolving programs.

Our work is different and present novel ideas when compared to related work.

This occurs because they do not provide means for quantifying the impact

of composition properties, supported by composition techniques, on program

stability. Finally, existing work did not discuss and gather evidence of how the

evolving program stability is related to code composition properties.
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4.8

Known Limitations of the Framework

There are a number of attributes of the proposed framework, and there are

also a few limitations. This framework characterizes composition properties

and provide means to quantify the impact of these properties on program

stability. We claim that it is generic enough to operates with a variate of

advanced programming techniques. However, further evaluations in different

context, such as Delta-Oriented Programming (SCHAEFER et al., 2010), are

still required to validate its generality.

Regarding the delta-oriented programming technique, a program is modular-

ized in core module and a set of delta modules (SCHAEFER et al., 2010).

Core modules are the starting points for generating all other products by delta

module application. Delta modules specify changes to the core module in order

to implement other products. These modules are composed by means of propo-

sitional constraints. This scenario seems to be easily mapped in the proposed

framework. Core and delta modules as well as the propositional constraints file

can be conceptually represented as modules in our framework. The proposi-

tional constraints file also define the composition code of the program. Finally,

propositional constraints can be treated as a program element, called declara-

tions.

An additional limitation of the framework is the extent to which composi-

tion properties are covered. Additional studies using different advanced pro-

gramming techniques will allow us to identify if there are other composition

properties that are harmful to program stability.

4.9

Threats to Validity

With respect to the validity of our study, the conclusion validity threats are

related to the data set. In other words, the analyzed data set might not

be large enough to allow broader statistical analysis. However, we tried to

overcome this threat by using systems that were structured with very different

techniques and underwent several software evolution scenarios. Threats to

internal validity reside on the software history and maturation of the target

application designs. The designs and implementations of MobileMedia and

iBatis have been evaluated and continuously improved through the last years.
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Different maturity levels of the investigated systems may impact differently on

their stability.

Threats to external validity reside on the limited size and complexity of

the target applications, which may restrict the extrapolation of our results.

However, while the results may not be directly generalized to professional

programmers and real-world systems, the chosen projects allowed us to make

useful initial assessments whether the composition metrics would be worth

studying further. In spite of its limitations, the presented research constitutes

an important initial empirical work on the composition metrics.

4.10

Summary

Composition properties are harmful to program stability and thus dealing with

then it a key factor to evolve programs in a more stable way. In this context,

this chapter has presented a measurement framework for quantifying key

properties of composition code. The framework was instantiated and evaluated

in the context of a stability study involving four evolving programs. The

programs were structured with two composition techniques: aspect-oriented

programming and feature-oriented programming. Our analysis revealed that

composition properties, as supported by our metrics suite, were consistent

indicators of program instabilities.

Composition properties exerted more influence on the stability superiority

(or inferiority) of a program than a conventional stability indicator, (i.e.,

coupling). In particular, we identified that the composition scope property

is the most strongly associated with stability. Moreover, in many cases, we

observed that program instabilities could be avoided if the scope of certain

composition declarations (e.g., pointcuts) was decomposed in narrower scopes

and if there was additional information about the composition properties

available at the composition design. Therefore, we believe that the use of our

composition measurement framework can also better inform programmers to

tame possible side effects of composition code structure. We also believe that

richer composition specification will bring benefits to developers in terms of

stability when they are coding (Chapter 5).
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