
2

Background and Related Work

“Try to relax! There is always a way.”

Isela Macia
PhD classmate - class 2009 - PUC-Rio

Composition mechanisms supported by advanced programming techniques

are used to define the binding of two or more modules. These mechanisms

provide a variety of means to structure programs since their design phase,

which leads to gains in the program modularity (FIGUEIREDO et al., 2008a,

FIGUEIREDO et al., 2009). However, these gains come at a cost: developers

now need to understand and deal with possible effects of composition code

properties on the quality attributes of a program. A prominent impact of those

properties is on program changes and thus its stability (Section 1.1). To deal

with these changes is often required some reasoning about certain composition

properties, which are not explicitly in the implementation or design artifacts.

In order to deal with these effects, developers need first to have means to

quantify the composition properties impact on stability.

Unfortunately, it is questionable if conventional modularity metrics capture

the nuances of composition properties. Therefore, they might not provide

appropriate means for indicating stability of an evolving program. In fact, there

is no empirical study building this knowledge. In addition, there is no empirical

study about program stability, focusing on whether quantifiable composition

properties affect this quality attribute. In addition, there are also no means

to explicitly specify composition properties in order to facilitate the reasoning

about the composition and their prominent changes.

This chapter presents and discusses relevant topics to our research work.

These topics vary from composition mechanisms to techniques for composition

design. Moreover, we are particularly interested in assessing the correlation

of composition properties and program stability. We also discuss existing

limitations of related work that have inspired our research questions (Section

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 2. Background and Related Work 35

1.3). Section 2.1 presents a subset of composition mechanisms evaluated in

the empirical studies of this thesis. Conventional software metrics, typically

used to quantify modularity in software programs, are discussed in Section 2.2.

Section 2.3 presents empirical studies regarding stability of programs produced

with advanced programming techniques. Section 2.4 discusses existing work

concerned in providing explicit support for composition design. Finally, Section

2.5 summarizes this chapter.

2.1

Composition Mechanisms

Software is typically decomposed into separate parts, which we called modules.

Separation into modules allows programmers to compose pieces of the program

that are functionally related, or that address closely similar responsibilities

(NIERSTRASZ and MEIJLER, 1995). In this context, Aspect-Oriented Pro-

gramming (AOP) and Feature-Oriented Programming (FOP) have been

around and begun to get more attention from industry and academia

(NARAYANAN et al., 2006, HOHEENSTEIN, 2006, KULESHOV, 2007,

MEZINI and OSTERMANN, 2002). The use of these techniques was mainly

driven by their composition mechanisms, which are used to realize program

composition (APEL et al., 2008, HOFFMAN and EUGSTER, 2008). Pro-

gram composition refers to the process of binding two or more program modules

by means of composition mechanisms (NIERSTRASZ and MEIJLER, 1995).

Composition mechanisms also differ among them in the way they support the

realization of compositions. Therefore, the choice for a particular composition

mechanism influences the way of how software is structured. For example,

inheritance mechanisms allow the definition of abstractions that may evolve

in several ways and they are supported in different advanced programming

techniques, such as AOP (e.g., aspect inheritance) and FOP (e.g., virtual

classes). These techniques are attractive because all of them provide gains

regarding modularity when compared with conventional techniques, such as

OO (FIGUEIREDO et al., 2008a). Table 2.1 presents the AOP and FOP

composition mechanisms to be studied in this research work, which are

presented in Section 2.1.1 and 2.1.2, respectively.

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 2. Background and Related Work 36

Table 2.1: A representative Set of Composition Mechanisms

2.1.1

Modularity with AOP Mechanisms

In this section, an overview of AOP composition mechanisms is presented.

In this context, AspectJ is presently the most popular and widely used

aspect-oriented programming language. AspectJ provides several mechanisms

to enable the decomposition of AOP system into modules called aspects. An

aspect refers to both sets of join points, called pointcuts, and the associated

advice. The advice consists of method-like portions of code that will be applied

to the existing program. It is applied at all join points associated with that

advice. Typical examples of join points are a method call, a method execution

or a field access. A pointcut expression (or pointcut declaration) selects a set

of join points by means of declarative expressions. A pointcut declaration is

generally formed by patterns (e.g., method signatures) and predicates. AspectJ

also allows modifications of class structure and hierarchy through inter-type

declarations and other declare-like expressions. Inter-type declarations provide

a way to inject new fields or methods into an existing class using an aspect. In

addition, as it is possible to define hierarchies of classes, it is also possible to

define hierarchies of aspects. Aspects can extend classes, implement interfaces,

and even extend other aspects. Finally, AspectJ provides declare precedence

mechanisms for controlling aspect precedence in cases where more than one

aspect shares the same jointpoint. The declare precedence construct must be

specified inside an aspect.

Figure 2.1 demonstrates an example of modularization with aspects. The

aspect A1 intercepts the class C1 adding the method m1() to it. Additionally,

it also intercepts the class C1 when its method m2() is called. At the same

time, a second aspect A2 intercepts the call of the method m2(). As the aspect

A1 and A2 share the same jointpoint (m2() call), a third aspect, A3, is required

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 2. Background and Related Work 37

to control the execution precedence of the aspects. Finally, it is important to

highlight that the aspect A2 extends the aspect A4.

public aspect

declare precedence

A3 {

: A2, A1;

}

public aspect extends

call

A1 A4 {

PCE (* *.*m2(..));

C1.m1() { m2(); }

}

public aspect extends

call

A1 A4 {

PCE (* *.*m2(..));

}

PCE = Pointcut Expression

Figure 2.1: AOP in AspectJ

2.1.2

Modularity with FOP Mechanisms

The composition mechanisms investigated in this section are supported

by FOP techniques and presented using a CaesarJ programming language

(ARACIC et al., 2006). In recent years, the CaesarJ programming language

attracted attention among researchers, due to its promising advantages in re-

lation to flexible support for modularity (MEZINI and OSTERMANN, 2003).

CaesarJ uses a joinpoint model similar to that of AspectJ (Section 2.1.1).

A CaesarJ implementation is a top-level CaesarJ class (cclass) that encloses

all elements of the concrete implementation of the component that are po-

tentially reusable across multiple cases and scenarios. Though it usually

specifies concrete state and behavior, it is often abstract. Typically, a Cae-

sarJ provides implementations to some, though not necessarily all, the in-

ner classes declared in the collaboration interface. A collaboration interface

(MEZINI and OSTERMANN, 2002) is an approach proposed by the authors

of CaesarJ, in which an abstract CaesarJ class is used to specify, in abstract

terms, a collaboration between several abstractions. This way, module inte-

gration typically comprises several program elements which developers wish to

keep separate and be able to evolve separately.

Collaboration interfaces are the basis of CaesarJ binding. A CaesarJ binding

is a top-level CaesarJ class that inherits from the collaboration interfaces and

encloses the logic that glues the module to a specific program. Thus, application

specific program elements should be placed in a CaesarJ binding. A CaesarJ

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 2. Background and Related Work 38

binding corresponds to the expected part of the component. It performs the

same role as a concrete aspect in AspectJ. Both implementations and bindings

are subclasses of the collaboration interface. Thus, we need a mechanism to

compose them to yield the complete, unified module. The mechanism provided

by CaesarJ is a form of mixin composition (BRACHA and COOK, 1990). The

main idea of mixins is to specify additional functionality to not just one, but

to an opened set of existing modules in a transparent and non-invasive way.

The mixin composition mechanism is used to address this, through which a

final component is generated. The composition is realized with the operator

&.

In addition, CaesarJ also supports the use of virtual classes

(MADSEN et al.,1989) and comprises the capability to treat inner, nested

classes, polymorphically. We give to the term virtual the same meaning as

in the context of the C++ language. In other words, they are class members

that can be overridden in subclasses and whose actual implementation is

dynamically bound, or late bound, according to the actual type of the ob-

ject at runtime. Figure 2.2 demonstrates an example of modularization with

virtual classes. The cclass Root implements the base functionality of a given

application. The new cclass Sun refines cclass Inner1 adding the method

getmaxX().

Root

Sun

Inner1

Inner1

Inner2

Inner2

Inner3

Inner3

getRoot()

getX ()

getmaxX ()

setX (int)

setmaxX (int)

print()

print()

refresh()

int x;

int max_x;

Figure 2.2: Virtual Classes

Since a functionality may need functionality of others classes it is important to

have some forms of multiple inheritance. The mixin composition mechanism

is used to address this, through which a final component is generated. The

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 2. Background and Related Work 39

composition is realized with the operator ’&’. For instance, let us suppose

that the class Root composes Sun with other functionality namely Date. The

composition operator realizes a variant of multiple inheritance that linearizes

the superclasses, thereby avoiding ambiguities such as duplication of inherited

state as follows: cclass Root extends Sun & Date { ... }.

We also work with wrapper mechanisms, which are dynamic extensions of

classes. Similarly to AspectJ’s intertype declarations, they can be used to

adding methods and attributes in a target class. They bind types from

two domains. These bindings are explicitly called by invoking the wrapper

constructor, which receives the object that will be adapted as parameter.

2.1.3

Modularity with Other Advanced Programming Techniques

There are other advanced programming techniques for modularizing programs,

such as Compose* (COMPOSE PROJECT, 2012), delta-oriented program-

ming (SCHAEFER et al., 2010) and Traits (DUCASSE et al., 2006). Com-

pose* supports a composition filter model that extends the object abstrac-

tion in a modular and orthogonal way. Modular extension means that filters

can be attached to objects expressed in different languages without modifying

the definition of objects in these languages. Orthogonal extension means that

the semantics of a filter is independent of the semantics of other filters. The

modular and orthogonal extension properties distinguish the composition filter

model from most other aspect-oriented techniques. Modular extension makes

filters independent of the implementation. Orthogonal extension makes filters

composable. Compose* aims at enhancing modularity and composition of mod-

ules through the composition filters model (BERGMANS and AKSIT, 1992).

The idea is that objects can send messages between each other, e.g., in the form

of method calls or events. In the composition filters model, these messages can

be filtered using a set of filters. Each filter has a type (e.g., Dispatch, Meta,

After, Before and Error), which defines the behavior that should be executed

if the filter accepts the message and the behavior that should be executed if

the filter rejects the message.

Regarding the delta-oriented programming technique, the idea is to provide

composition mechanisms for implementing evolving programs also in a modular

way. A program is divided into a core module and a set of delta modules. The

core module comprises a set of classes that implement a complete software

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 2. Background and Related Work 40

product for a valid configuration. On the other hand, Delta modules specify

changes to be applied to the core module in order to implement other products.

A delta module can add classes to a product implementation or remove classes

from a product implementation.

There are many other emerging advanced programming techniques that en-

able to combine fine-grained code units based on the use of traits. Traits-

based composition promotes fine-grained program elements reuse only in meth-

ods. A trait is a set of methods that can be composed in arbitrary order

(DUCASSE et al., 2006). Traits are similar to mixins (ARACIC et al., 2006),

but whereas mixins can be composed only using the inheritance operation,

traits offer a much wider selection of operations, including symmetric sum,

method exclusion, and aliasing.

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 2. Background and Related Work 41

2.2

Program Stability and Modularity Metrics

In this section, we are particularly interested in discussing program stabil-

ity (Section 2.2.1) and to survey existing assessment means associated with

modularity metrics (Section 2.2.2). We focused or study on modularity met-

rics as they have found to be mostly related to software instabilities when

conventional programming techniques are used (e.g., Object-Oriented (OO))

(SHEO et al.,2008, BRIAND et al.,1999, BRIAND et al., 1999).

2.2.1

Program Stability

Stability is one of the most desirable quality attributes in the context of

program maintenance (ELISH and RINE,2003, FAYAD,2002, YOUNG,2005).

However, there is no precise definition of stability. This means that its mean-

ing is generally implied but not defined. Yau and Collofello (YAU et al.,1980,

YAU and COLLOFELLO, 1985) have pioneered the study of stability at both

levels of code and design. Both definitions are presented in terms of ripple

effects over software versions. The computation of ripple effect is based on

the effect that a change to a single program element will have on the rest

of the program. Later, Alshayeb and Li (ALSHAYEB and LI,2005) and Kelly

(KELLY, 2006) provided definitions accompanied by the concept of metrics.

This definition is based on the general knowledge that, as changes are made

to core program modules, other parts of the program may be affected due to

the propagation of ripple effects. As an example of ripple effect, consider an

interface which defines a set of method signatures. These methods are imple-

mented by concrete classes that inherit from this interface. Modifications in

this interface, such as adding, deleting, or modifying a method signature, re-

quire additional changes to be made to all classes that implement it. Therefore,

in this case we say that changes in a particular module provoke ripple effects

in other classes of the program. According to Kelly (KELLY, 2006) a program

is considered stable when its interface or implementation is not undesirably

modified and ripple effects (YAU et al.,1980) do not manifest in the presence

of changes.

We chose to observe the stability from the standpoint of the number of changes

of modules because we focus on the assessment of stability based on module

changes, which are a direct consequence of ripple effects. In addition, we also

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 2. Background and Related Work 42

decided not to choose one or more particular structural metrics (e.g., size

and modularity) because surely only a restricted set of instability would be

captured, since other structural characteristics would be ignored. Moreover, the

number of module changes is a better direct measure of changes and occurrence

of ripple effects. In this context, the definition of stability used in this work

follows:

Definition 2.1(Program Stability) A program is considered to be stable as

changes in any of its program elements are unlikely to generate ripple effects,

causing the propagation of changes.

Minimising the ripple effects of a program change is a difficult, time consuming,

and error-prone activity, especially for badly designed programs. Therefore,

some authors (ELISH and RINE,2003, YOUNG,2005) have proposed the use

of metrics to quantify design stability. This discussion regarding metrics is

presented in Section 2.2.2.

2.2.2

Modularity Metrics

In the context of Empirical Software Engineering, software measurement

exerts an important role as it provides quantitative evidence of the software

engineering solutions over the generated artifacts. Software metrics for modular

programming, fostered by advanced programming techniques, must capture

some composition properties (Section 1.1). There is no measure to characterize

and quantify composition properties. In the state-of-the-art, developers and

researchers are forced to assume that classical modularity measures can be

used to determine the quality of the modular decomposition of a system.

However, all of them are focused on measuring properties of program modules

rather than properties of the composition code itself. As a consequence, it is

questionable whether these conventional metrics are indicators of key quality

attributes of a system, such as stability.

At the implementation level, several metrics have been proposed and

used in the context of Object-Oriented (OO) design and programming

(CHIDAMBER and KEMERER, 1994, HENDERSON-SELLERS, 1995,

ETZKORMN and DELUGACH, 2000). Software metrics have been widely

used in the OO software development in order to improve software

maintainability and reliability. Recently, some of these metrics were

adapted to the context of AOP (SANTANNA et al., 2003) and FOP

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 2. Background and Related Work 43

(BARTOLOMEI et al., 2006). The set of proposed metrics captures pieces

of information associated with the project and its code in terms of internal

quality attributes, such as coupling and cohesion. The goal of these metrics is

to provide a better modularization of the source code and thus also support

analysis and prediction of quality attributes, such as stability. The metrics

proposed by Sant’Anna et al. (SANTANNA et al., 2003) were already evalu-

ated and validated through a range of empirical studies. However, there is a

lack of metrics to confidently evaluate the composition mechanisms described

in this research work (Sections 2.1.1 and 2.1.2).

Similar to (SANTANNA et al., 2004), Ceccato and Tonella (2004)

adapted the object-oriented metrics proposed by Chidamber and Kemerer

(CHIDAMBER and KEMERER, 1994) to the context of AOP. They also pro-

posed new metrics for measuring coupling that results specifically from AOP

mechanisms. These metrics take into consideration the crosscutting degree

of an aspect and the coupling on advice execution. However, no empirical

evaluation on composition properties was conducted. Furthermore, nothing is

known about the use of these metrics for evaluating other techniques, such

as FOP. The Ceccato and Tonella’s metrics were empirically evaluated by

Shen et al. (HAIHAO et al., 2008). As a result, Ceccato and Tonella’s metrics

evolved them. The effects caused by pointcuts is now considered in the Shen

et al. metrics. Similarly, their metrics quantify the crosscutting degree of an

aspect caused by intertype declarations and the coupling on advice execution

caused by advices. However, they did not correlate their metrics with stability

of the modules using different advanced programming techniques. Shen et al.

(HAIHAO et al., 2008) extended their prior work in a study that evaluates

their metrics when applied to check the maintainability of evolving aspect-

oriented programs. However, they do not take into consideration the impact

of composition properties on program stability.

Burrows et al. (BURROWS et al., 2010) analyzed the feasibility and effec-

tiveness of using coupling metrics as indicators of fault-proneness in aspect-

oriented programs. However, they did not correlate their metrics with stability

of the modules, but the existing relation of a set of metrics with the fault-

proneness of aspect-oriented programs. Regarding software stability, Yau and

Collofelo (YAU and COLLOFELLO, 1985) presented design stability mea-

sures which indicate the potential ripple effect characteristics due to modi-

fications of the program at the design level. Further, Kelly (KELLY, 2006)

used conventional metrics for assessing modularity and stability of software

decompositions. However, she did not considered different composition mech-

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 2. Background and Related Work 44

anisms supported by advanced programming techniques. To the best of our

knowledge, existing metrics for advanced programming techniques were only

focused on AOP (GREENWOOD et al., 2007, FIGUEIREDO et al., 2008a).

To date, however, there is limited empirical knowledge about the relationship

between the use of these metrics to indicate or predict the degree of program

stability.

In this direction, we developed a first evaluation about the impact of advanced

programming techniques on program stability. We were particularly interested

in analyzing instabilities which are undesirable (i.e., those generated by the

occurrence of ripple effects) for the software maintenance. We have used the

mechanisms supported by two programming languages, which are representa-

tive of AOP and FOP technique respectively: AspectJ and CaesarJ.

2.3

Empirical Studies on Stability vs. Advanced Programming Techniques

Empirical Software Engineering aims at improving software engineering solu-

tions through empirical methods. According to (BASILI et al., 1999), empiri-

cal studies are the most efficient way of gathering knowledge that can be used

to improve the quality of the software engineering techniques and methods.

For this reason, it is important to identify and evaluate the use of advanced

programming techniques through empirical assessments.

It has been widely recognized that the task of evolving software systems should

not be detrimental to the software stability. Gathering knowledge to identify

which programming techniques achieve better program stability is particularly

important due to many reasons. First, software engineers need to be better

informed about which modularity mechanisms can maximize stability of a sys-

tem. Second, some of composition mechanisms supported by these techniques,

such as intertype declarations and virtual classes can be considered compet-

itive. Finally, it is important to know which of these particular mechanisms

tend to promote positive and negative effects on software stability.

Regarding empirical studies of advanced programming techniques, the un-

derstanding is that better stability is always achieved using such composi-

tion mechanisms (KICZALES et al., 1997, CZARNECKI and HELSEN, 2006,

GRISWOLD et al., 2006). The first steps in this direction were given by

Mezini and Ostermann (MEZINI and OSTERMANN, 2002). They evalu-

ated the composition mechanisms provided by the CaesarJ language in

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 2. Background and Related Work 45

the direction of software product line development. However, these stud-

ies do not evaluate CaesarJ in terms of software stability. Apel and Ba-

tory (APEL and BATORY, 2006) also discuss the use of aspects or features

in the software development process. However, they did not assess stabil-

ity and did not focus on different advanced programming techniques. Roo

et al. (ROO et al., 2008) proposed the Compose* programming language. By

means of this language, the concept of AOP was included through the com-

position filters model. Other studies assessing the composition filter model

were carried out. However, none of them (BERGMANS and AKSIT, 1992,

AKSIT and BERGAMANS, 1998) focused on the evaluation of stability.

Gurgel et al. (2010) reported a qualitative evaluation of using the mechanisms

supported by CaesarJ and AspectJ language to compose different design

patterns. However, they did not conduct a quantitative analysis and also

they did not analyze stability taking into consideration composition properties.

Macia et al. (MACIA et al., 2011) analyzed the impact of code smells in three

evolving real-world systems. These systems were implemented using hybrid

architectural decompositions - i.e. based on multiple architectural styles,

including Model-View-Controller, Layers and Aspectual design. A large part of

the system was implemented with Java and AOP. The architectural analysis

was performed by comparing the intended architecture’s models versus the

actual architecture recovered from the source code. However, they did not focus

on different composition mechanisms and also they did not analyze stability

in the light of the composition effects.

In this context, little is known about the real influence of the use of advanced

programming techniques over the stability of software artifacts. For instance,

to the best of our knowledge there is no systematic analysis of modifications

when changes in the composition code are required. In addition, there is a lack

of studies in the context of advanced programming techniques with the goal of

supporting the stability analysis when software systems evolve. For this reason,

developers are not well informed about the stability problems associated with

the use of composition mechanisms when they are developing.

2.4

Composition Design

In agreement with Whitehead et al. (WHITEHEAD,2007), composition de-

sign emerges as a fundamental activity to support developers when dealing

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 2. Background and Related Work 46

with the complexity level that is usually associated with the composition-

enriched program diversity, which refers to the types and amount of mod-

ules. Composition design refers to the process of planning, using a graphi-

cal notation for instance, the composition implementation (i.e., program el-

ements that combine two or more modules). Based on this understanding,

we claim that composition properties should be available to developers in

modeling artifacts when they are coding. Unfortunately, techniques for ex-

plicit composition modeling do not focus on providing suitable means to

specify composition properties. Different techniques for composition design

have been proposed over the last years and each of them has a proper way

to express compositions. However, none of them focuses on support the ex-

plicit modeling of composition properties. Even standard modeling languages,

such as UML (ANDA et al., 2006), do not provide specific abstractions to

represent composition properties. In addition, there is a plenty of innova-

tive model composition techniques, such as traditional composition algorithms

(CLARKE, 2009), IBM RSA (IBM RSA, 2011), Epsilon (DAVID, 2000),

MATA (WHITTLE et al., 2009), Kompose (KOMPOSE, 2011)). Moreover,

Chavez et al. (CHAVEZ and LUCENA, 2002, CHAVEZ et al., 2005) have pro-

posed a modeling notation for AOP-based projects. However, none of them

explicitly support modeling of composition properties.

This lack of studies towards the evaluation of these modeling techniques,

in the context of advanced programming techniques, has led to a major

problem: there is a lack of guidance on managing composition properties using

modeling techniques with the intention of alleviating the maintainability effort.

In order to fulfil this gap, we investigated whether and how the availability

of a detailed composition properties declaration help developers to evolve

software minimizing the number of changes. Our investigation puts together

a popular design modeling language, UML, and the notation proposed by

Chavez et al. (CHAVEZ and LUCENA, 2002, CHAVEZ et al., 2005) in order

to express the composition properties in the composition design. The results

of our investigation and the explanations about why we chose UML in our

investigation can be found in Chapter 5.

2.5

Summary

This chapter presented a review of existing quantitative means for assessing

stability of composition-enriched programs. Software metrics (Section 2.1)

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

Chapter 2. Background and Related Work 47

are the basic means to assist software developers in improving the software

stability. The metrics are intended to provide developers with efficient stability

indicators, for instance, when composition mechanisms are used. Section 2.1

presented the composition mechanisms used in this study. Sections 2.2, 2.3

and 2.4 presented some existing metrics, empirical studies and modeling

programming techniques and their limitations, respectively. Although studies

on the use of advanced programming techniques have started to be reported

in the literature (Section 2.3), the area of composition measurement is still

in its infancy. This current scenario is also due to the lack of a standard

terminology and formalization of composition properties. To address some of

the limitations, we present in Chapter 4 a generic measurement framework for

composition properties. This framework is built based on the discussion about

the role of modularity in program stability presented in Chapter 3.

DBD
PUC-Rio - Certificação Digital Nº 0912912/CA

