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4 Prioritizing and Ranking Code Anomalies with Blueprints  

As mentioned in Chapter 1, our research work is focused on evaluating how the 

architecture information provided by blueprints can be efficiently used as means to 

improve the prioritization and ranking of critical code anomalies. In this context, we 

conducted controlled experiments aiming to investigate how architecture blueprints 

provided by software architects or developers could help to prioritize and rank critical 

code anomalies. These experiments are reported in this Chapter. The controlled 

experiments also allow us to evaluate how architecture blueprints could be useful on 

the prioritization and ranking process. Thus, we have applied controlled experiments 

in three different universities with the participation of 66 graduate students. The 

participants also provided qualitative feedback. For instance, they indicated examples 

of additional architecture information (e.g. dependency strength and mapping of 

architecturally-relevant concerns), which could be explored in the architecture 

blueprint to facilitate the prioritization and ranking of critical code anomalies. The 

additional architecture information would complement the source code information, 

already explored by the existing code anomaly detection strategies.  

From our initial results, we inferred several types of information were useful to 

assist developers on the prioritization process. Thus, participants used different types 

of information to help them when deciding which code anomalies should be 

prioritized first. Our initial research results revealed architecture blueprints could be 

efficient in the prioritization process, in particular if the architecture information 

available on them is used in addition to the source code. The latter is already explored 

by existing strategies, while the former is not (Chapter 2). Moreover, we observed the 

use of architecture blueprints allow statistical significant improvements in terms of 

Recall and Precision related with the prioritization of critical code anomalies. The 

use of architecture blueprints did not bring any additional effort in terms of Time 

Spent for the prioritization process.  

Finally, our investigation revealed other interesting research findings regarding 

the prioritization of code anomalies supported by architecture blueprints: (i) we 
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discuss how architecture blueprints might influence in the prioritization of critical 

code anomalies; (ii) quantitative indicators on how the use of architecture blueprints 

could help to improve the prioritization process; (iii) an analysis in terms of time 

spent when using blueprints as additional artifacts for identifying critical instances of 

code anomalies; and (iv) what are the main characteristics of False Positives and 

False Negatives observed in the target applications under investigation. It is also 

important to mention that the results of this chapter were published at: (i) 5th 

International Workshop on Modeling in Software Engineering held in conjunction 

with at ICSE; and (ii) 38th Annual International Computer, Software & Applications 

Conference  (COMPSAC). 

 

4.1. 
Code Anomalies Studied  

As mentioned in Chapter 1, the progressive insertion of code anomalies might 

contribute to architecture degradation symptoms, and therefore, might hinder the 

software maintenance and evolution tasks. In order to prevent architecture 

degradation symptoms, software development teams should progressively prioritize 

and rank the most critical code anomalies in order to remove them as early as possible 

in the development process. In this sense, our controlled experiments investigate how 

the presence of critical code anomalies might negatively impact on the overall 

software architecture during the system evolution (Fowler et al., 1999)(Macia et al., 

2012a)(Macia et al., 2012b). Thus, our study focused on three types of code 

anomalies, which have been also evaluated in other studies (Deligiannis et al., 

2004)(Lanza and Marinescu, 2006)(Li and Shatnawi, 2006). In the following, we 

briefly describe each of the code anomalies investigated in the controlled 

experiments. 

• God Class is defined as a class that knows too much or does too much. That is, it 

represents a class that has grown beyond all logic to become the class that does 

almost everything in the system (Riel, 1996). In another perspective, God Class 

can be understood as a class that implements too many concerns and, so, have too 

many responsibilities. Therefore, it violates the idea that a class should capture 

only one key abstraction (Martin, 2003). 
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• Shotgun Surgery anomaly is somehow the opposite of the Divergent Change. We 

identify a Shotgun Surgery instance every time we make a kind of change that 

leads to a lot of little changes in many different classes (Fowler et	
  al., 1999). 

• Divergent Change anomaly occurs when one class is commonly changed in 

different ways for different reasons (Fowler et	
  al., 1999). For example, we have to 

change three methods of a class every time we get a new database or we have to 

change other four methods every time there is a new financial instrument. Any 

change to handle a variation should change a single class, and all the new 

subtypes of this class should express the variation (Fowler et al., 99). 

Furthermore, several studies have investigated the impact of those three code 

anomalies in different software activities (e.g. software maintenance). For instance, 

Shotgun Surgery was positively associated with software faults (Lanza and 

Marinescu, 2006). Other work also reported (Tsantalis e al., 2008) this anomaly has 

been consistently correlated with defects across systems. Different studies 

investigated the effect of code anomalies from the perspective of system defects. 

Other work (Li and Shatnawi, 2007) investigated the relationship between the class 

error probability and code anomalies, based on three versions of the Eclipse project. 

Their result showed that classes with code anomalies (e.g. Shotgun Surgery, God 

Class or God Methods) are more likely to present errors than non-infected classes. In 

turn, the work developed by Deligiannis et al. (2004) showed that a design (not code) 

without a God Class was judged and measured to be better (in terms of time and 

quality) than a design for the same system with a God Class. The results provided 

evidence a software design without God Class is better with respect to completeness, 

correctness and consistency. Finally, an empirical study performed by Abbes et al. 

(2011) brings up the notion of interaction effects across code anomalies. The study 

concluded classes and methods identified as God Classes and God Methods in 

isolation had no effect on effort, but when appearing together, they led to a significant 

increase in the maintenance effort. 

 

4.2. 
Experimental Evaluation  

Aiming to address our second research question (RQ2), we derived two 
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auxiliary research questions (ARQs). The main motivation of this investigation is due 

to the belief that early prioritization of code anomalies may prevent architecture 

degradation during the system evolution. Recalling the prioritization of critical code 

anomalies can be understood as the process of distinguishing detected code anomalies 

harmful to the architecture design. In this sense, the auxiliary research questions are 

defined as: 

• ARQ3 - How can architecture blueprints help the prioritization of relevant code 

anomalies? 

• ARQ4 - Can the use of architecture blueprint, as an additional artifact, to 

improve the prioritization of architecturally relevant code anomalies? 

To evaluate to what extent the use of architecture blueprints may improve the 

prioritization of critical code anomalies, three measures were used: Precision, Recall 

and Time. We also analyzed the main characteristics of classes identified as False 

Positives or False Negatives. This analysis allows us understanding why the existing 

strategies (based on the sole use of source-code metrics) fail to correctly identify 

instances of critical code anomalies. In this sense, we defined 3 study hypotheses (see 

Table 6) to be tested based on the data collected with the participants in the 

experiment. For each hypothesis, the null (HN.0) and alternative hypotheses (HN.1) 

were defined (N represents the number of the hypothesis under analysis). It is 

important to remember that the controlled experiments have been executed in three 

different universities. Therefore, we counted on the collaboration of 66 participants 

with different working experience. We could assess their working experience through 

a questionnaire applied before the training session (see Section 4.2.1).  

Table 6 – Study hypotheses definition 

Study Hypothesis Description 

Hypothesis H1.0 Precision (blueprints) ≥ Precision (non-blueprint) 
Hypothesis H2.0 Recall (blueprints) ≥ Recall (non-blueprint) 
Hypothesis H3.0 TimeSpent (blueprints) ≠ TimeSpent (non-blueprint) 

Our first study hypothesis H1.0 is concerned with the impact of the use of 

metrics and architecture blueprints on prioritizing and ranking critical code anomalies. 

The null hypothesis H1.0 states that the use of architecture blueprints, as an additional 

artifact, does not provide any enhancement on the in terms of Precision of the 
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prioritization process. In turn, the alternative hypothesis H1.1 states that the Precision 

was higher when developers are provided with architecture blueprints as additional 

artifact for prioritizing architecturally relevant code anomalies. Our second study 

hypothesis H2.0 is concerned with the impact of using architecture blueprints on 

Recall measures. Similarly to the first hypothesis, the null hypothesis H2.0 states that 

the use of architecture blueprints to improve the prioritization of code anomalies does 

not impact on the Recall. The alternative hypothesis H2.1 states that the Recall 

measures tend to be higher when developers are provided with architecture blueprints 

for prioritizing architecturally relevant code anomalies. Finally, the third hypothesis 

H3.0 states that there is no different in terms of Time Spent on detecting code 

anomalies when subjects are provided with architecture blueprints. Furthermore, we 

also discuss whether the time could, for instance, influence in the number of False 

Positives and False Negatives observed in the prioritization and detection process. It 

is important to remember that, similarly to the study presented in the Chapter 3, the 

blueprints represent the descriptive architecture of the target application under 

assessment. 
  
4.2.1. 
Experimental Steps  

In order to perform the controlled experiments, we have defined a set of 

experimental steps. As a first step, we performed a training session to introduce the 

main concepts involved in the controlled experiments. For example, we introduced 

the concept of code anomaly, software architecture and detection strategies. We have 

also provided examples on how to reason over the artifacts provided for prioritizing 

and ranking the code anomalies.  

The second step consists in organizing participants into two different groups, 

based on the set of artifacts they were provided. The first group received only 

software metrics and source code information for prioritizing critical anomalies. That 

is, participants in this group have not received any architecture blueprints or 

additional architecture information. In turn, participants in the second group have 

received blueprints representing information of the descriptive architecture (e.g. 

components, interfaces, deign decisions), in addition to software metrics and source-

code information. For the sake of simplicity, we call both groups as non-blueprint 
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(NBP) and blueprint (BP), respectively. In addition, the preparation of the artifacts 

provided in the controlled experiments, we specifically evaluated the architecture 

blueprints – once this is the main artifact analyzed by the participants in the BP 

group. Thus, we performed the mapping between the elements (components and 

interfaces) in the architecture blueprints and code elements in the system 

implementation. The mapping process (see Chapter 2) helped us to guarantee 

architecture blueprints all architecture design models could be classified in the 

concept of blueprints defined in this thesis. Moreover, the mapping process helped us 

to evaluate whether architecture blueprints have a minimum quality, in terms of level 

of abstraction, consistency and completeness, so that they can be properly used in the 

prioritization process.  

After the training section has been performed and participants organized into 

groups, we provided to all groups a document containing: (i) a partial view of the 

Mobile Media architecture, including a description of the architectural design, as well 

as the description of the system concerns. It is important to mention only the Mobile 

Media has been selected as target application, since we performed a preliminary 

investigation regarding the impact of architecture blueprints in the prioritization 

process. In this phase, we presented a sequence of tasks should be performed by each 

group before answering the experimental tasks. After reading the documents, the 

participants were able to start the experimental tasks for prioritizing the code 

anomalies. Basically, for each subject were assigned 2 out of the 3 code anomalies. 

They should list the set of classes they have judged to have each anomaly, as well as 

explain what was the rationale they have used. In addition, they should indicate what 

artifacts and which metrics they used on the prioritization process.  

After that, participants were asked to provide an ordered list with the anomalous 

classes considering their architectural relevance. These activities should be performed 

for each code anomaly the subjects were assigned. The two last tasks as concerned 

with the use of architecture blueprints. Participants should explain the rationale used 

to interpret the information provided on the architecture blueprints. Finally, they were 

asked to indicate which information was useful on the prioritization and ranking 

process. Participants should reason about the architecture blueprints, metrics values 

and source-code information when performing the experimental tasks.  
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4.2.2. 
Ground Truth of Code Anomalies 

We have counted on the collaboration of the system experts to build the code 

anomalies reference list – also referred to as ground truth. The experts helped us to 

identify instances of each code anomaly provided in the reference list. A systematic 

analysis was performed on the target system to identify classes affected by critical 

code anomalies. In addition, the experts were involved during the development, 

maintenance or assessment of the target application. Table 7 shows the reference list 

of code anomalies identified in the Mobile Media system.  

Table 7 – Code anomalies reference list for Mobile Media 

Code Anomaly Code Element 
God Class MediaAccessor, MediaController 

Shotgun Surgery AlbumController, MainUIMidlet, MediaAccessor, 
MediaController, MediaListController, SmsMessaging 

Divergent Change ImageMediaAccessor, MediaAccessor, MediaController, 
AlbumController, VideoCaptureController, MainUIMidlet, 
MediaListController, MusicPlayController, PhotoViewController, 
PlayVideoController, SelectMediaController 

In order to get the code anomalies reference list, we asked the experts to apply 

their own strategy to detect the code anomalies in the target application. For instance, 

one of the experts focused on code inspection, while another expert used a set of 

detection strategies, as a complimentary approach to code inspection. The results 

indicated that for each code anomaly a set of potential instances were not exactly the 

same. Thus, around 75% of the code anomalies detected by all experts achieved the 

same result. Thus, the reference list was a result of a joint decision. 

 

4.3. 
Hypotheses Testing and Data Analysis 

This section presents the data analysis from the results observed through the 

controlled experiments. To perform a comparative analysis on the efficiency of using 

architecture blueprints representing the descriptive architecture of the target system, 

we used three measures: Precision, Recall and Time Spent. Precision and Recall 

leverage other three metrics: True Positives (TP) to measure the number of correctly 

identified code anomalies; False Positives (FP) to measure the number of wrongly 
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identified code anomalies; and False Negatives (FN) to measure the number of 

missing code anomalies.  

Precision (see Table 8, Equation 1) is defined as the ratio of critical code 

anomalies correctly identified by the subjects. A high Precision implies the 

participants identified more relevant code anomalies than irrelevant ones. On the 

other hand, Recall (see Table 8, Equation 2) can be defined as the fraction of critical 

code anomalies identified by the participants to the total number of anomalies 

presented in the code anomalies reference list. Therefore, a high Recall implies the 

participants identified most of the critical code anomalies. In this way, our main focus 

is on Recall because it is more important not missing many critical code anomalies. 

Finally, we evaluate to what extent the use of architecture blueprints impacts on the 

Time Spent by the participants when prioritize and ranking each code anomaly under 

investigations. Basically, we measure the time each subject took to perform each 

experimental task. 

Table 8 - Definition of Precision and Recall 

(1) Precision = 
𝑇𝑃

𝑇𝑃   +   𝐹𝑃
 2   𝑅𝑒𝑐𝑎𝑙𝑙  (𝑅) =

TP
𝑇𝑃 + 𝐹𝑁

 

As previously mentioned, the controlled experiments have been performed in 

three different institutions. The first two replications of the controlled experiments 

were performed in two universities in Brazil, UFBA (8 subjects) and UFMG (42 

subjects), with undergraduate and graduate students. The last replication was 

performed at Drexel University (16 subjects), USA, with only Master and PhD 

students - in total we had 66 participants in the controlled experiments. In this way, it 

was possible to observe how the participants’ technical knowledge and working 

experience might impact on the conclusions when comparing the results achieved by 

the undergraduate and graduate students. It is important to mention the hypotheses 

test was performed using the R language and its environment. To verify whether the 

collected data is normally distributed, Shapiro-Wilk test (Wohlin et al., 2000) was 

applied. As the collected data are not normalized, we applied a Mann-Whitney non-

parametric method to test our study hypotheses (Wohlin et al., 2000). This test was 

chosen because it is designed to perform a non-paired comparison of two independent 

samples, which do not necessarily have the same size. Moreover, aiming to guarantee 
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a statistical significance of our tests, we used as default a confidence level of 95% (p-

value = 0.05) for testing all the study hypotheses. 

 

4.3.1. 
Impact of Architecture Blueprints On Precision and Recall 

Our first study hypothesis (H1) investigates whether higher Precision measures 

can be achieved on prioritizing and ranking critical code anomalies when participants 

are provided with architecture blueprints. Firstly, we performed a comparative 

analysis of the Precision measures achieved by the blueprint (BP) and non-blueprint 

(NBP) groups. We observed the higher Precision was achieved on the prioritization 

and ranking of the Divergent Change anomaly (see Table 9). For this code anomaly, 

we observed an increase of Precision around 12% in favor of the BP group when 

comparing the mean values. For the Shotgun Surgery and God Class anomalies, the 

NBP group achieved better results. More specifically, for the case of the God Class 

anomaly, we noticed some participants were not able to build an interpretation based 

on the information available from the architecture blueprint. This preliminary 

observation was based on the feedback provided by some participants, when asked 

about the usefulness of architecture blueprint. For those cases, the participants have 

only used the metrics provided in the controlled experiments. The problem is that the 

misinterpretation of metrics values may lead to False Positives, which in turn, 

directly impacts on Precision measures. 

Table 9 – Descriptive statistic for Precision and Recall 

Measure Code Anomaly Mean (%) Median (%) Diff. BP NBP BP NBP 
Precision Divergent Change 82.8 70.8 100.0 70.8 11.9 

Shotgun Surgery 48.8 54.72 33.3 50.00 6.0 
God Class 58.0 61.9 50.0 58.34 3.8 

Recall Divergent Change 37.7 30.6 27.2 27.2 7.0 
Shotgun Surgery 32.6 25.7 33.3 33.3 6.9 
God Class 85.9 65.3 100.0 100.0 20.6 

 
 After collecting measures for performed the descriptive statistics, statistical 

tests were applied in order to confirm or refute the null hypothesis H1.0. Assuming the 

default level of significance adopted for testing the study hypotheses, and a calculated 

p-value = 0.09, the null hypothesis could be rejected assuming a marginally statistical 

significance. Usually, it is desirable that the calculated p-value is lower than the level 
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of significance in order to reach a very significant statistical result. In summary, the 

statistical results showed that there is weak evidence that the use of architecture 

blueprints on the prioritization process can improve the Precision measures (for all 

code anomalies under investigation). Further discussions are provided in Section 4.4. 

Our second study hypothesis (H2) aims at investigating whether participants, 

when provided with architecture blueprints, could achieve higher Recall. As 

previously mentioned, Recall indicates the proportion of real positive cases that are 

correctly predicted as positive by using the software artifacts provided in the 

controlled experiments. When analyzing the collected data (see Table 9), we 

observed that, in general, the BP group achieved better results. An increase of around 

7% could be observed in prioritizing and ranking the code anomalies Divergent 

Changes and Shotgun Surgery. For the case of the God Class anomaly, the result was 

even better with an increase of 20% for Recall measure. Even observing a better 

result for the prioritization of all the three code anomalies, we still need to apply a 

statistical method to confirm or refute our second null hypothesis H2.0. 

From the data collected, we could observe, in average, the Recall was higher 

when participants were provided with architecture blueprints. Thus, we can say that 

the effectiveness on the prioritization and ranking of critical code anomalies was 

improved in terms of Recall. It can be explained by the fact that lower rate of False 

Negatives was observed for the BP group. The lower the number of False Negatives, 

the higher is the Recall measures. Furthermore, when applying the statistical test, the 

results showed a calculated p-value = 0.02. Therefore, we conclude that the second 

null hypothesis H2.0 can be rejected with a strong statistical significance. That is, the 

prioritization and ranking of these three code anomalies can be improved in terms of 

Recall when architecture blueprints are used as complementary artifacts on the 

prioritization process. 

 

4.3.2. 
Analyzing the Time Spent on the Prioritization Process 

Our third hypothesis (H3) aims to investigate whether the use of architecture 

blueprints may increases the effort in terms of Time Spent for prioritizing and 

ranking critical code anomalies. Firstly, we analyzed the mean time the participants 
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dedicated when prioritizing and ranking each code anomaly (see Table 10). For the 

Divergent Changes anomaly, the BP group spent 4 minutes less, when compared to 

the NBP group. For the God class anomaly detection, the difference, in favor of BP 

group was higher. On the other hand, for the Shotgun Surgery anomaly, we observed 

a very small difference regarding the time spent for each group. Moreover, the NBP 

group achieved a better time for prioritizing this anomaly. When evaluating the 

median values, we observed that the results are close to each other. Participants in the 

BP group spent less time for prioritizing the anomalies Divergent Change and God 

Class, which was not the case for the Shotgun Surgery anomaly, where the NBP 

group spent less time. 

Table 10 – Descriptive statistic for Time Spent on the prioritization process 

Measure Code Anomaly Mean (min) Median (min) Diff BP NBP BP NBP 
Time Spent Divergent Change 15 19 13 15 4 

Shotgun Surgery 10 8 8 6 2 
God Class 16 30 14 25 14 

To test our third hypothesis (H3), we have also applied a two-tailed Mann-

Whitney U test when analyzing the time spent by the participants on the prioritization 

and ranking of critical code anomalies. For each anomaly, we assigned a pair of tasks 

to the participants where they should identify and prioritize classes containing a 

specific code anomaly. Participants should inform the start and end-time for each pair 

of tasks, and therefore, we recorded the time spent to compute all the tasks. For the 

sake of simplicity, we decided to organize the data this way in order to apply the 

statistical test. After applying the statistical test, we observed a calculated p-value = 

0.8, which means that our third hypothesis (H3.0) cannot be rejected. Thus, we 

conclude the use of architecture blueprints does not bring extra effort regarding the 

time for prioritizing and ranking the code anomalies under investigation. 

 

4.4. 
Further Discussions 

After the study hypotheses have been tested, we performed a more in-depth 

analysis to better understand what are the characteristics of classes identified as False 

Positives and False Negatives. Aiming to better organize classes identified either as 

False Positives or False Negatives, we used the same package structure recovered 
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from the Mobile Media implementation. We decide to use the same structure because 

each package contains classes responsible for implementing the same functionality 

and/or have similar characteristics. In this way, we are able to identify the classes 

responsible for a higher number of False Positives, which directly impact on 

Precision. Furthermore, we investigate what information available in architecture 

blueprint have been mostly used in the prioritization and ranking process, and provide 

a discussion on how the participants’ technical knowledge might impact the results 

observed in the controlled experiments. 

 

4.4.1. 
Usefulness of Architecture Blueprints  

Besides the tasks of prioritizing critical code anomalies, we asked the 

participants to indicate whether they judge the architecture blueprint as being useful 

in the prioritization process (see Figure 5). In this sense, around 71.4% of participants 

judged that the architecture blueprints provided in the experiment as being useful in 

the prioritization and ranking process. Only 28.6% claimed that the architecture 

blueprints have not been useful, so they used only the set of metrics provided in the 

experiment when prioritizing and ranking critical code anomalies.  

 

 

Figure 5 – Information Suggested by the Participants 

For the participants that indicated the architecture blueprints have been useful in 

the prioritization and ranking process, we also asked the participants to point out what 

kind of information could be added to the architecture blueprint. Most part of the 
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participants said the architecture blueprints are complete and no additional 

information is required. Thus, for those participants the information presented on 

architecture blueprints was sufficient to assist them in the prioritization and ranking 

process. Based on this information, the participants could pre-select classes that might 

have a specific anomaly and their suspicion would be confirmed or rejected through 

the evaluation of software metrics. Another suggestion was that the information about 

classes having a high number of dependencies could be useful if included in the 

architecture blueprint. In this case, participants were able to prioritize and rank classes 

infected with the code anomalies Divergent Changes and Shotgun Surgery. Once the 

classes are pre-selected, the metrics can be analyzed to confirm whether a given class 

has an anomaly or not. In summary, architecture blueprints were considered to be 

useful on the prioritization and ranking process, since participants could initially 

identify classes, which are potential candidate to be infected with code anomalies.  

  

4.4.2. 
Participants’ Technical Knowledge  

Aiming to provide discussions about the results found through the controlled 

experiments, we decided to investigate how experienced the participants are. The 

analysis of participants’ technical knowledge is important to understand whether they 

were able to interpret the information presented in the architecture blueprints. Even 

having blueprints representing information regarding the descriptive architecture, 

participants should be capable reason about all the artifacts to prioritize and rank the 

critical code anomalies. Thus, the technical knowledge was assessed considering three 

main topics required for the execution of the controlled experiments: software 

architecture, software evolution and code anomalies. 

For the sake of simplicity, the scores are computed considering their knowledge 

as being none, moderate and advanced. The questionnaire was applied for all the 

participants. When analyzing the knowledge of participants in the BP group, we 

observed that 14,4% have no knowledge related with code anomalies prioritization 

and ranking before the training session. In addition, around 76,2% and 9,5% of them 

has a moderate and advanced knowledge in code anomalies, respectively. Therefore, 

more than 80% of the total of participants have a moderate or advanced knowledge on 
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the prioritization and ranking of critical code anomalies. In addition, we observed 

around 85% of participants in the BP group have moderate or advanced knowledge on 

software architecture. On the other hand, when analyzing the results of the NBP 

group, we observed 93% of participants have moderate knowledge on code 

anomalies. Moreover, all the participants in this group have experience with software 

architecture. Once there are groups of participants with different technical knowledge 

and working experience, it was possible to balance the groups defined in the 

controlled experiments. 

 

4.4.3. 
Mapping Architecture Blueprints to Source-Code  

After the prioritization tasks, participants were asked to inform how (and 

whether) architecture blueprints are useful on the prioritization and ranking process. 

All the blueprints represented information about the descriptive architecture, such as 

the main interfaces/connectors defining the communication between components as 

well as the concerns each architectural component is responsible for realizing. In this 

sense, we decided to analyze properties of architecture blueprint provided as artifact 

to perform the experimental tasks. We have specifically analyzed the architecture 

blueprints in terms of consistency, completeness and level of abstraction.  

Table 11 summarizes the analysis of consistency and completeness when 

mapping the descriptive architecture (represented by the blueprints) and source code 

elements in the Mobile Media system. For the consistency measures, we identified 

occurrences of different types of consistency problems. For example, no instances of 

architectural components without interface and architectural components with the 

same name were found. Given the number of inconsistencies observed in the 

architecture blueprints and the number of source code elements participating in the 

mapping, the architecture blueprint achieved a consistency of 70%. The consistent 

elements are the core elements of Mobile Media architecture. However, the 30% of 

inconsistencies might somehow impact on the effectiveness of the architecture 

blueprints as artifact for guiding participants on the prioritization and ranking of 

critical code anomalies. On the other hand, the required interfaces are the only 

architectural elements have not reached at least 60% of completeness. The fact is that 
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only 22 out of 40 interfaces in the architecture blueprint could be directly mapped to 

the source code. Other elements (18 architectural components, 23 provided interfaces 

and 5 system concerns) were successfully and directly mapped to several elements in 

the source code. In this way, the architecture blueprint reached a completeness of 

around 90% considered all the elements participating in the mapping process. 

Table 11 - Analyzing consistency and Completeness of architecture blueprint 

Consistency Value Completeness Value 
Dependency Not Mapped 16 Architectural Component Mapped 100% 

Inverted Dependency 2 Required Interface Mapped 100% 
Provided Interface (Same Name) 6 Provided Interface Mapped 55% 
Required Interface (Same Name 2 Concerns Mapped 100% 

It is important to mention both consistency and completeness achieved in our 

study were similar in many other real software projects. Therefore, our results might 

also be observed in software systems where architecture blueprints have similar 

consistency and completeness measures. Furthermore, we analyzed the level of 

abstraction for the component diagram. We observed 34 out of 50 classes 

implemented were mapped. It is interesting to observe that 8 classes are specifically 

implementing the Exception Handling concern and other 3 are utilitarian classes. The 

remaining classes are related with controller, datamodel or screen functionalities. 

Thus, we could identify the mapping between 18 architectural components and 34 

code elements (i.e. classes, interfaces) in the system actual implementation. At the 

end, the level of abstraction of the architecture blueprint was calculated considering 

the sum of level of abstraction in all components and the total number of components. 

Therefore, the level of abstraction for the architecture blueprint used in the controlled 

experiments is around 65%. This measures of level of abstraction means 2 or 3 classes 

on the system implementation. The only exception was the architectural component 

SmsController, which is implemented by 5 classes. 

 

4.4.4. 
Critical Code Anomalies and False Positives  

We now discuss the proportion of False Positives observed for each code 

anomaly when analyzing the results achieved in the controlled experiments (see 

Table 12). Firstly, when prioritizing and ranking instances of the God Class anomaly, 
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the BP group identified False Positives in classes implemented in 5 different 

packages, while the NBP group identified classes implemented in 4 packages. The 

God Class anomaly presented the highest number of instances when compared to the 

other two anomalies under investigation. Moreover, most part of classes of Controller 

and Datamodel packages are responsible for more than 80% of instances of False 

Positives. The results for the BP group showed classes in the Controller package are 

responsible for 30.61% of False Positives, while classes in the Datamodel package 

are responsible for 42.86%. Based on the feedback provided by the participants, the 

God Class anomaly was identified with the highest number of False Positives.  

On the other hand, analyzing the False Positives for the NBP when prioritizing 

and ranking critical code anomalies, we observed classes implemented in the 

Datamodel and Controller packages were responsible for 80% of False Positives. 

Each of those packages presented 8 instances of False Positives (around 40% of the 

total), considering 5 different classes. Due the fact those packages have classes 

representing a high number of False Positives, we organized all the classes in 

descending order and listed the three classes most frequently identified as False 

Positives for each group. In the BP group, the 3 classes with more instances of False 

Positives are: MediaData (14 instances), AbstractController (6 instances) and 

SelectMediaController (6 instances). For the NBP group, those classes were also 

identified with a high number of False Positives, but with different instances: 

MediaData (6 instances), AbstractController (3 instances) and SelectMediaController 

(4 instances). 

When analyzing the Shotgun Surgery anomaly, we identified classes 

implemented in 3 different packages: Datamodel, Controller and Screens - which are 

responsible, respectively for 54.35%, 34.78% and 10.87% of instances of False 

Positives in the BP group. Classes responsible for more instances of False Positives 

are MediaData, AlbumData and AbstractController (each one with 7 instances). On 

the other hand, analyzing the data in the NBP group we identified classes in the same 

packages were responsible for a high number of False Positives: Datamodel 

(62.16%), Controller (29.73%) and Screens (8.11%). In addition, the classes 

MediaData and AlbumData presented the same number of False Positives in the BP 

group, where each class had (at least) 9 instances. Considering instances of all code 

anomalies, the Divergent Change was the one identified with a lower number of False 
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Positives. When analyzing the data collected by the BP group, we found that the set 

of classes responsible for more than 85% of False Positives are contained in the 

Datamodel package. In turn, the NBP group had False Positives in three different 

packages, but only one of them, Datamodel package, contain classes responsible for 

50% of False Positives when prioritizing and ranking the Divergent Change anomaly.  

Table 12 - Characteristics of False Positives 

Group Package # of 
Instances 

God 
Class 

Shotgun 
Surgery 

Divergent 
Change 

Blueprint 
Controller 41 30.61% 54.35% 12.29% 
Datamodel 43 42.86% 34.35% 85.71% 

Screens 10 10.20% 10.87% -- 

Non-blueprint 
Controller 33 40.00% 63.16% 25.00% 
Datamodel 23 40.00% 29.73% 50.00% 

Screens 8 15.00% 8.11% 25.00% 

As aforementioned, classes implemented in the Datamodel and Controller 

packages are responsible for most part of False Positives. Furthermore, we briefly 

discuss the main characteristics of those classes in terms of metrics used in the 

prioritization and ranking process. For the sake of simplicity, we selected three most 

recurrent classes identified as False Positives for each code anomaly under 

investigation. Since those classes implement Controller or Datamodel functionalities, 

they are likely to have similar characteristics. Thus, when prioritizing and ranking the 

God Class and Shotgun Surgery anomalies, the classes recurrently identified as False 

Positives are MediaData, AbstractController and SelectMediaController, respectively. 

On the other hand, the three main classes identified as False Positives when 

prioritizing and ranking the Divergent Changes anomaly are, respectively, 

MediaData, AbstractController and AlbumData.  

Table 13 summarizes the metrics for those 4 classes. We only show the metrics 

the participants used when prioritizing the code anomalies, and for some reasons lead 

to the identification of False Positives (e.g. misinterpretation of metric values). In 

addition, other classes implemented in the Datamodel or Controller packages were 

also responsible for the False Positives, but each class presented less than 2 instances. 

In total we identified 16 classes as False Positives, of which 11 and 6 classes 

implement, respectively, Controller and Datamodel functionality. As we can observe, 

classes implementing the Controller functionality have high coupling (CBC) and low 

cohesion (LCOM). The number of attributes (NOA) and number of methods (NOM) 
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of those classes cannot be considered high. However, when analyzing the data classes, 

we can observe the MediaData have high coupling (CBC) and very low cohesion 

(LCOM). 

Table 13 - Software Metrics and False Positives 

Class LCOM CBC NOA NOM WMC 
AlbumData 6 0 1 14 4 
MediaData 0 98 10 17 3 
AbstractController 2 54 4 12 1 
SelectMediaController 1 42 6 14 3 

Furthermore, the number of attributes (NOA) and number of methods (NOM) 

are not considered high. Based on the feedback provided by the participants, we 

observed usually the classes they selected as candidates for a given anomaly have 

similar characteristics, but they are not specifically the same. When participants have 

not correctly used the information provided on the architecture blueprint, the 

prioritization and ranking process was based on metrics. However, some participants 

have not considered, for example, the number of dependencies or the number of 

concerns implemented according to the architecture specification represented in the 

blueprints. Therefore, the solely use of metrics is not sufficient to indicate a class is a 

potential candidate to present code anomalies harmful to the architecture design. 

 
4.4.5. 
Architecture Blueprints and False Negatives  

In this section, we discuss the characteristics of False Negatives, which 

represent classes should be identified as potential candidates to be infected with 

critical code anomalies, but were not. Table 14 summarizes the list of False Positives 

considering all the instances found for each code anomaly. The percentage represents 

the total number of False Negatives each class were responsible considering all code 

anomalies under investigation. Surprisingly, in both groups the four most recurrent 

instances of False Negatives are the classes AlbumController, MediaListController, 

MainUIMidlet and SmsMessaging, respectively. In general, it is very difficult to 

prioritize and rank critical instances of the three code anomalies in those classes – 

even when participants are provided with architecture blueprints. Other class in the 

code anomalies reference list was responsible for 4 – 8% of False Positives. 
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Table 14 - False Negatives by Participants' Group 

Class Name 
#Instances % Instances 

BP NBP BP NBP 

AlbumController 23 24 15.7% 18.8% 

ImageMediaAccessor 9 8 6.2% 6.3% 

MainUIMidlet 19 16 13.0% 12.5% 

MediaAccessor 11 10 7.5% 7.8% 

MediaController 9 4 6.2% 3.1% 

MediaListController 23 23 15,8% 18.0% 

MusicPlayController 7 6 4.8% 4.7% 

PhotoViewController 6 5 4.1% 3.9% 

PlayVideoController 7 6 4.8% 4.7% 

SelectMediaController 7 6 4.8% 4.7% 

SmsMessaging 17 15 11.6% 11.7% 

VideoCaptureController 8 5 5.5% 3.9% 

 
At a first moment, it seems the use of architecture blueprints has not improved 

the process of prioritizing and raking of critical code anomalies through the analysis 

of False Negatives - which has direct impact on Recall. Although those four classes 

had similar instances of False Negatives, we need to take into consideration the BP 

group had 27 replications of the controlled experiments, while the NBP group had 

only 16 replications. Thus, considering the ratio between the total number of False 

Negatives and the number of replications, we have a density of False Negatives 

equals to 5 and 8, respectively, for the BP and NBP groups. In this sense, considering 

12 classes in the code anomalies reference list, around 42% and 67% of them were 

not identified, respectively, in the BP and NBP group. 

 

4.5. 
Summary  

In this study, we performed controlled experiments to investigate how the 

process of prioritizing and ranking critical anomalies could be improved, when guided 

by architecture blueprints. Our initial findings have shown that the architecture 

blueprints has improved both Precision and Recall measures when prioritizing and 

ranking critical code anomalies. For instance, we observed the Precision measures 

were higher for when prioritizing and ranking instances of the code anomalies 
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Divergent Change and Shotgun Surgery. However, in the case of the God Class code 

anomaly the results were not expressive. The architecture blueprints have not 

effectively improved the prioritization and ranking of all instances of this code 

anomaly. In general, for the cases where the use of architecture blueprints improved 

Precision measures, the results were not higher than 20%. Moreover, according to the 

feedback provided by the participants in the controlled experiments, we observed that 

some of them have not followed correctly the inspection sequence defined in the 

controlled experiments because they considered the anomaly God Class as being 

more intuitive to detect. This may have led to the wrong prioritization and ranking of 

instances of this anomaly, and consequently, the number of False Positives becomes 

high, thereby, affecting the Precision measures.  

On the other hand, when we observe the Recall measures the results were 

significantly different. The Recall measures have increased for all the three 

anomalies. Thus, as the Recall measures indicate the sensitivity of the participants 

when prioritizing and ranking real positive cases that are correctly predicted as 

positive, we could observe a lower number of False Negatives. A lower number of 

False Negatives implies in a higher Recall. Independently whether the participants 

have properly used the information about the descriptive architecture represented in 

the blueprints, we observed to some extent improvements on occurrence of False 

Positives and False Negatives. In summary, we observed that:  

(i) even though we observed that the architecture blueprints could somehow 

improve Precision measures on the prioritization and ranking process, the statistical 

tests indicate the results with marginally statistical significance. It means that further 

investigations are still required to evaluate whether the Precision can be improved 

when developers are provided with architecture blueprints when prioritizing and 

ranking critical code anomalies.  

(ii) the Recall measures were positively affected by the used of architecture 

blueprints on the process of prioritizing and ranking critical code anomalies. It means 

that participants have correctly prioritized and ranked instances of critical code 

anomalies when compared to the ground truth provided by the systems experts.  

(iii)  besides improving the Precision and Recall when prioritizing and ranking 

critical instances of code anomalies, the use of architecture blueprints did not bring 

any additional effort in terms of time.  
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Finally, after testing the study hypotheses we discussed the main characteristics 

of False Positives and False Negatives observed for each group of participants. 

Nevertheless, we also discussed what information the participants judged relevant 

when performing the experimental tasks for the prioritization and ranking critical 

code anomalies.  

Based on the analysis of our second study, we could address the auxiliary 

research questions defined in this chapter regarding: (i) how the use of blueprints can 

help the prioritization and ranking of critical code anomalies; and (ii) how useful the 

architecture blueprints are when prioritizing and ranking critical code anomalies. 

Thus, based on the aforementioned results, we observed that the process of 

prioritizing and ranking critical instances of code anomalies should be automated. The 

fact is that participants tended to invest a significant time when performing the 

prioritization and ranking of critical code anomalies, since not all of them were able to 

optimize those activities when architectural information are provided.  

In addition, we can also conclude that: (i) although the use of architectural 

information have improved the results when prioritizing and ranking critical code 

anomalies, it is not possible to know which specific architectural information should 

be used when performing the tasks manually; and (ii) the results are not much 

superior regarding not using blueprints on the prioritization and ranking of critical 

code anomalies. In this sense, we proposed heuristics (see Chapter 5) to automate the 

prioritization and ranking tasks according to different architectural drift problems 

observed in the early stages of the system development. The fact is that each different 

architectural drift problems required different architectural information when 

compared to the other architectural problems.  
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