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2 Background and Related Work 

Along the system evolution, different properties associated with the system 

quality are impacted. For instance, software systems grow in size and complexity as 

new modules and their functionalities are implemented in the existing program. The 

problem arises when architectural design decisions are not correctly performed in the 

descriptive architecture, and hence, the system maintenance can be compromised. 

When software maintenance activities are properly performed in the descriptive 

architecture along software evolution, architectural degradation symptoms will start to 

emerge. Examples of architecture degradation symptoms in the actual architectural of 

the implementation are complex component interfaces or scattered functionalities 

across components’ implementation. 

One of the main factors responsible for architecture degradation is the 

unavoidable and progressive insertion of code anomalies. Recent studies revealed that 

there is a strong correlation between the occurrences of instances of critical code 

anomalies and architectural problems (Macia et al., 2012a)(Macia et al., 

2012b)(Macia et al., 2014)(Oizumi et al., 2014). Therefore, when critical code 

anomalies are not properly prioritized and removed as early as possible, the system 

maintainability can be compromised and, in some cases, software architecture have to 

be completely redesigned (Eick et al., 2001) (MacCormack et al., 2006). For instance, 

when the interface of a component starts to bloat, it starts to blend several non-

cohesive functionalities and expose information that should be hidden to the client 

components. Then, the implementation of all the client components increasingly gets 

artificially coupled to the elements of the bloated interface. Maintenance and 

evolution of the server and client component becomes increasingly complex, error-

prone or even prohibitive over time.  

In this chapter, we describe the basic terminology required to understand the 

development of our research (Section 2.1). The observation of architectural problems 

in the actual implementation is often only possible through the detection of code 

anomalies. Therefore, we discuss how the occurrences of code anomalies are related 
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with architectural problems (Section 2.2). Moreover, we introduce the existing 

strategies for detecting and/or prioritizing code anomalies, as well as the main 

limitations of those existing strategies (Section 2.3). We also present the concept of 

architecture blueprint used in this thesis and the properties used to characterize 

whether and how a given design model can be, in fact, classified as an architecture 

blueprint. The analysis of the architecture in the implementation is only possible if 

there is a projection (mapping) of the architecture elements in the source code. 

Therefore, we discuss how the mapping process between the architecture and source 

code elements is performed (Section 2.4). Even though it not the focus of our work to 

defining a new mapping approach, the mapping process between elements in both 

abstraction levels is essential for executing the architecture sensitive heuristics 

proposed in this work (see Chapter 5). 

 

2.1. 
Basic Terminology 

Henceforth, we discuss the basic terminology required to understand all the 

phases that permeate the research performed in this thesis. Firstly, we introduce the 

definitions associated with the concept of software architecture, as well as 

architecture degradation symptoms. Furthermore, we discuss how the occurrence of 

code anomalies can be associated with architecture degradation symptoms. 

 

2.1.1. 
Software Architecture 

Software Architecture can be defined as the structure of a software system, 

which comprises software components, (provided and required) interfaces of those 

modules, and the relationship among them (Bass et al., 2003). The architecture 

decomposition outlines the organization of a software system. That is, the architecture 

structure captures the architectural elements and their interaction (Gorton, 2006). 

Architectural Component can be defined as the architecture entity responsible for 

encapsulating a subset of the system’s functionalities (Taylor et al., 2009). 

Architectural Components interact through Architectural Connectors, which in turn, 

allows the communication, coordination and data conversion between architectural 
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components (Meta et al., 2000). At the implementation level, an architecture 

connector can be realized by one or more simple method calls or by one or more 

classes realizing the protocols for communication, coordination or data conversion 

(Mehta et al., 2000).  

In this context, the software architecture usually represents the key design 

decisions made in the early stages of software development (Jansen and Bosh, 2005). 

Therefore, the architecture decisions must preserve design and modularity principles 

(Martin, 2003), which are essential to the system evolution and longevity (Clements 

et al., 2002). Examples of these principles are simple interfaces and encapsulation, 

high cohesion and low coupling of components, separation of architectural concerns, 

and the like (Martin, 2003).  

In this sense, the prescriptive architecture comprehends explicit design 

decisions made by system architects on the selection of components, interactions and 

their constraints (Taylor et al., 2009). On the other hand, the descriptive architecture 

describes how the system has been actually built (Taylor et al., 2009). The descriptive 

architecture should ideally resemble the prescriptive architecture. However, in real 

software development projects the descriptive and prescriptive architecture does not 

match. In these cases, the intended (prescriptive) architectures are available in models 

to guide developers on: (i) maintaining or evolving the system structure, and (ii) 

reasoning about the modularity and maintainability of the actual architecture 

implementation (Taylor et al., 2009)(Baltes and Diehl, 2014).  

 

2.1.2. 
Architecture Degradation Symptoms 

Architecture degradation symptoms represent mismatches between the 

prescriptive and descriptive architectures, as wells as modularity problems between 

those two architectures. It is important to highlight, in this thesis, we explore 

problems related with architectural drift. The motivation and justification was given 

in Chapter 1. Architectural drift symptoms occur when decisions introduced in the 

descriptive architecture violate modularity principles (Chapter 4). Therefore, 

architectural drift problems might impair the adaptability of the system architecture, 

and as consequence, the system evolution (Perry and Wolf, 1992). There are certain 
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cases where the drift problems were already introduced in the prescriptive architecture 

(also known as “congenital” architectural problems), being propagated to the 

implementation of the software architecture (prescriptive architecture) in the first 

versions of a program. Table 1 summarizes the set of six architectural drift problems 

considered in this thesis. We decided to focused on these different types of 

architectural problems because: (i) they represent all architecture degradation 

symptoms empirically observed in the systems analyzed in our research (and 

described in the next chapters), and (ii) they are representative of architectural 

problems affecting different types of architecture elements – i.e. interfaces, 

components, connectors, and other architectural relevant concerns not modularized in 

components or connectors. An architecturally-relevant concern is any functional or 

extra-functional feature of interest by the architects, which influences one or more 

architectural decisions. Some typical examples of such concerns are error handling, 

persistence, and GUI. 

Table 1 - Architectural problems considered in this work 

Architectural Problem Description 
Ambiguous Interface The interfaces usually offer only a single, general entry-point 

into a component, reducing the system analyzability and 
understandability. The ambiguous interfaces handle more 
requests than it should actually process (Garcia et al., 2009b). 

Component Concern Overload An architectural component is responsible for realizing two or 
more unrelated system’s concern (Stal et al., 2011). 

Connector Envy It occurs in components that encompass extensive interaction-
related functionality that should be delegated to a different 
connector. That is, the architectural component realizes 
functionalities that should be assigned to another connector 
(Garcia et al., 2009b). 

Overused Interface Interface that exposes a lot of heterogeneous data and it is used 
by several other (required) interfaces of other components. 

Redundant Interface Interface that exposes the same information of the other 
interfaces. 

Scattered Parasitic Functionality It takes place when multiple components are responsible for 
realizing the same architectural high-level concern and, 
additionally, some of those components are responsible for 
independent concerns (Garcia et al., 2009b).  

 
It is important to mention that the higher number of architecture violations and 

modularity problems, the higher is the chance of the software architecture suffers 

from degradation symptoms. As previously mentioned, the main factor that 

contributes to architecture degradation symptoms is the progressive and unavoidable 

insertion of code anomalies. Code anomaly is a term often used to define structural 
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problems in the source code, which may lead to severe maintenance problems in a 

software system (Fowler et al., 1999)(Eick et al., 2001). We can mention as examples 

of code anomalies God Class, Shotgun Surgery, Feature Envy, Divergent Change and 

Long Method. Thus, code anomalies can affect different source code structures or 

code elements, such classes, interfaces, attributes, constructors and methods. When 

instances of code anomalies related to architectural problems, we say that those code 

anomalies are critical to the architectural design. In this thesis, instances of code 

anomalies are related with architectural problems, either when they affect the 

communication between architectural components or they impact on the 

implementation of architectural concerns. For each type of architectural problems, an 

instance of code anomaly can contribute in different ways – i.e. a code element is 

affected by the God Method anomaly (Fowler et al., 1999), which is responsible for 

implementing many of the concerns realized by its enclosing component. In this case, 

the architectural component suffers from Component Concern Overload and the class 

is contributing for the realization of this architectural problems. 

Whereupon, software developers are expected to be able when deciding which 

critical code anomaly should be refactored first. Thus, refactoring is commonly used 

to remove critical code anomalies that might be related with problems in the 

architecture design. The refactoring process (see also Section 2.2.1) consists of 

changing the design structure of a software system without changing its behavior, in 

order to improve the system maintainability (Fowler et al., 1999). Moreover, 

identifying architecture degradation symptoms is a challenging task particularly when 

the prescriptive architecture is not well documented. Therefore, in such scenarios the 

system implementation is one of the most reliable artifact when detection architecture 

degradation symptoms. It is important to mention the approach proposed in this thesis 

explores different artifacts (e.g. architecture blueprints, source code, metrics) in the 

process of prioritizing code anomalies related with architectural problems. The most 

innovative idea is the exploration of architecture blueprints as a way of improving: (i) 

the identification of which anomalous code elements are most likely to realize an 

architectural problem (and should be prioritized), and (ii) the ordering (ranking) of 

those elements according to their relevance to the realization of one or more 

architecture elements. 
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2.2. 
Code Anomalies as Architecture Degradation Symptoms 

When software developers are performing architecture reviews (Kazman and 

Bass, 2002)(Starr and Zimmerman, 2002) of the source code, they are usually 

expected to choose which code anomalies should be refactored first to avoid 

architecture degradation symptoms. Time constraints associated with such reviews 

imply that finding the critical code anomalies in large systems cannot be performed 

without systematic prioritization support. Therefore, existing techniques for code 

anomaly detection should also consider architectural information, typically available 

in industry software projects (Baltes and Diehl, 2014), to explore the relationship 

between critical code anomalies and architectural problems.  

As previously mentioned, architecture degradation (Hochstein and Lindvall, 

2005) is frequently a direct consequence of the progressive insertion of anomalies 

(Macia et al., 2012a)(Macia et al., 2012b) in the source code. When critical code 

anomalies are not systematically prioritized and removed, the system's architecture 

might degrade. In addition, identifying degradation symptoms directly on the 

architecture specification can be an arduous task, when not impossible. The reason is 

that architecture design decisions are not entirely specified in real software projects, 

but they are partially represented as architecture blueprints. Thus, software developers 

need to be provided with means to detect, prioritize and remove critical code 

anomalies. When critical code anomalies are not prioritized and refactored early in a 

software project, the cost to perform this activity later is usually high or prohibitive 

(Macia et al., 2012a). For instance, many researchers have investigated the impact of 

code anomalies on exerting undesirable modifications in the source code (Macia et 

al., 2011)(Mantyla and Lassenius, 2003). Recent studies also revealed that the code 

structures affected by code anomalies suffer more changes during software 

maintenance (Mantyla and Lassenius, 2003). 

Furthermore, recent studies investigated the negative impact of code anomalies 

in the system architecture. For example, a previous study (Eick et al., 2001) shows 

architecture modularity of a larger communication system has been degraded in 7 

years. The key problem was the relationship between the architectural components, 

hosting several code anomalies, increased over time. Such anomalous modules were 
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not independent anymore and, consequently, further changes in the system structure 

were not possible. This problem could not be observed based on conventional source 

code analysis, as those architectural components were no longer aligned with module 

decomposition in the implementation. Another study (MacCormak et al., 2006) 

reported that the Mozilla’s browser was overmuch complex and coupled, which 

hindering the system maintainability and its ability to evolve. This architecture 

problem was the cause of its complete reengineering and developers spent around 5 

years to rewrite more than 2 millions lines of code  (Godfrey and Lee, 2000). The 

study also indicated when refactoring operations are performed early in the 

counterpart groups of inter-related code anomalies, the architecture degradation could 

be avoided.  

 

2.2.1. 
Refactoring Process and Removal of Code Anomalies 

As aforementioned in this chapter, refactoring can be understood as the process 

of changing a software system in a way it does not alter the external behavior of the 

source code, but improve its structure (Fowler et al., 1999). In this sense, refactoring 

activities allow to restructure the source code, improving the effort required to make 

future modifications. Thus, when refactoring operations are performed in the source 

code, some benefits should be achieved, such as: reduction of duplicated code, 

reduction of coupling and improvement on other internal and external quality 

attributes (e.g. modularity, maintainability, evolvability and the like). In addition, the 

refactoring process comprises 6 main activities (Mens and Tourwe, 2004): (i) identify 

code fragments where refactoring is required; (ii) determine which type of refactoring 

should be applied; (iii) check whether the external behavior is preserved after the 

refactoring have been applied; (iv) apply the refactoring; (v) assess the effect of the 

refactoring on software quality attributes; and (vi) synchronize the refactored source 

and other software artifacts (e.g. architecture blueprints). 

In this sense, instances of code anomalies can be seem as good opportunities for 

applying refactorings. According to Murphy-Hill et al. (2009), although several 

refactoring tools are available, software developers tend to limit their use on low-level 

refactorings. Arcoverde et al. (2011) also suggested refactorings usually are not 
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applied whether they are complex, time-consuming or there is no evidence of their 

effectiveness in maintaining the system modularity. Moreover, they pointed out a 

major factor hindering the proper use of refactorings to be applied is due to the co-

occurrence of code anomalies (Liu et al., 2011). Therefore, software developers need 

to evaluate how different code anomalies should be properly removed, before the 

refactoring could be properly applied. Thereby, refactoring recommendation systems 

could help developers on identifying good opportunities for removing code 

anomalies. For example, Xi et al. (2012) a refactoring recommendation mechanism 

based on the observation of manual refactoring steps. The proposed recommendation 

mechanism monitors common sequences of previous changes on code structures to 

detect the occurrence of refactorings, and dynamically recommend their automation 

while the software developer is programming. In turn, a technique for automatically 

identifying required refactorings in the source code, via static slicing, has been 

proposed in (Tsantalis and Chatzigeorgiou, 2009). Finally, Vidal and Marcos (2012) 

proposed an expert software agent (named Refactoring Recommender) to assist 

developers during the refactoring activities of a software system. The refactoring 

recommender system analyzes the user’s interaction history for improving the agent’s 

effectiveness over time, guiding developers to predict needed restructurings in the 

source code. 

 

2.2.2.   
Co-occurrence of Critical Code Anomalies 

When analyzing the state of art regarding code anomaly detection, we found 

researchers have mostly investigated only the impact of isolated instances of code 

anomalies. Moreover, their analysis rely on the investigation of specific code 

anomalies from different catalogues (Fowler et al., 1999)(Brown et al., 

1998)(Kerievsky, 2004)(Lanza and Marinescu, 2006). The empirical study developed 

by (Abbes et al., 2011) brings up the notion of interaction effects across code 

anomalies. Abbes and colleagues found that classes and methods identified as God 

Classes and God Methods in isolation had no effect on effort, but when appearing 

together those code anomalies led to a significant increase in the maintenance effort. 

However, their study is limited as it merely focuses on investigating the impact of co-
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occurrences of only two types of code anomalies. In addition, they do not study their 

impact on the software architecture degradation process.  

In this sense, none of the existing empirical studies has investigated to what 

extent the co-occurrence of different code anomalies, established by the exploration 

of blueprints, might be used as indicators for prioritizing and ranking architecture 

degradation symptoms. In addition, existing approaches for code anomaly detection 

do not support developers to detect co-occurrences of code anomalies, once they are 

focused on detecting isolated occurrences of code anomalies. Therefore, developers 

need to be provided with means that allow prioritizing and ranking the most critical 

code anomalies so that refactoring operations can be properly performed in order to 

complement remove those code anomalies.  

Through the analysis of co-occurrences of code anomalies it is possible, for 

instance, detect the occurrence of a given code anomaly that might be related with 

other anomalies affecting the same code element. Thus, analyzing co-occurrence of 

critical code anomalies might also allow developers to identify the existence of 

architectural problems in the system implementation. Particularly, some architectural 

problems cannot be detected without analyzing relationships between code elements. 

Finally, the detection of co-occurrences of critical code anomaly help developers on 

properly applying refactoring techniques, and as consequence, reduces the 

maintainability costs during the system evolution. Some works revealed that usually 

co-occurrences of code anomalies provide better indicators of architectural 

degradation symptoms than single instances of code anomalies (Macia et al., 

2014)(Oizumi et al., 2014). However, the main problem of existing techniques is that 

they do not support developers on distinguishing and analyze co-occurrences of inter-

related code anomalies. It is also important to mention that the analysis of the 

relationship between co-occurrences of code anomalies is important to reveal how 

architecture components are implemented by several code elements. Thus, limitations 

of existing detection strategies can be overcome if they are able to analyze 

relationships among co-occurrences of critical code anomalies. 
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2.2.3.   
Classifying Occurrences of Code Anomalies 

Several works have proposed different ways to classify co-occurrences of code 

anomalies by adopting different criteria. While some works have proposed a 

categorization of code anomalies according to their scope (e.g. intra-class, inter-

class), others have categorized code anomalies according to their nature (e.g. 

structural, semantic). Moreover, in (Mantyla and Lassenius, 2003) the code anomalies 

are grouped according to the modularity property they affect in a software system. 

However, the aforementioned categorizations suffer from limitations, once they are 

based on exploring a particular characteristic of a code anomaly when they should 

rather consider the relationship between co-occurrences of instances of code 

anomalies. Moreover, those categorizations do not consider the architectural 

relevance of a code anomaly, that is, they do not take into consideration to what 

extent co-occurrences of code anomalies could negatively impact on the software 

architecture.  

On the other hand, in (Macia et al., 2014)(Oizumi et al., 2014), they classified 

the co-occurrence of code anomalies and classified in 9 different patterns of code 

anomaly. Thus, they documented a catalogue of code anomaly patterns aiming to 

facilitate the analysis of co-occurrences of code anomalies. The proposed code 

anomaly patterns are classified into four categories: (i) Intra-Component Patterns – it 

comprises patterns that occur in a single component; (ii) Inter- Component Patterns – 

it is formed by patterns that are scattered over various components; (iii) Inheritance-

based Patterns – it groups patterns that occur in inheritance trees; and (iv) Concern-

based Patterns – it comprises patterns related with the inappropriate modularization 

of architectural concerns. It is important to mention that proposed code anomaly 

pattern aims at facilitating the analysis of co-occurrences of critical code anomalies 

that might contribute to the appearance of architecture degradation symptoms. 

Finally, some of those code anomaly patterns are used as insight in our work when 

proposing the architecture sensitive heuristics (see Chapter 4) for prioritizing critical 

code anomalies. We relied on those code anomaly patterns, which indicate specific 

scenarios that can be observed when exploring the mapping between the information 

represented in the architecture blueprints and source code. 
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2.3. 
Tool Support for Code Anomaly Detection 

Many works has investigated and proposed different techniques and tools for 

detection code anomalies in software systems. The detection strategies proposed in 

(Marinescu, 2004) are the most common mechanism for code anomalies detection, as 

well as on of the most referred in the literature. Those detection strategies exploit 

source code information, based on the combination of static code metrics and 

thresholds into logical expressions. Moreover, each detection strategy can be 

understood as a heuristic responsible for identifying code elements that might be 

affected by instances of a particular code anomaly (Marinescu, 2004)(Lanza and 

Marinescu, 2006). Other approaches have also been proposed for detection code 

anomalies in Java systems, based on the analysis of structural properties of code 

elements (Emden and Moonen, 2002). On the other hand, other approaches also 

support the detection of specific types of code anomalies by examining change 

couplings (Ratzinger et al., 2005)(Wong et al., 2011).  

Several approaches for static code analysis and visualization have also been 

proposed. Most part of those approaches relies on the detection strategies 

aforementioned. Ratiu et al., (2004) proposed an approach that explored the historical 

information to improve the accuracy on the automatic identification of code 

anomalies though the implementation of detection strategies. Marinescu et al., (2010) 

proposed a tool for supporting the automation of some detection strategies. Munro 

(2005) proposed heuristics for detecting code anomalies. In turn, Moha et al., (2010) 

proposed a domain specific language for improving the construction of code 

anomalies detection strategies. In summary, those works focused mostly on the 

identification of code anomalies, even though in some case they can detect instances 

of specific code anomalies. Thus, detection strategies have been widely adopted and 

an infinite number of tools are based on this techniques. Finally, several researchers 

use those well-defined detection strategies as means to investigate the presence of 

code anomalies during the system evolution, as well as to analyze the harmful impact 

of critical code anomalies on the overall software quality. 
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Despite the existence of several works proposing different techniques and tools 

for code anomalies detection (Lanza and Marinescu, 2006)(Marinescu et al., 

2004)(Ratiu, 2004)(Wettel and Lanza, 2007), it is still a challenging task to identify 

which code anomalies are critical to the architecture design. As previously mentioned, 

most part of those techniques and tools fail to assist developers when distinguishing 

those code anomalies that are critical to the architecture design, and those that are not. 

The problem is those detection strategies disregard other software factors (i.e. 

architecture specification, architecture blueprints) that might indicate the architectural 

relevance of instances of code anomalies. In this sense, code anomalies detection 

strategies should also: (i) exploit other information available in software projects 

during the development process in combination to source code artifacts; and (ii) 

support the co-occurrence of instances of code anomalies, instead of analyzing the 

occurrence of individual occurrence of code anomalies. Other studies (Macia et al., 

2012a) (Macia et al., 2012b) observed that automatic detection strategies could 

eventually be good indicators of architectural design problems. However, software 

developers still invest more effort on removing code anomalies that are not critical to 

the architectural design problems (Arcoverde et al., 2011)(Macia et al., 2012a). That 

is, software developers tend to prioritize code structures that have no impact, for 

example, either on the communication between architectural components or on the 

definition of the provided/required interfaces. The prioritization of critical code 

anomaly as early as possible might be seen as means to guide developers correctly 

solving problems, and hence, avoid more severe problems related with architecture 

degradation symptoms. 

 

2.3.1. 
Prioritization and Ranking of Code Anomalies 

As aforementioned, there are many available tools and techniques for detecting 

code anomalies. However, as the system evolves the number of code anomalies tend 

to increase, and when they are not properly addressed, those instances can became 

unmanageable. In this case, software developers are expected to decide which code 

anomalies should the refactored first in order to prevent more severe problems. 

Additionally, developers should be able to prioritize critical code anomalies either due 
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to time constraints or as attempt to find the correctly solution when restructuring a 

large software system. Therefore, prioritizing critical code anomalies could be an 

important activity for increasing the accuracy and effectiveness of existing strategies 

when refactoring problems in a software system. Nevertheless, existing approaches 

mostly do not focus on the prioritization of critical code anomalies, but they rather 

focus on the extraction and combination of static source code measures. On the other 

hand, researchers also propose the use of software project repositories and explore 

their additional information, such as bug reports and change density – i.e. (Eick et al., 

2001)(MacCormak et al., 2006)(Vidal and Marcos, 2012)(Olbrich et al., 2010)(Baltes 

and Diehl, 2014)(Oizumi et al., 2014). However, they do not aim at detecting 

architectural problems in early software development stage. They only perform 

retrospective analysis of software history data. Moreover, those techniques are not 

concerned in supporting the prioritization of critical code anomalies. When 

investigating the state of art, we have been able to identify 3 existing tools that 

provide prioritization capabilities in different development platforms.  

The first tool is the InFusion (2014), which can be used for analyzing Java, C 

and C++ systems. Besides the statistical analysis for calculating code metrics (more 

than 60 metrics, the tool also provides numerical scores to detect code anomalies. 

Those scores provide means to measure the negative impact of code anomalies in the 

software system. When combining the scores, a deficit index is calculated for the 

entire system. The deficit index considers different measures such as size, 

encapsulation, complexity, coupling and cohesion metrics. The second tool is Code 

Metrics tool (2014), which is add-in for visual studio based on the .NET platform. It 

allows calculating a limited set of metrics, over which the tool will assign a score – 

namely maintainability index - to each of the analyzed code element. For all the 

metrics used in this tool, there is a pre-defined threshold. For this reason, the criteria 

using when ranking code anomalies for a given code element is based on the number 

of measures that are great than the threshold. Finally, the third tool is JSpIRIT (Vidal 

and Marcos, 2012), which is a semi-automated refactoring tool that helps developers 

focusing on the most critical problems in a software system. Therefore, the tool 

suggests a ranking of code anomalies, based on a combination of different criteria. 

The JSpIRIT tool ranks the most critical code anomalies and allows the developer to 

spend less time during the code anomaly refactoring process.  
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The main concern of using these tools is that the techniques they implement 

have some limitations: (i) they usually only consider the source code structure as 

input for detecting and prioritizing code anomalies; (ii) the ranking system disregards 

the architecture information of the code elements; and (iii) the user cannot define or 

customize their own criteria for prioritizing code anomalies. Our study intends to 

improve those results by proposing a model-based approach for identifying which 

code anomalies should be prioritized based on their architecture relevance. In this 

sense, we analyze different properties of the code elements that affect the architecture 

elements. Thus, we are able to support developers on the identification and ranking of 

those code anomalies that are more harmful to the overall software quality, and hence, 

should be refactored first. 

 

2.4. 
Prioritization of Code Anomalies Supported by Blueprints  

As mentioned in Section 2.3, the most popular mechanism for detecting critical 

code anomalies is the use of metrics (Lanza and Marinescu, 2006), once developers 

are able to define their own metrics-based detection strategy using a particular 

combination of measures and thresholds. The problem is that automatically collected 

measures purely represent properties of the source code structure. Therefore, the 

measures are often agnostic to the architectural design structure. In other words, the 

architecture decomposition is not explicit in the source code, the package or class 

structure often does not reflect the software architecture decomposition. As a 

consequence, developers often consider that all the modules and the respective 

measures have the same relevance to the software architecture design (Lanza and 

Marinescu, 2006)(Moha et al., 2010). The relevance could be otherwise captured by 

the analysis of architecture blueprints (Kruchten, 1995) usually available in software 

projects.  

From our preliminary study (Guimarães et al., 2013), we gathered insights 

about which information provided in architecture blueprints could be used to improve 

the process of prioritizing critical code anomalies. For instance, we observed that the 

most critical code anomalies – and the architecture problem counterpart – tend to 

affect the communication between the architectural components. In addition, some 
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critical code anomalies are also related with bad architecture practices when realizing 

the architecture concerns.  

For the best of our knowledge, the concept of blueprint (Kruchten, 1995) was 

firstly introduced to describe different views proposed in the "4+1 View Model", 

which represents software architecture according to five concurrent views. The use of 

blueprints has been exploited and assessed in different software engineering activities 

such as including process evaluation (Alegría et al., 2010) and test coverage analysis 

(Araya, 2011). In this thesis, we define architecture blueprints as informal models, 

with a high level of abstraction, initially created for communicating the architecture 

decomposition of a software system. In addition, architecture blueprints are: (i) often 

available in software projects; (ii) used to inform developers about the key design 

decisions defined by the system architect; and (iii) considered to be of informal nature 

since they do not necessarily require a formal specification language. It is important 

to mention that our work focuses on architecture blueprints that only capture a 

structural view of the software architecture, once most part of the architecture 

blueprints in real software projects are not multi-view (Kruchten, 1995). For instance, 

Figure 2 presents an example of architecture blueprint that depicts a partial view of 

an architecture blueprint representing the main components of the Mobile Media 

system (see Chapter 3). 

In this architecture blueprint, each component is represented by a rectangle, and 

it can have provided and required interfaces. Figure 2 also shows the system features 

each component is realizing. If a component is responsible for implementing one or 

more system features, it is decorated with a small circle that represents the concern 

that this component is responsible to handle. For instance, we can observe 5 concerns 

represented in the architecture blueprint, which are Counting (C), Sorting (S), 

Exception Handling (E), Persistence (P) and Favorites (F). Moreover, architecture 

blueprints can be distinguished from other types of models as they simultaneously 

hold three different properties (Lange and Chaudron, 2010)(Guimarães et al., 2014): 

level of abstraction, incompleteness and consistency. In the following, each of these 

properties will be described in more details. 
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Figure 2 – Partial Architecture Blueprint of Mobile Media SPL 

2.4.1. 
Level of Abstraction  

As previously mentioned, architecture blueprint is a high-level model that 

represents the overall structure of a software system. Even considering a “high-level” 

of abstraction, different software developers will represent architecture design with 

different levels of details. However, when performing the mapping of information 

between architecture and source code elements, the relationship between elements in 

those two levels of abstraction might not be unitary. The mapping process consists in 

determining which elements in the source code correspond to each architecture 

element represented in the architecture blueprint. Therefore, independently of the way 

that different developers create blueprints on the development process, the high level 

of abstraction means that the mapping between architectural components and code 

elements is not unitary.  

LOAB = ΣLOAC,I / TAC, where: 

LOAC,I = level of abstraction of an architectural component 

TAC = Total number of architectural components in the blueprint 
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In this sense, the level of abstraction of an architecture blueprint (LOAB) is 

defined by the sum of the level of abstraction of each component (LOAC) represented 

therein, divided by the total number of architectural components (TAC). In turn, to 

calculate the level of abstraction of an architecture component it is necessary to 

compute the number of elements implemented to realize its functionalities. From 

those metrics, we can quantify the level of abstraction not only for each component, 

but also the level of abstraction of the set of architectural components represented in 

the architecture blueprint. It is important to mention that the level of abstraction must 

assume a value 0 < LOA ≤ 1, once the elements in the architecture blueprint should 

be mapped to at least one element on the software artifact in which the mapping was 

performed. If there is a component not mapped to a code element, this blueprint 

characteristic is captured by another properties being discussing below. 

 

2.4.2. 
Completeness  

This property defines that an architecture blueprint is complete when it characterizes 

all the components involved on the representation of the descriptive architecture. In 

this way, for each architectural element in the blueprint there must be at least one 

corresponding element in its counterpart mapping. For instance, when a mapping 

between the architecture blueprint and the source-code elements is performed, each 

architectural component must be associated with at least one code element (class or 

interface) responsible for realizing this component. Thus, in order to measure the 

completeness of the blueprint regarding the mapping with other software artifacts, we 

have to compute the following information: (i) number of components not mapped; 

(ii) number of interfaces not mapped; and (iii) number of concerns not mapped. At the 

end, we can quantify the completeness of an architecture blueprints using the 

following equation:  

CB = 1 – (AENM / TAE), where: 

ACNM = Architectural Component Not Mapped 

TAE = Total Number of Architectural Elements 
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2.4.3. 
Inconsistencies  

An architecture blueprint is said consistent when there is not any contradiction 

on the common information represented on the mapping between elements in 

different software artifacts. That is, the consistency occurs when the information 

represented in different software artifacts is well aligned. For instance, when 

analyzing the system implementation there might be an inconsistency between 

components that should be related with each other. However, a dependency 

relationship between the classes implementing those components could be observed 

when analyzing the source code. 

 In order to measure the inconsistencies of an architecture blueprints, we 

compute occurrences of: (i) dependencies not mapped – for example, classes that have 

dependencies with each other, but this communication should not exist according to 

the architecture blueprints; (ii) inverted dependency – cases where a architectural 

component ACX uses a provided interface from component ACY, but the 

dependencies between the classes responsible for realizing those components are in 

the opposite way; (iii) component with no interface – cases where two classes in the 

source code have any kind of dependency, but the components they are realizing have 

no communication in the architecture blueprint; (iv) interface with the same name - 

two (or more) interfaces may not have the same name in the blueprint - even worse is 

when those interfaces belong to the same component; and (v) components with the 

same name – two (or more) components may not have the same name in the blueprint. 

After collecting those measures, we quantify the inconsistency rate (IR) according to 

the following equation: 

• ICBP = Σ (NMD + NID + NCWI + NISN + NACSM) / TAE, where: 

• Dependencies not mapped (NMD) 

• Inverted dependency (NID) 

• Component with no interface (NCWI) 

• Interface with the same name (NISN) 

• Components with the same name (NACSM)  

• TAE = Total number of architectural elements 
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2.4.4. 
Mapping Architecture Blueprints to Source Code  

This section illustrates the usefulness of mapping architectural elements (André 

et al., 2010)(Langhammer, 2013) into the source code. This section provides an 

example on how an anomalous code element can be related with architectural drift 

problems by analyzing the mapping of architectural elements in the source code. 

Taking as example the partial view of Mobile Media architecture, consider the 

AlbumData component. We will use this component as an example to illustrate the 

mapping of the architecture elements and the corresponding source code elements. 

The AlbumData component is realized by 5 code elements: ImageAlbumData, 

MusicAlbumData, VideoAlbumData, MediaData and AlbumData. In addition, 3 other 

code elements extend the abstract class AlbumData, namely ImageAlbumData, 

MusicAlbumData and VideoAlbumData.. 

Still considering this example, we can observe two architectural problems in 

which the AlbumData class might be involved. The first architectural problem is 

related to the Overused Interface, which characterizes an interface that exposes a non-

cohesive heterogeneous data and is used by several other required interfaces from 

other components. In this case, the interface ManageInfo is used by 5 different 

architectural components, which are: ImageAccessor, PhotoListController, 

AlbumController, PhotoController and PhotoViewController. The problem is that the 

abstract class AlbumData is mainly responsible for realizing the ManageInfo interface 

since it defines many different methods for addition, deletion and update of different 

information.  

In addition, the class is infected by two different code anomalies, namely 

shotgun surgery and duplicated code. Moreover, the code elements ImageAlbumData, 

MusicAlbumData, and VideoAlbumData are also related to problems on the 

realization of this interface, since they are infected with the code anomalies 

duplicated code and small class. This scenario also characterizes an architectural drift 

problem related to external attractor component (Section 5.3.1.1), which occurs when 

a provided interface is extensively used by other several external components. 

However, when detecting this type of architectural problems we should also take into 
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consideration the elements within external components that depend of one or more 

classes in the AlbumData Component. 

 

 

Figure 3 - Mapping Component to Source-Code 

Another architectural problem associated with the implementation of the 

abstract class AlbumData is the fact that it realizes two different concerns in the 

system. For instance, Figure 3 illustrates the lines of code responsible for realizing the 

exception handling (dark grey) and persistence (light grey) concerns. Classes within 

external components should address the exception handling, since the AlbumData 

architectural component mainly responsible for addressing the persistence concern. In 
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this case, the mapping of the software architecture into the source code could be used 

to support the detection of, at least, two architectural problems. The first is related to 

the problem Misplaced Concern, since the AlbumData class is implementing the 

exception handling concern, which is not predominant on its enclosing component 

(see Section 5.3.2.2). The other problem is related with the problem Concern 

Overload (see Section 5.3.2.1), as the AlbumData class and its subclasses 

(ImageAlbumData, MusicAlbumData and VideoAlbumData) are responsible for 

dealing with too many concerns or responsibilities in the Mobile Media system. It is 

also important to mention that the aforementioned subclasses are all infected with the 

same instances of code anomalies, which are, respectively, duplicated code and small 

class. 

The examples above show how the reasoning about the mapping of architectural 

concerns into the source code can help to reveal certain types of critical code 

anomalies (and their architectural problem counterparts). These anomalies and 

problems could not be easily revealed if there is no mapping of the software 

architecture into the program. 

 

2.5. 
Summary  

This chapter presented the main concepts addressed in this thesis. It also 

presented an overview of existing studies and a critical discussion of their limitations. 

Section 2.1 presented the definitions of the main terms discussed throughout this 

research work, such as software architecture, prescriptive architecture and descriptive 

architecture. In addition, we also presented the definition of architectural degradation 

and discussed the symptoms of architectural drift.  

After that, we discussed how critical instances of code anomalies might be 

related to architectural drift problems (see Section 2.2). Code anomalies might occur 

in an isolated way. However, instances of code anomalies related to architectural 

problems might co-exist in code elements implementing architectural components. 

The co-occurrence of critical instances of code anomalies has been investigated as 

one of the factors associated to architecture degradation symptoms (Section 2.2.2). 
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Nevertheless, software developers are usually expected to decide which code 

anomalies should be refactored first. Although several detection strategies have been 

proposed in the literature, they do not provide means for prioritizing and ranking code 

anomalies (Section 2.3). The fact is that existing strategies only focus on source code 

analysis and metrics, and therefore, they do not consider the system’s descriptive 

architecture decomposition. In this sense, there is a lack of support on how 

prioritizing and ranking critical code anomalies based on their architectural relevance. 

In addition, there is no empirical study that investigates how the system’s descriptive 

architecture could be exploited as means to assist developers when properly 

prioritizing and ranking critical code anomalies (Section 2.3.1). 

In this sense, we investigated how the use of blueprints, representing the 

systems’ descriptive architecture, can be used as means for prioritizing and ranking 

critical code anomalies according to their architecture relevance (Section 2.4). In 

addition, we introduced a set of properties that should be applied in architecture 

design models in order to check if they could be classified as blueprint. In addition, 

the proposed properties can be used to guarantee that architecture blueprints have a 

minimum quality required so that it can be used when prioritizing and ranking critical 

code anomalies. Finally, we provide an example on how architectural components can 

be mapped to anomalous code elements, as well as we describe what type of 

architectural drift problems they can be associated. 
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