

33

2 Background and Related Work

Along the system evolution, different properties associated with the system

quality are impacted. For instance, software systems grow in size and complexity as

new modules and their functionalities are implemented in the existing program. The

problem arises when architectural design decisions are not correctly performed in the

descriptive architecture, and hence, the system maintenance can be compromised.

When software maintenance activities are properly performed in the descriptive

architecture along software evolution, architectural degradation symptoms will start to

emerge. Examples of architecture degradation symptoms in the actual architectural of

the implementation are complex component interfaces or scattered functionalities

across components’ implementation.

One of the main factors responsible for architecture degradation is the

unavoidable and progressive insertion of code anomalies. Recent studies revealed that

there is a strong correlation between the occurrences of instances of critical code

anomalies and architectural problems (Macia et al., 2012a)(Macia et al.,

2012b)(Macia et al., 2014)(Oizumi et al., 2014). Therefore, when critical code

anomalies are not properly prioritized and removed as early as possible, the system

maintainability can be compromised and, in some cases, software architecture have to

be completely redesigned (Eick et al., 2001) (MacCormack et al., 2006). For instance,

when the interface of a component starts to bloat, it starts to blend several non-

cohesive functionalities and expose information that should be hidden to the client

components. Then, the implementation of all the client components increasingly gets

artificially coupled to the elements of the bloated interface. Maintenance and

evolution of the server and client component becomes increasingly complex, error-

prone or even prohibitive over time.

In this chapter, we describe the basic terminology required to understand the

development of our research (Section 2.1). The observation of architectural problems

in the actual implementation is often only possible through the detection of code

anomalies. Therefore, we discuss how the occurrences of code anomalies are related

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

34

with architectural problems (Section 2.2). Moreover, we introduce the existing

strategies for detecting and/or prioritizing code anomalies, as well as the main

limitations of those existing strategies (Section 2.3). We also present the concept of

architecture blueprint used in this thesis and the properties used to characterize

whether and how a given design model can be, in fact, classified as an architecture

blueprint. The analysis of the architecture in the implementation is only possible if

there is a projection (mapping) of the architecture elements in the source code.

Therefore, we discuss how the mapping process between the architecture and source

code elements is performed (Section 2.4). Even though it not the focus of our work to

defining a new mapping approach, the mapping process between elements in both

abstraction levels is essential for executing the architecture sensitive heuristics

proposed in this work (see Chapter 5).

2.1.
Basic Terminology

Henceforth, we discuss the basic terminology required to understand all the

phases that permeate the research performed in this thesis. Firstly, we introduce the

definitions associated with the concept of software architecture, as well as

architecture degradation symptoms. Furthermore, we discuss how the occurrence of

code anomalies can be associated with architecture degradation symptoms.

2.1.1.
Software Architecture

Software Architecture can be defined as the structure of a software system,

which comprises software components, (provided and required) interfaces of those

modules, and the relationship among them (Bass et al., 2003). The architecture

decomposition outlines the organization of a software system. That is, the architecture

structure captures the architectural elements and their interaction (Gorton, 2006).

Architectural Component can be defined as the architecture entity responsible for

encapsulating a subset of the system’s functionalities (Taylor et al., 2009).

Architectural Components interact through Architectural Connectors, which in turn,

allows the communication, coordination and data conversion between architectural

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

35

components (Meta et al., 2000). At the implementation level, an architecture

connector can be realized by one or more simple method calls or by one or more

classes realizing the protocols for communication, coordination or data conversion

(Mehta et al., 2000).

In this context, the software architecture usually represents the key design

decisions made in the early stages of software development (Jansen and Bosh, 2005).

Therefore, the architecture decisions must preserve design and modularity principles

(Martin, 2003), which are essential to the system evolution and longevity (Clements

et al., 2002). Examples of these principles are simple interfaces and encapsulation,

high cohesion and low coupling of components, separation of architectural concerns,

and the like (Martin, 2003).

In this sense, the prescriptive architecture comprehends explicit design

decisions made by system architects on the selection of components, interactions and

their constraints (Taylor et al., 2009). On the other hand, the descriptive architecture

describes how the system has been actually built (Taylor et al., 2009). The descriptive

architecture should ideally resemble the prescriptive architecture. However, in real

software development projects the descriptive and prescriptive architecture does not

match. In these cases, the intended (prescriptive) architectures are available in models

to guide developers on: (i) maintaining or evolving the system structure, and (ii)

reasoning about the modularity and maintainability of the actual architecture

implementation (Taylor et al., 2009)(Baltes and Diehl, 2014).

2.1.2.
Architecture Degradation Symptoms

Architecture degradation symptoms represent mismatches between the

prescriptive and descriptive architectures, as wells as modularity problems between

those two architectures. It is important to highlight, in this thesis, we explore

problems related with architectural drift. The motivation and justification was given

in Chapter 1. Architectural drift symptoms occur when decisions introduced in the

descriptive architecture violate modularity principles (Chapter 4). Therefore,

architectural drift problems might impair the adaptability of the system architecture,

and as consequence, the system evolution (Perry and Wolf, 1992). There are certain

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

36

cases where the drift problems were already introduced in the prescriptive architecture

(also known as “congenital” architectural problems), being propagated to the

implementation of the software architecture (prescriptive architecture) in the first

versions of a program. Table 1 summarizes the set of six architectural drift problems

considered in this thesis. We decided to focused on these different types of

architectural problems because: (i) they represent all architecture degradation

symptoms empirically observed in the systems analyzed in our research (and

described in the next chapters), and (ii) they are representative of architectural

problems affecting different types of architecture elements – i.e. interfaces,

components, connectors, and other architectural relevant concerns not modularized in

components or connectors. An architecturally-relevant concern is any functional or

extra-functional feature of interest by the architects, which influences one or more

architectural decisions. Some typical examples of such concerns are error handling,

persistence, and GUI.

Table 1 - Architectural problems considered in this work

Architectural Problem Description
Ambiguous Interface The interfaces usually offer only a single, general entry-point

into a component, reducing the system analyzability and
understandability. The ambiguous interfaces handle more
requests than it should actually process (Garcia et al., 2009b).

Component Concern Overload An architectural component is responsible for realizing two or
more unrelated system’s concern (Stal et al., 2011).

Connector Envy It occurs in components that encompass extensive interaction-
related functionality that should be delegated to a different
connector. That is, the architectural component realizes
functionalities that should be assigned to another connector
(Garcia et al., 2009b).

Overused Interface Interface that exposes a lot of heterogeneous data and it is used
by several other (required) interfaces of other components.

Redundant Interface Interface that exposes the same information of the other
interfaces.

Scattered Parasitic Functionality It takes place when multiple components are responsible for
realizing the same architectural high-level concern and,
additionally, some of those components are responsible for
independent concerns (Garcia et al., 2009b).

It is important to mention that the higher number of architecture violations and

modularity problems, the higher is the chance of the software architecture suffers

from degradation symptoms. As previously mentioned, the main factor that

contributes to architecture degradation symptoms is the progressive and unavoidable

insertion of code anomalies. Code anomaly is a term often used to define structural

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

37

problems in the source code, which may lead to severe maintenance problems in a

software system (Fowler et al., 1999)(Eick et al., 2001). We can mention as examples

of code anomalies God Class, Shotgun Surgery, Feature Envy, Divergent Change and

Long Method. Thus, code anomalies can affect different source code structures or

code elements, such classes, interfaces, attributes, constructors and methods. When

instances of code anomalies related to architectural problems, we say that those code

anomalies are critical to the architectural design. In this thesis, instances of code

anomalies are related with architectural problems, either when they affect the

communication between architectural components or they impact on the

implementation of architectural concerns. For each type of architectural problems, an

instance of code anomaly can contribute in different ways – i.e. a code element is

affected by the God Method anomaly (Fowler et al., 1999), which is responsible for

implementing many of the concerns realized by its enclosing component. In this case,

the architectural component suffers from Component Concern Overload and the class

is contributing for the realization of this architectural problems.

Whereupon, software developers are expected to be able when deciding which

critical code anomaly should be refactored first. Thus, refactoring is commonly used

to remove critical code anomalies that might be related with problems in the

architecture design. The refactoring process (see also Section 2.2.1) consists of

changing the design structure of a software system without changing its behavior, in

order to improve the system maintainability (Fowler et al., 1999). Moreover,

identifying architecture degradation symptoms is a challenging task particularly when

the prescriptive architecture is not well documented. Therefore, in such scenarios the

system implementation is one of the most reliable artifact when detection architecture

degradation symptoms. It is important to mention the approach proposed in this thesis

explores different artifacts (e.g. architecture blueprints, source code, metrics) in the

process of prioritizing code anomalies related with architectural problems. The most

innovative idea is the exploration of architecture blueprints as a way of improving: (i)

the identification of which anomalous code elements are most likely to realize an

architectural problem (and should be prioritized), and (ii) the ordering (ranking) of

those elements according to their relevance to the realization of one or more

architecture elements.

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

38

2.2.
Code Anomalies as Architecture Degradation Symptoms

When software developers are performing architecture reviews (Kazman and

Bass, 2002)(Starr and Zimmerman, 2002) of the source code, they are usually

expected to choose which code anomalies should be refactored first to avoid

architecture degradation symptoms. Time constraints associated with such reviews

imply that finding the critical code anomalies in large systems cannot be performed

without systematic prioritization support. Therefore, existing techniques for code

anomaly detection should also consider architectural information, typically available

in industry software projects (Baltes and Diehl, 2014), to explore the relationship

between critical code anomalies and architectural problems.

As previously mentioned, architecture degradation (Hochstein and Lindvall,

2005) is frequently a direct consequence of the progressive insertion of anomalies

(Macia et al., 2012a)(Macia et al., 2012b) in the source code. When critical code

anomalies are not systematically prioritized and removed, the system's architecture

might degrade. In addition, identifying degradation symptoms directly on the

architecture specification can be an arduous task, when not impossible. The reason is

that architecture design decisions are not entirely specified in real software projects,

but they are partially represented as architecture blueprints. Thus, software developers

need to be provided with means to detect, prioritize and remove critical code

anomalies. When critical code anomalies are not prioritized and refactored early in a

software project, the cost to perform this activity later is usually high or prohibitive

(Macia et al., 2012a). For instance, many researchers have investigated the impact of

code anomalies on exerting undesirable modifications in the source code (Macia et

al., 2011)(Mantyla and Lassenius, 2003). Recent studies also revealed that the code

structures affected by code anomalies suffer more changes during software

maintenance (Mantyla and Lassenius, 2003).

Furthermore, recent studies investigated the negative impact of code anomalies

in the system architecture. For example, a previous study (Eick et al., 2001) shows

architecture modularity of a larger communication system has been degraded in 7

years. The key problem was the relationship between the architectural components,

hosting several code anomalies, increased over time. Such anomalous modules were

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

39

not independent anymore and, consequently, further changes in the system structure

were not possible. This problem could not be observed based on conventional source

code analysis, as those architectural components were no longer aligned with module

decomposition in the implementation. Another study (MacCormak et al., 2006)

reported that the Mozilla’s browser was overmuch complex and coupled, which

hindering the system maintainability and its ability to evolve. This architecture

problem was the cause of its complete reengineering and developers spent around 5

years to rewrite more than 2 millions lines of code (Godfrey and Lee, 2000). The

study also indicated when refactoring operations are performed early in the

counterpart groups of inter-related code anomalies, the architecture degradation could

be avoided.

2.2.1.
Refactoring Process and Removal of Code Anomalies

As aforementioned in this chapter, refactoring can be understood as the process

of changing a software system in a way it does not alter the external behavior of the

source code, but improve its structure (Fowler et al., 1999). In this sense, refactoring

activities allow to restructure the source code, improving the effort required to make

future modifications. Thus, when refactoring operations are performed in the source

code, some benefits should be achieved, such as: reduction of duplicated code,

reduction of coupling and improvement on other internal and external quality

attributes (e.g. modularity, maintainability, evolvability and the like). In addition, the

refactoring process comprises 6 main activities (Mens and Tourwe, 2004): (i) identify

code fragments where refactoring is required; (ii) determine which type of refactoring

should be applied; (iii) check whether the external behavior is preserved after the

refactoring have been applied; (iv) apply the refactoring; (v) assess the effect of the

refactoring on software quality attributes; and (vi) synchronize the refactored source

and other software artifacts (e.g. architecture blueprints).

In this sense, instances of code anomalies can be seem as good opportunities for

applying refactorings. According to Murphy-Hill et al. (2009), although several

refactoring tools are available, software developers tend to limit their use on low-level

refactorings. Arcoverde et al. (2011) also suggested refactorings usually are not

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

40

applied whether they are complex, time-consuming or there is no evidence of their

effectiveness in maintaining the system modularity. Moreover, they pointed out a

major factor hindering the proper use of refactorings to be applied is due to the co-

occurrence of code anomalies (Liu et al., 2011). Therefore, software developers need

to evaluate how different code anomalies should be properly removed, before the

refactoring could be properly applied. Thereby, refactoring recommendation systems

could help developers on identifying good opportunities for removing code

anomalies. For example, Xi et al. (2012) a refactoring recommendation mechanism

based on the observation of manual refactoring steps. The proposed recommendation

mechanism monitors common sequences of previous changes on code structures to

detect the occurrence of refactorings, and dynamically recommend their automation

while the software developer is programming. In turn, a technique for automatically

identifying required refactorings in the source code, via static slicing, has been

proposed in (Tsantalis and Chatzigeorgiou, 2009). Finally, Vidal and Marcos (2012)

proposed an expert software agent (named Refactoring Recommender) to assist

developers during the refactoring activities of a software system. The refactoring

recommender system analyzes the user’s interaction history for improving the agent’s

effectiveness over time, guiding developers to predict needed restructurings in the

source code.

2.2.2.
Co-occurrence of Critical Code Anomalies

When analyzing the state of art regarding code anomaly detection, we found

researchers have mostly investigated only the impact of isolated instances of code

anomalies. Moreover, their analysis rely on the investigation of specific code

anomalies from different catalogues (Fowler et al., 1999)(Brown et al.,

1998)(Kerievsky, 2004)(Lanza and Marinescu, 2006). The empirical study developed

by (Abbes et al., 2011) brings up the notion of interaction effects across code

anomalies. Abbes and colleagues found that classes and methods identified as God

Classes and God Methods in isolation had no effect on effort, but when appearing

together those code anomalies led to a significant increase in the maintenance effort.

However, their study is limited as it merely focuses on investigating the impact of co-

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

41

occurrences of only two types of code anomalies. In addition, they do not study their

impact on the software architecture degradation process.

In this sense, none of the existing empirical studies has investigated to what

extent the co-occurrence of different code anomalies, established by the exploration

of blueprints, might be used as indicators for prioritizing and ranking architecture

degradation symptoms. In addition, existing approaches for code anomaly detection

do not support developers to detect co-occurrences of code anomalies, once they are

focused on detecting isolated occurrences of code anomalies. Therefore, developers

need to be provided with means that allow prioritizing and ranking the most critical

code anomalies so that refactoring operations can be properly performed in order to

complement remove those code anomalies.

Through the analysis of co-occurrences of code anomalies it is possible, for

instance, detect the occurrence of a given code anomaly that might be related with

other anomalies affecting the same code element. Thus, analyzing co-occurrence of

critical code anomalies might also allow developers to identify the existence of

architectural problems in the system implementation. Particularly, some architectural

problems cannot be detected without analyzing relationships between code elements.

Finally, the detection of co-occurrences of critical code anomaly help developers on

properly applying refactoring techniques, and as consequence, reduces the

maintainability costs during the system evolution. Some works revealed that usually

co-occurrences of code anomalies provide better indicators of architectural

degradation symptoms than single instances of code anomalies (Macia et al.,

2014)(Oizumi et al., 2014). However, the main problem of existing techniques is that

they do not support developers on distinguishing and analyze co-occurrences of inter-

related code anomalies. It is also important to mention that the analysis of the

relationship between co-occurrences of code anomalies is important to reveal how

architecture components are implemented by several code elements. Thus, limitations

of existing detection strategies can be overcome if they are able to analyze

relationships among co-occurrences of critical code anomalies.

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

42

2.2.3.
Classifying Occurrences of Code Anomalies

Several works have proposed different ways to classify co-occurrences of code

anomalies by adopting different criteria. While some works have proposed a

categorization of code anomalies according to their scope (e.g. intra-class, inter-

class), others have categorized code anomalies according to their nature (e.g.

structural, semantic). Moreover, in (Mantyla and Lassenius, 2003) the code anomalies

are grouped according to the modularity property they affect in a software system.

However, the aforementioned categorizations suffer from limitations, once they are

based on exploring a particular characteristic of a code anomaly when they should

rather consider the relationship between co-occurrences of instances of code

anomalies. Moreover, those categorizations do not consider the architectural

relevance of a code anomaly, that is, they do not take into consideration to what

extent co-occurrences of code anomalies could negatively impact on the software

architecture.

On the other hand, in (Macia et al., 2014)(Oizumi et al., 2014), they classified

the co-occurrence of code anomalies and classified in 9 different patterns of code

anomaly. Thus, they documented a catalogue of code anomaly patterns aiming to

facilitate the analysis of co-occurrences of code anomalies. The proposed code

anomaly patterns are classified into four categories: (i) Intra-Component Patterns – it

comprises patterns that occur in a single component; (ii) Inter- Component Patterns –

it is formed by patterns that are scattered over various components; (iii) Inheritance-

based Patterns – it groups patterns that occur in inheritance trees; and (iv) Concern-

based Patterns – it comprises patterns related with the inappropriate modularization

of architectural concerns. It is important to mention that proposed code anomaly

pattern aims at facilitating the analysis of co-occurrences of critical code anomalies

that might contribute to the appearance of architecture degradation symptoms.

Finally, some of those code anomaly patterns are used as insight in our work when

proposing the architecture sensitive heuristics (see Chapter 4) for prioritizing critical

code anomalies. We relied on those code anomaly patterns, which indicate specific

scenarios that can be observed when exploring the mapping between the information

represented in the architecture blueprints and source code.

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

43

2.3.
Tool Support for Code Anomaly Detection

Many works has investigated and proposed different techniques and tools for

detection code anomalies in software systems. The detection strategies proposed in

(Marinescu, 2004) are the most common mechanism for code anomalies detection, as

well as on of the most referred in the literature. Those detection strategies exploit

source code information, based on the combination of static code metrics and

thresholds into logical expressions. Moreover, each detection strategy can be

understood as a heuristic responsible for identifying code elements that might be

affected by instances of a particular code anomaly (Marinescu, 2004)(Lanza and

Marinescu, 2006). Other approaches have also been proposed for detection code

anomalies in Java systems, based on the analysis of structural properties of code

elements (Emden and Moonen, 2002). On the other hand, other approaches also

support the detection of specific types of code anomalies by examining change

couplings (Ratzinger et al., 2005)(Wong et al., 2011).

Several approaches for static code analysis and visualization have also been

proposed. Most part of those approaches relies on the detection strategies

aforementioned. Ratiu et al., (2004) proposed an approach that explored the historical

information to improve the accuracy on the automatic identification of code

anomalies though the implementation of detection strategies. Marinescu et al., (2010)

proposed a tool for supporting the automation of some detection strategies. Munro

(2005) proposed heuristics for detecting code anomalies. In turn, Moha et al., (2010)

proposed a domain specific language for improving the construction of code

anomalies detection strategies. In summary, those works focused mostly on the

identification of code anomalies, even though in some case they can detect instances

of specific code anomalies. Thus, detection strategies have been widely adopted and

an infinite number of tools are based on this techniques. Finally, several researchers

use those well-defined detection strategies as means to investigate the presence of

code anomalies during the system evolution, as well as to analyze the harmful impact

of critical code anomalies on the overall software quality.

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

44

Despite the existence of several works proposing different techniques and tools

for code anomalies detection (Lanza and Marinescu, 2006)(Marinescu et al.,

2004)(Ratiu, 2004)(Wettel and Lanza, 2007), it is still a challenging task to identify

which code anomalies are critical to the architecture design. As previously mentioned,

most part of those techniques and tools fail to assist developers when distinguishing

those code anomalies that are critical to the architecture design, and those that are not.

The problem is those detection strategies disregard other software factors (i.e.

architecture specification, architecture blueprints) that might indicate the architectural

relevance of instances of code anomalies. In this sense, code anomalies detection

strategies should also: (i) exploit other information available in software projects

during the development process in combination to source code artifacts; and (ii)

support the co-occurrence of instances of code anomalies, instead of analyzing the

occurrence of individual occurrence of code anomalies. Other studies (Macia et al.,

2012a) (Macia et al., 2012b) observed that automatic detection strategies could

eventually be good indicators of architectural design problems. However, software

developers still invest more effort on removing code anomalies that are not critical to

the architectural design problems (Arcoverde et al., 2011)(Macia et al., 2012a). That

is, software developers tend to prioritize code structures that have no impact, for

example, either on the communication between architectural components or on the

definition of the provided/required interfaces. The prioritization of critical code

anomaly as early as possible might be seen as means to guide developers correctly

solving problems, and hence, avoid more severe problems related with architecture

degradation symptoms.

2.3.1.
Prioritization and Ranking of Code Anomalies

As aforementioned, there are many available tools and techniques for detecting

code anomalies. However, as the system evolves the number of code anomalies tend

to increase, and when they are not properly addressed, those instances can became

unmanageable. In this case, software developers are expected to decide which code

anomalies should the refactored first in order to prevent more severe problems.

Additionally, developers should be able to prioritize critical code anomalies either due

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

45

to time constraints or as attempt to find the correctly solution when restructuring a

large software system. Therefore, prioritizing critical code anomalies could be an

important activity for increasing the accuracy and effectiveness of existing strategies

when refactoring problems in a software system. Nevertheless, existing approaches

mostly do not focus on the prioritization of critical code anomalies, but they rather

focus on the extraction and combination of static source code measures. On the other

hand, researchers also propose the use of software project repositories and explore

their additional information, such as bug reports and change density – i.e. (Eick et al.,

2001)(MacCormak et al., 2006)(Vidal and Marcos, 2012)(Olbrich et al., 2010)(Baltes

and Diehl, 2014)(Oizumi et al., 2014). However, they do not aim at detecting

architectural problems in early software development stage. They only perform

retrospective analysis of software history data. Moreover, those techniques are not

concerned in supporting the prioritization of critical code anomalies. When

investigating the state of art, we have been able to identify 3 existing tools that

provide prioritization capabilities in different development platforms.

The first tool is the InFusion (2014), which can be used for analyzing Java, C

and C++ systems. Besides the statistical analysis for calculating code metrics (more

than 60 metrics, the tool also provides numerical scores to detect code anomalies.

Those scores provide means to measure the negative impact of code anomalies in the

software system. When combining the scores, a deficit index is calculated for the

entire system. The deficit index considers different measures such as size,

encapsulation, complexity, coupling and cohesion metrics. The second tool is Code

Metrics tool (2014), which is add-in for visual studio based on the .NET platform. It

allows calculating a limited set of metrics, over which the tool will assign a score –

namely maintainability index - to each of the analyzed code element. For all the

metrics used in this tool, there is a pre-defined threshold. For this reason, the criteria

using when ranking code anomalies for a given code element is based on the number

of measures that are great than the threshold. Finally, the third tool is JSpIRIT (Vidal

and Marcos, 2012), which is a semi-automated refactoring tool that helps developers

focusing on the most critical problems in a software system. Therefore, the tool

suggests a ranking of code anomalies, based on a combination of different criteria.

The JSpIRIT tool ranks the most critical code anomalies and allows the developer to

spend less time during the code anomaly refactoring process.

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

46

The main concern of using these tools is that the techniques they implement

have some limitations: (i) they usually only consider the source code structure as

input for detecting and prioritizing code anomalies; (ii) the ranking system disregards

the architecture information of the code elements; and (iii) the user cannot define or

customize their own criteria for prioritizing code anomalies. Our study intends to

improve those results by proposing a model-based approach for identifying which

code anomalies should be prioritized based on their architecture relevance. In this

sense, we analyze different properties of the code elements that affect the architecture

elements. Thus, we are able to support developers on the identification and ranking of

those code anomalies that are more harmful to the overall software quality, and hence,

should be refactored first.

2.4.
Prioritization of Code Anomalies Supported by Blueprints

As mentioned in Section 2.3, the most popular mechanism for detecting critical

code anomalies is the use of metrics (Lanza and Marinescu, 2006), once developers

are able to define their own metrics-based detection strategy using a particular

combination of measures and thresholds. The problem is that automatically collected

measures purely represent properties of the source code structure. Therefore, the

measures are often agnostic to the architectural design structure. In other words, the

architecture decomposition is not explicit in the source code, the package or class

structure often does not reflect the software architecture decomposition. As a

consequence, developers often consider that all the modules and the respective

measures have the same relevance to the software architecture design (Lanza and

Marinescu, 2006)(Moha et al., 2010). The relevance could be otherwise captured by

the analysis of architecture blueprints (Kruchten, 1995) usually available in software

projects.

From our preliminary study (Guimarães et al., 2013), we gathered insights

about which information provided in architecture blueprints could be used to improve

the process of prioritizing critical code anomalies. For instance, we observed that the

most critical code anomalies – and the architecture problem counterpart – tend to

affect the communication between the architectural components. In addition, some

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

47

critical code anomalies are also related with bad architecture practices when realizing

the architecture concerns.

For the best of our knowledge, the concept of blueprint (Kruchten, 1995) was

firstly introduced to describe different views proposed in the "4+1 View Model",

which represents software architecture according to five concurrent views. The use of

blueprints has been exploited and assessed in different software engineering activities

such as including process evaluation (Alegría et al., 2010) and test coverage analysis

(Araya, 2011). In this thesis, we define architecture blueprints as informal models,

with a high level of abstraction, initially created for communicating the architecture

decomposition of a software system. In addition, architecture blueprints are: (i) often

available in software projects; (ii) used to inform developers about the key design

decisions defined by the system architect; and (iii) considered to be of informal nature

since they do not necessarily require a formal specification language. It is important

to mention that our work focuses on architecture blueprints that only capture a

structural view of the software architecture, once most part of the architecture

blueprints in real software projects are not multi-view (Kruchten, 1995). For instance,

Figure 2 presents an example of architecture blueprint that depicts a partial view of

an architecture blueprint representing the main components of the Mobile Media

system (see Chapter 3).

In this architecture blueprint, each component is represented by a rectangle, and

it can have provided and required interfaces. Figure 2 also shows the system features

each component is realizing. If a component is responsible for implementing one or

more system features, it is decorated with a small circle that represents the concern

that this component is responsible to handle. For instance, we can observe 5 concerns

represented in the architecture blueprint, which are Counting (C), Sorting (S),

Exception Handling (E), Persistence (P) and Favorites (F). Moreover, architecture

blueprints can be distinguished from other types of models as they simultaneously

hold three different properties (Lange and Chaudron, 2010)(Guimarães et al., 2014):

level of abstraction, incompleteness and consistency. In the following, each of these

properties will be described in more details.

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

48

Figure 2 – Partial Architecture Blueprint of Mobile Media SPL

2.4.1.
Level of Abstraction

As previously mentioned, architecture blueprint is a high-level model that

represents the overall structure of a software system. Even considering a “high-level”

of abstraction, different software developers will represent architecture design with

different levels of details. However, when performing the mapping of information

between architecture and source code elements, the relationship between elements in

those two levels of abstraction might not be unitary. The mapping process consists in

determining which elements in the source code correspond to each architecture

element represented in the architecture blueprint. Therefore, independently of the way

that different developers create blueprints on the development process, the high level

of abstraction means that the mapping between architectural components and code

elements is not unitary.

LOAB = ΣLOAC,I / TAC, where:

LOAC,I = level of abstraction of an architectural component

TAC = Total number of architectural components in the blueprint

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

49

In this sense, the level of abstraction of an architecture blueprint (LOAB) is

defined by the sum of the level of abstraction of each component (LOAC) represented

therein, divided by the total number of architectural components (TAC). In turn, to

calculate the level of abstraction of an architecture component it is necessary to

compute the number of elements implemented to realize its functionalities. From

those metrics, we can quantify the level of abstraction not only for each component,

but also the level of abstraction of the set of architectural components represented in

the architecture blueprint. It is important to mention that the level of abstraction must

assume a value 0 < LOA ≤ 1, once the elements in the architecture blueprint should

be mapped to at least one element on the software artifact in which the mapping was

performed. If there is a component not mapped to a code element, this blueprint

characteristic is captured by another properties being discussing below.

2.4.2.
Completeness

This property defines that an architecture blueprint is complete when it characterizes

all the components involved on the representation of the descriptive architecture. In

this way, for each architectural element in the blueprint there must be at least one

corresponding element in its counterpart mapping. For instance, when a mapping

between the architecture blueprint and the source-code elements is performed, each

architectural component must be associated with at least one code element (class or

interface) responsible for realizing this component. Thus, in order to measure the

completeness of the blueprint regarding the mapping with other software artifacts, we

have to compute the following information: (i) number of components not mapped;

(ii) number of interfaces not mapped; and (iii) number of concerns not mapped. At the

end, we can quantify the completeness of an architecture blueprints using the

following equation:

CB = 1 – (AENM / TAE), where:

ACNM = Architectural Component Not Mapped

TAE = Total Number of Architectural Elements

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

50

2.4.3.
Inconsistencies

An architecture blueprint is said consistent when there is not any contradiction

on the common information represented on the mapping between elements in

different software artifacts. That is, the consistency occurs when the information

represented in different software artifacts is well aligned. For instance, when

analyzing the system implementation there might be an inconsistency between

components that should be related with each other. However, a dependency

relationship between the classes implementing those components could be observed

when analyzing the source code.

 In order to measure the inconsistencies of an architecture blueprints, we

compute occurrences of: (i) dependencies not mapped – for example, classes that have

dependencies with each other, but this communication should not exist according to

the architecture blueprints; (ii) inverted dependency – cases where a architectural

component ACX uses a provided interface from component ACY, but the

dependencies between the classes responsible for realizing those components are in

the opposite way; (iii) component with no interface – cases where two classes in the

source code have any kind of dependency, but the components they are realizing have

no communication in the architecture blueprint; (iv) interface with the same name -

two (or more) interfaces may not have the same name in the blueprint - even worse is

when those interfaces belong to the same component; and (v) components with the

same name – two (or more) components may not have the same name in the blueprint.

After collecting those measures, we quantify the inconsistency rate (IR) according to

the following equation:

• ICBP = Σ (NMD + NID + NCWI + NISN + NACSM) / TAE, where:

• Dependencies not mapped (NMD)

• Inverted dependency (NID)

• Component with no interface (NCWI)

• Interface with the same name (NISN)

• Components with the same name (NACSM)

• TAE = Total number of architectural elements

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

51

2.4.4.
Mapping Architecture Blueprints to Source Code

This section illustrates the usefulness of mapping architectural elements (André

et al., 2010)(Langhammer, 2013) into the source code. This section provides an

example on how an anomalous code element can be related with architectural drift

problems by analyzing the mapping of architectural elements in the source code.

Taking as example the partial view of Mobile Media architecture, consider the

AlbumData component. We will use this component as an example to illustrate the

mapping of the architecture elements and the corresponding source code elements.

The AlbumData component is realized by 5 code elements: ImageAlbumData,

MusicAlbumData, VideoAlbumData, MediaData and AlbumData. In addition, 3 other

code elements extend the abstract class AlbumData, namely ImageAlbumData,

MusicAlbumData and VideoAlbumData..

Still considering this example, we can observe two architectural problems in

which the AlbumData class might be involved. The first architectural problem is

related to the Overused Interface, which characterizes an interface that exposes a non-

cohesive heterogeneous data and is used by several other required interfaces from

other components. In this case, the interface ManageInfo is used by 5 different

architectural components, which are: ImageAccessor, PhotoListController,

AlbumController, PhotoController and PhotoViewController. The problem is that the

abstract class AlbumData is mainly responsible for realizing the ManageInfo interface

since it defines many different methods for addition, deletion and update of different

information.

In addition, the class is infected by two different code anomalies, namely

shotgun surgery and duplicated code. Moreover, the code elements ImageAlbumData,

MusicAlbumData, and VideoAlbumData are also related to problems on the

realization of this interface, since they are infected with the code anomalies

duplicated code and small class. This scenario also characterizes an architectural drift

problem related to external attractor component (Section 5.3.1.1), which occurs when

a provided interface is extensively used by other several external components.

However, when detecting this type of architectural problems we should also take into

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

52

consideration the elements within external components that depend of one or more

classes in the AlbumData Component.

Figure 3 - Mapping Component to Source-Code

Another architectural problem associated with the implementation of the

abstract class AlbumData is the fact that it realizes two different concerns in the

system. For instance, Figure 3 illustrates the lines of code responsible for realizing the

exception handling (dark grey) and persistence (light grey) concerns. Classes within

external components should address the exception handling, since the AlbumData

architectural component mainly responsible for addressing the persistence concern. In

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

53

this case, the mapping of the software architecture into the source code could be used

to support the detection of, at least, two architectural problems. The first is related to

the problem Misplaced Concern, since the AlbumData class is implementing the

exception handling concern, which is not predominant on its enclosing component

(see Section 5.3.2.2). The other problem is related with the problem Concern

Overload (see Section 5.3.2.1), as the AlbumData class and its subclasses

(ImageAlbumData, MusicAlbumData and VideoAlbumData) are responsible for

dealing with too many concerns or responsibilities in the Mobile Media system. It is

also important to mention that the aforementioned subclasses are all infected with the

same instances of code anomalies, which are, respectively, duplicated code and small

class.

The examples above show how the reasoning about the mapping of architectural

concerns into the source code can help to reveal certain types of critical code

anomalies (and their architectural problem counterparts). These anomalies and

problems could not be easily revealed if there is no mapping of the software

architecture into the program.

2.5.
Summary

This chapter presented the main concepts addressed in this thesis. It also

presented an overview of existing studies and a critical discussion of their limitations.

Section 2.1 presented the definitions of the main terms discussed throughout this

research work, such as software architecture, prescriptive architecture and descriptive

architecture. In addition, we also presented the definition of architectural degradation

and discussed the symptoms of architectural drift.

After that, we discussed how critical instances of code anomalies might be

related to architectural drift problems (see Section 2.2). Code anomalies might occur

in an isolated way. However, instances of code anomalies related to architectural

problems might co-exist in code elements implementing architectural components.

The co-occurrence of critical instances of code anomalies has been investigated as

one of the factors associated to architecture degradation symptoms (Section 2.2.2).

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

54

Nevertheless, software developers are usually expected to decide which code

anomalies should be refactored first. Although several detection strategies have been

proposed in the literature, they do not provide means for prioritizing and ranking code

anomalies (Section 2.3). The fact is that existing strategies only focus on source code

analysis and metrics, and therefore, they do not consider the system’s descriptive

architecture decomposition. In this sense, there is a lack of support on how

prioritizing and ranking critical code anomalies based on their architectural relevance.

In addition, there is no empirical study that investigates how the system’s descriptive

architecture could be exploited as means to assist developers when properly

prioritizing and ranking critical code anomalies (Section 2.3.1).

In this sense, we investigated how the use of blueprints, representing the

systems’ descriptive architecture, can be used as means for prioritizing and ranking

critical code anomalies according to their architecture relevance (Section 2.4). In

addition, we introduced a set of properties that should be applied in architecture

design models in order to check if they could be classified as blueprint. In addition,

the proposed properties can be used to guarantee that architecture blueprints have a

minimum quality required so that it can be used when prioritizing and ranking critical

code anomalies. Finally, we provide an example on how architectural components can

be mapped to anomalous code elements, as well as we describe what type of

architectural drift problems they can be associated.

DBD
PUC-Rio - Certificação Digital Nº 1012688/CA

