
Rodrigo Bento Rebouças

Shear sensitive particle suspension flows in slot
coating

Dissertação de Mestrado

Dissertation presented to the Programa de Pós-Graduação em
Engenharia Mecânica of the Departamento de Engenharia Mecâ-
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Abstract

Rebouças, Rodrigo Bento; Carvalho, Márcio da Silveira (Advisor).
Shear sensitive particle suspension flows in slot coating .
Rio de Janeiro, 2016. 104p. MSc. Dissertation — Departamento de
Engenharia Mecânica, Pontif́ıcia Universidade Católica do Rio de
Janeiro.

Coating is the main step in the manufacturing process of many

common and new products such as paper, adhesive and magnetic tapes,

and flexible and transparent electronics. Most of the available analyses

consider the coating liquid as Newtonian. However, in many applications

the coating liquid is a complex fluid composed by particles suspended

in a viscous medium. The effect of suspended particles in the coating

liquid on the coating flow remains unknown. Local variation of particle

concentration associated with different mechanisms of particle migration

may lead to viscosity gradients, which can change the flow pattern and final

particle structure in the coated film. Moreover, if the particles are small

enough, colloidal forces are important and hence non-Newtonian behavior

such as shear-thinning and shear-thickening may occur. In this study, the

conservation equations of mass, momentum and particle transport, are

considered in which the viscosity is assumed to vary not only with local

particle concentration but also with local shear rate (i.e. shear sensitive

liquids). With this in mind, we employ the Diffusive Flux Model (DFM) to

capture particle diffusion where irreversible particle-particle interactions are

dominant. The conservation equations together with the set of differential

equations that describes the mapping between the unknown flow domain

to a fixed reference domain are solved using the Galerkin/Finite Element

Method (GFEM). The resulting non-linear system of algebraic equations is

solved using Newton’s method coupled with a robust LU frontal solver. The

results show how the rheological behavior of colloidal suspensions affects

the particle distribution on the deposited liquid film and the process limits

in a typical slot coating flow.

Keywords
Slot coating flows; particle suspension; shear sensitive liquids; Finite

Element Method.
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Resumo

Rebouças, Rodrigo Bento; Carvalho, Márcio da Silveira. Reves-
timento de substratos com escoamentos de suspensões
pseudo-plásticas . Rio de Janeiro, 2016. 104p. Dissertação de
Mestrado — Departamento de Engenharia Mecânica, Pontif́ıcia
Universidade Católica do Rio de Janeiro.

O processo de revestimento de substratos é uma das principais etapas

na manufatura de diversos produtos, tais como eletrônicos transparentes,

fitas magnéticas e adesivos. Em sua grande maioria, os estudos dispońıveis

na literatura consideram que o ĺıquido de revestimento é um fluido New-

toniano. No entanto, em grande parte das aplicações, este fluido é mais

complexo, sendo composto por part́ıculas dispersas em uma fase cont́ınua.

Nesse sentido, efeitos reológicos relacionados à presença das part́ıculas no

escoamento ainda não são bem estabelecidos. Por exemplo, variações nos

valores locais de taxa de cisalhamento e concentração induzem à diferentes

mecanismos de migração de part́ıculas que, por sua vez, podem mudar os

padrões do escoamento e a estrutura final do filme. Além disso, se o tamanho

das part́ıculas é pequeno o suficiente de modo que forças coloidais são rele-

vantes, fenômenos locais como redução ou aumento de viscosidade podem

ocorrer dependendo das contribuições macroscópicas do escoamento. Neste

trabalho, as equações de conservação de massa, momento e transporte de

part́ıculas são consideradas juntas com um modelo de viscosidade senśıvel

a variações locais tanto de concentração quanto da taxa de cisalhamento.

Nesse sentido, o Modelo de Fluxo Difusivo é empregado com o intuito de

capturar fluxos difusivos de part́ıculas em casos nos quais interações irre-

verśıveis entre part́ıculas são relevantes. As equações de conservação são

acopladas a um sistema de equações diferencias que descreve o mapeamento

numérico entre o domı́nio f́ısico e outro de referência, e são discretizadas

usando o Método de Elementos Finitos com a formulação fraca de Galerkin.

O sistema não-linear resultante é resolvido por meio do método de Newton

associado à um robusto método LU de decomposição matricial. Os resulta-

dos mostram que o comportamento reológico de suspensões coloidais afeta a

distribuição final de part́ıculas no filme depositado e os limites de operação

de um processo t́ıpico de revestimento de substrato por extrusão.

Palavras–chave
Revestimento de substratos por extrusão; suspensões; ĺıquidos pseudo-

plásticos; Método dos Elementos Finitos.
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1
Introduction

1.1
Motivation

Coating is an industrial manufacturing process where a gas medium in contact

with a solid surface is replaced by a layer of a liquid that, afterwards, is cured

or solidified. Usually the coating layer must be uniform, thin, continuous and

smooth in order to meet technological and industrial specifications. This kind

of process can be found in the manufacturing process of many common and

old products such as paper, adhesive and magnetic tapes. Moreover, plenty

of modern devices, such as flexible and transparent electronics and displays

like Plasma, LCD1, OLED2 and so forth, are manufactured using coating

technology.

There is a wide range of coating processes available in industry, such

as roll, blade/knife, curtain, dip and slot coating. Essentially, the final film

thickness and its micro or nano structure need to be controlled and are

directly related to the quality of the coated product, whether optically,

photochemically, electronically or mechanically. In many coating applications,

the coating liquid is a complex fluid composed by particles suspended in a

viscous medium. As a consequence, in an effort to better understand and

monitor the aspects of the deposited film, a complete flow model of these

complex fluid is needed.

The rheology of hard or smooth particles suspended in a viscous fluid

is a topic in constant development in order to meet many scientific and

industrial requirements. In many biological systems (e.g. bloods), engineering

applications and industrial processing, the properties of a fluid in which small

particles or corpuscles are suspended and convected by the motion of the fluid

are of great concern. This type of complex fluid is known in the literature as

dispersion.

1Liquid Crystal Display
2Organic Light-Emitting Diode
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In general, a dispersion can be subdivided into three main categories.

Firstly, if the suspended medium is composed by solid particles, then the

dispersion is classified as a suspension. Second, one can find dispersions

classified as emulsions which are liquid droplets immersed in another liquid

and, finally, if the suspending medium is a gas, then the given denomination for

the dispersion is foam (Macosko, 1994; Larson, 1999). A special attention will

be given to the characteristics and rheology of suspensions, as this subcategory

is closely linked to the main application of this work, which is slot coating.

According to the size and distribution of particles, suspensions can be

classified in different ways. Suspensions are mono-dispersed if all the particles

have the same size (given by their radius a, for spherical particles); and poly-

dispersed if the suspension presents a distribution of sizes over the continuous

phase. Moreover, suspensions with particle size: a < 1nm are considered

homogeneous solutions; 1nm< a < 1µm are colloidal suspensions; a > 1µm

are non-colloidal suspensions (Dbouk, 2011).

The presence of the particles changes the material properties of the sus-

pension and, especially, the viscosity of the bulk fluid is affected. This distinct

behavior is closely related to inter-particle and particle-fluid interactions that

are, consequently, influenced by the volume fraction of particles, ϕ. According

to the volume concentration, a suspension is considered diluted if ϕ < 0.05,

semi-diluted if 0.15 < ϕ < 0.30 and concentrated for higher values in concen-

tration (Jeffery, 1922; Macosko, 1994; Larson, 1999).

In the scale of the particles, electrostatic (repulsion), van der Waals

(attraction) and Brownian (thermal) forces coexist and are in balance with

the hydrodynamic forces acting over them as a result of the imposed flow.

The magnitude of these colloidal and Brownian forces will depend on the size

and shape of the particles. For instance, for concentrated colloidal suspensions

where Brownian motion dominates, non-Newtonian behavior such as shear-

thinning and shear-thickening may occur. On the other hand, if the particles

are big enough (non-colloidal suspensions), Brownian motion can be neglected

and the suspension can be considered a Newtonian fluid with viscosity varying

only as a function of local particle concentration.

All of these rheological characteristics are of great importance in an effort

to define the optimum set of operating parameters that will deliver the best

final product possible in a coating process. In general, as the deposition of

the liquid layer is in course, the particles inside the suspending medium may

migrate in response to gradients in concentration and shear rate. Other types

of migration mechanisms may also occur due to sedimentation, curvature and

thermal agitation. The main purpose of this work is to study how rheological
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behavior of suspensions and particle migration can influence the quality of the

final film delivered as a result of a slot coating manufacturing operation.

1.2
Slot Coating Process

This method, as other coating processes, employs a chamber-and-slot die

configuration that drives the coating liquid towards the surface to be coated

and meters the flow. A typical slot coating apparatus and its most important

components are shown in Figure 1.1. In this method it is relevant to emphasize

that the gap between the slot die and the moving substrate is set as one of

the process parameters. Also, slot coating is a type of pre-metered process in

which the thickness of the deposited liquid layer is set a priori by the flow rate

fed into the coating die (through the feed slot) and the substrate velocity or

web speed. In fact, the film thickness is directly proportional to the flow rate,

thus, the greater the flow rate, the thicker is the final film, for a fixed web

speed.

Provided that a liquid film layer is deposited onto a solid substrate, two

distinct free menisci are formed. Downstream is the free surface of the deposited

film that extends itself in the upstream direction to a contact line where the

flowing liquid departs from the solid wall. On the upstream side, the other free

meniscus bounds the region between the moving substrate, a moving wetting

line where the liquid touches the solid surface and another contact line where

the liquid departs from the upstream die. Higgins & Scriven (1980) defined the

region between these two menisci, regardless how far apart they are, as the

coating bead.

The flow uniformity in the bead region is also strongly affected by

parameters like the die configuration (i.e. lip design and gap profile), the size

of the gap, web speed and rheological properties of the liquid. Essentially,

the longer the coating bead, the greater is the ability to overcome variations

in the the gap width (re-metering) due to, for instance, local changes in the

topography of the substrate. For viscous liquids, imposing a pressure difference

across the bead is a useful approach in order to maintain this layer of fluid as

stable as possible (Beguin, 1954). This is usually accomplished by using an

upstream vacuum chamber so that a constant pressure less than atmospheric

can be maintained and creates an adverse pressure gradient necessary in the

case of thin liquid layers. This Poiseuille flow combines with a downstream

Couette or viscous flow, due to the drag of the substrate, and delivers the

velocity profile under the upstream and downstream dies. The use of a vacuum

chamber often broadens the range of thicknesses given for a specific gap.
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Downstream
Lip

Upstream
Lip

Feed Slot

Film
Thickness

Upstream
Contact Lines

Coating bead

Coating
Gap

Downstream
Contact Line

Moving
Web

Coating Liquid

Figure 1.1: Slot coating characteristics and main components.

These operating conditions control the volume of the coating bead, the

attachment of both separation lines (upstream and downstream), the occur-

rence of recirculating flow (microvortices) inside the bead and the generation of

instabilities such as bead break-up or rivulets and down-web ribbing. The main

objective of the process is to determine and control all the operating conditions

in order to attain a stable, steady state and two-dimensional flow. Explana-

tions for this controlled stability lay on the forces acting upon the flow, in a

way that, pressure, viscous, surface tension and inertial forces must be in bal-

ance. If those forces are not in balance, coating bead will break into a 3-D (i.e.

rivulets and ribbing) or transient flow. The set of all these operating parame-

ters that delivers a uniform and steady deposited film defines the widespread

concept of coating window. Coating windows can be constructed from careful

experimentation or from theoretical modelling of the coating flow. Usually, the

experimental approach is considerably expensive. On the other hand, trustful

theoretical models can be applied to analyse the quality of a coating process

over large ranges of variables at significantly low cost. In any case, theoretical

modelling predictions should be compared with experimental data by means

of validation (Carvalho & Kheshgi, 2000).
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Figure 1.2: Pressure, viscous, surface tension and inertial forces must be in
balance in order to sustain the flow.

1.3
Bibliographic Review

As this work is concerned with shear sensitive flows of particle suspen-

sions, specifically spherical particle suspensions, this section will present a lit-

erature review on the rheology of suspensions taking into account particle

migration mechanisms in free surface flows such as those found in slot coating

operations. This section is subdivided into three main bibliographic reviews:

first, on the viscosity of non-colloidal and colloidal suspensions; second, on the

developments of particle migration mechanisms directed to free surface flows;

and, finally, on the most important studies regarding, mainly, slot coating pro-

cesses and operating limits.

1.3.1
Suspension Rheology

Investigations on suspension’s rheology date from the early 1900s when Ein-

stein (1906, 1911) first calculated the effective viscosity, ηr, of a very dilute

suspension of spherical rigid particles. Here, the effective viscosity of a suspen-

sion is defined as the ratio between the viscosities of the suspension, η, and

of the suspending medium, ηs, respectively. In this case, Einstein suggested

that adding particles into the suspending medium increases its viscosity by

thermal dissipation, so that, the viscosity is a function of the particle volume

concentration, ϕ. Likewise, Jeffery (1922) extended the latter work to the case

of particles of ellipsoidal shape. Both authors established a linear relationship

between the viscosity of the suspension and the volumetric concentration of

particles given by
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η = ηs (1 +Kϕ) (1.1)

where K is a factor that assumes the value of 2.5 for rigid spheres and is a

function of the axial ratio for ellipsoids. Commonly, for elongated particles, it

is found that K > 2.5, although for soft spherical particles the values of K

can decay below 2.5 (Vand, 1947). It is important to highlight that Einstein’s

viscosity equation is valid for very dilute suspensions with a particle volume

fraction below 0.05. It is remarkable that Eq. (1.1) does not take into account

hydrodynamic interactions between particles. For a slightly higher volume

fraction (ϕ < 0.15), in a semi-dilute regime, this inter-particle interactions

start to be relevant for the computation of the relative viscosity. Batchelor

and co-workers proposed a model in which pair interactions between particles

are regarded by a second order term in concentration, ϕ2 (Batchelor & Green,

1972; Batchelor, 1977).

A considerable amount of work has been done in order to predict the

viscosity of dilute suspensions of spherical particles. However, it is common

sense that in most industrial applications, the suspensions have a higher order

of concentration so that research addressed to this area has been also of great

importance (Barnes et al., 1989).

At phase volume greater than 0.3, out of the semi-dilute regime, multi-

body interactions between particles become important and empirical models

were first developed by Guth & Simha (1936); Vand (1947); Simha (1949).

For instance, Simha (1949) proposed an empirical equation in which the

dependance of the viscosity on the concentration can be expressed as a

power series of higher order of ϕ. Later on, Eilers (1941) and Mooney (1951)

presented a work on the viscosity of concentrated suspensions of rigid and

spherical particles. The latter author evolved an analysis that considered the

space-crowding effect of the suspended spheres on each other in such a way

that the interaction parameters were determined experimentally. This limiting

concentration of particles is known as the maximum crowding factor or packing

fraction, ϕm, and this parameter ranges from around 0.5 to 0.75 (Barnes et al.,

1989).

Thereafter, Krieger & Dougherty (1959) modified the logarithmic equa-

tion presented by Mooney (1951) in an effort to obtain an excellent fit over

their entire range of concentration reports. The resulting relation is well-known

as Krieger-Dougherty equation,

η = ηs (1− ϕ/ϕm)
−[η]ϕm , (1.2)
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where [η] is the intrinsic viscosity of the suspension. Equation (1.2) is highly

cited in the literature and has been the basis for the determination of the

viscosity of suspensions in both Newtonian plateaus at low and high shear

rate, η0 and η∞, respectively. Indeed, similar studies were performed by other

authors in which the fitting parameters, [η] and ϕm, were modified in order

to adjust the model with existing experimental data (Maron & Pierce, 1956;

Quemada, 1977; de Kruif et al., 1985; Choi & Krieger, 1986; Shewan & Stokes,

2015).

Up until this point, the analysis has been concentrated on suspensions

of the type viscosity/phase volume relationships that agree considerably well

with experimental data at very low and high values of shear rates. Nonetheless,

experimentation has revealed that a general viscosity curve, as a function

of shear rate or dimensionless shear stress, for all types of suspensions will

also present regions of shear thinning and possible shear thickening. This non-

Newtonian behavior depend not only on the magnitude of the forces acting in

the microstructure, but also on the microstructure itself (Laun, 1984; Barnes

et al., 1989; Stickel & Powell, 2005; Hinch, 2011).

A notable number of researchers have investigated the viscosity of sus-

pensions including the whole spectrum of shear rates, concentrations and par-

ticle sizes. As a consequence, empirical models have been developed in order

to capture these zones of Newtonian and non-Newtonian behavior previously

mentioned. In this manner, Cross (1970) derived an equation to evaluate the

viscosity of pseudo-plastic, i.e., shear-thinning fluids. This equation depends

on the low- and high-shear viscosities at a given concentration, on the mi-

crostructure network and on the shear rate imposed by the flow. A few years

later, Carreau (1972) proposed an equivalent model in which both cases, Cross’

and Carreau’s relations, the shear rate was used as an independent variable.

Alternatively, a similar model, known as Ellis model (Bird et al., 1987; Barnes

et al., 1989), based on an analysis done by Krieger (1972), applied a modified

Peclet number as an independent variable. Albeit these approaches seek to

predict pseudo-plastic behavior, other works have been done in an effort to

capture shear thickening, normal stress differences and self diffusion patterns

as well (Sato, 1995; Foss & Brady, 2000; Cheng et al., 2011). For instance,

shear thickening may appear at high shear rates elucidating the transition

from a non-frictional rheology, where the microstructure is well defined by

layers of continuous fluid and lanes of particles, to another determined by fric-

tional contacts (Seto et al., 2013; Wyart & Cates, 2014). As a matter of fact,

computer simulations have helped to predict suspension mechanics and rheol-

ogy. Among these simulation methods one can identify simulations applying
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Stokesian dynamics, dissipative particle dynamics and the lattice Boltzmann

method (Bossis & Brady, 1989; Sato, 1997; Hill et al., 2001).

1.3.2
Migration Mechanisms/Free Surface Flows

With regards to particle migration mechanisms, the first experimental evidence

was presented by Karnis et al. (1966). In this work the authors identified that

the velocity profiles of spheres, rods, and discs suspensions in a tube flow

assumed a blunted delineation in the center line as the concentration increased.

This deviation from the parabolic distribution of velocities was shown to result

from a migration of particles towards the center of the tube due to wall effects

firstly described by Vand (1947). Similar measurements were also performed

in a Couette flow, but still, this novel phenomenon was not fully understood.

Pointing to this end, Eckestein et al. (1977) presented a study in which a

self-diffusion coefficient,D, was determined using a concentric-cylinder Couette

apparatus to account for particle migration in suspensions of spherical and

disk-like particles. In this sense, the authors had found values of D proportional

to a2γ̇ for suspensions with low concentration (0 < ϕ < 0.2). Three years later,

Gadala-Maria & Acrivos (1980), also using a Couette device, verified that the

torque signal and hence, the viscosity of the suspension, decreased with the

time of shearing and eventually reached an equilibrium value for concentrations

higher than 0.3. Later on, Leighton & Acrivos (1987a,b) suggested that the

phenomenon observed by Gadala-Maria & Acrivos (1980) was intrinsically

related to the arrangement assumed by the particles, in response to a shearing

flow input, due to shear-induced migration out of the Couette gap and into

the fluid reservoir, which decreases particle concentration in the gap and,

therefore, the measured viscosity. Their theoretical analysis and experimental

evidence also showed that this shear-induced migration arises from gradients

in concentration and shear stress as a result of irreversible two-body collisions

between particles in concentrated suspensions. Further discussion around this

topic will be held on the following chapters of the present work.

With this in mind, Abbott et al. (1991) used Nuclear Magnetic Resonance

(NMR) to evaluate the dependence of shear-induced migration of particles

on the evolution of particle concentration and velocity profiles. In the same

path, Phillips et al. (1992) used a modified version of Leighton and Acrivos’

diffusive flux expressions to generate a constitutive equation that accounts for

flow-induced particle migration. Therefore, two adjustable constants arose in

this relation, one associated to a gradients in shear rate, kc, and the other

to a gradients in viscosity, kη. These constants are O(1) and are evaluated by
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velocity and concentration profiles measured experimentally by using NMR in a

Couette device (Majors et al., 1989). This equation is known in the literature as

the Diffusive Flux Model or DFM. Similar studies using this model to examine

a Couette flow have been performed with finite volume and finite element

methods in order to capture shear-induced migration in viscous flows (Zhang

& Acrivos, 1994; Fang & Phan-Thien, 1995). Krishnan et al. (1995) apud Subia

et al. (1998) proposed adaptations to the DFM which incorporated effects of

curvature in accordance to experimental observations made by Chow et al.

(1994) in parallel plate flows using NMR. Subia et al. (1998), in turn, integrated

the model of Phillips et al. (1992) into a Finite Element Method (FEM) context

and verified that the model was consistent in capturing essential features of

different flow problems, comparing their numerical results with NMR imaging

experiments. In the same year, Graham et al. (1998) used suspension rheometry

to observe that an additional source of particle migration, rather then surface

roughness, may lead inter-particle interactions. In this sense, they proposed

that the phenomenological parameters of the DFM should also vary with local

particle concentration. Later on, Tetlow et al. (1998) used experimental data

to investigate the latter approach and showed that the ratio kc/kη can be

modeled as a linear function of the local particle concentration. With this in

mind, Kim et al. (2008) gathered all those variations of the DFM and studied

the influence of considering curvature-induced migration and volume fraction

dependent parameters. More recently, Rebouças et al. (2016) analyzed the

fully-developed flow of particle suspensions in a tube flows using the original

DFM to evaluate the effect of both particle migration and shear-dependent

viscosity.

Another approach in an effort to study particle migration, acknowledged

as the Suspension Balance Model (SBM) (Jenkins & McTigue, 1990; Nott &

Brady, 1994; Morris & Boulay, 1999), was presented to explain that particle

migration is due to the divergence of the normal components of the particle

phase stress. More recently, Snook et al. (2016) have employed this method to

study shear-induced migration in oscillatory pipe flow comparing their results

with realistic rheological laws. The main difference between these two models

is that the DFM brings a more phenomenological analysis and gives a better

insight on the fundamental physics of the problem. In this work, the Diffusive

Flux Model was chosen because of its relative simplicity, good accuracy and

lower computational cost.

Since the seminal report released by Gadala-Maria & Acrivos (1980);

Leighton & Acrivos (1987a,b); Phillips et al. (1992), there have been a large

body of studies on migration mechanisms of particles in different types of
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geometries, however, focusing mostly on flows bounded by solid walls. Based

on this, it is believed that the first experimental attempt to describe migration

of particles in an unbounded, i.e., free-surface flow has been done by Husband

et al. (1994). In this research the authors analyzed the shear-induced particle

migration in a bimodal concentrated suspension flowing in a rectangular

channel held in an inclined base. Afterwards, Tirumkudulu et al. (1999, 2000)

observed experimentally that the particles tend to accumulate in bands along

the axis of a partially filled rotating horizontal cylinder. Timberlake & Morris

(2002), in turn, dealt with the dynamics of this band formation, but now,

using a partially filled Couette apparatus and imaging analysis techniques.

Further analysis on shear-induced migration aiming free-surface flows were

also exploited by Loimer et al. (2002); Singh et al. (2006); Min & Kim (2010).

As matter of fact, Min & Kim (2010) verified that even though the downstream

velocity profile for a slot coating application is fully developed and flat, the

particle concentration never reaches a uniform distribution. Furthermore, they

also pointed out to the fact that scarcely studies have been done so far in

order to precisely measure or estimate the particle concentration profile near

the free surface boundary. Recent advances in this field have been made by

Silva (2013) and Araújo (2014) where particle concentration profiles were

computed considering the suspension as a Newtonian fluid with a concentration

dependent viscosity. In addition to that, Siqueira (2016) enlarged the latter

works to investigate slot coating flows of suspensions of elliptical particles.

The main results aim to investigate the effects of typical operating parameters

on particle orientation and distribution.

As the scope of this work is related to the shear-sensitivity of particle

suspension flows in a slot coating precess, it will be presented in the next section

a brief review on this industrial application. Indeed, a typical slot coating flow

combines aspects of the rheology of suspension, such as local variations in

viscosity, linked to mechanisms of particle migration in free-surface flows due

to gradients in concentration and shear rate.

1.3.3
Slot Coating

One of the first attempts to evaluate the film thickness of a coating process

can be attributed to Landau & Levich (1942). In this paper, the authors

tackled the problem of depositing a thin layer of liquid upon a surface of a

solid that is submerged and pulled out of a coating liquid vessel, i.e., dip

coater. The main idea was to determine the thickness of the dragged liquid

layer with respect to the speed of the fluid and its physical properties such
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as its viscosity, surface tension and density. The model treated the flow in

the thin film as one-dimensional and as a function of small Capillary and

Reynolds numbers, Ca and Re, respectively. The Capillary number expresses

a balance between viscous and interfacial forces and is defined by Ca = ηV/σ,

where V is the substrate’s velocity, η is the viscosity of the coating liquid

and σ is the interfacial tension. On the other hand, the Reynolds number

defines a ratio between inertial and viscous contributions and is expressed by

Re = ρV H/η, where ρ is the liquid density and H is a characteristic length of

the flow. In slot coating process, the film thickness is prescribed by the flow

rate fed into the coating die and the web speed. In this case, the flow rate is

independent of liquid properties and slot coating is considered a pre-metered

method. Later on, Ruschak (1976) used a singular perturbation method in

coating flows dominated by surface tension to extend the work performed by

Landau & Levich (1942) and demonstrated that the pressure drop across the

downstream region is a function of 1.34Ca2/3σ/t, where t is the final film

thickness. The former author assumed that the flow rate was low enough so

that viscous effects were negligible within the coating bead and hence capillary

pressure alone dictates the process operability limits.

Still in this track, Higgins & Scriven (1980) defined a region of flowing

liquid between the gas-liquid surfaces, regardless how far apart they are, as

the coating bead in an effort to explain the existence of the so called coating

window. In this manner, the authors approximated the flow in this region

as a sum of lubrication flow regimes: one, upstream of the feed slot where

a Poiseuille flow exactly counters a Couette flow in order to guarantee the

stability of the upstream meniscus; other, downstream of the feed slot where

there is a Poiseuille contribution that either adds or subtracts from the Couette

induced flow so that the net flow is equal to the prescribed value into the

coating die. From the results of the viscocapillary model, the authors concluded

that, in many applications, the viscous effects due to viscous drag of the moving

substrate are also important in settling the bounds of a coating window as well

as to control of the vacuum pressure and web speed. Henceforth, additional

theoretical and experimental efforts were made in order to determine the limits

of operability and flow stability (Sartor, 1990; Gates, 1996).

Deryagin & Levi (1964) were the first to point out a more important

limit, in terms of industrial applications, which is known in the literature as

low-flow limit. This concept is related to the maximum web speed possible

for a fixed film thickness, or the minimum film thickness at a given substrate

velocity, at which the coating bead is stable. For instance, as the gap width

is fixed in a slot coating operation, the flow rate under the downstream die,
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due to the viscous drag of the substrate, is constant. Therefore, if the film

thickness and, consequently, the flow rate in the feed slot decreases then the

adverse contribution from the Poiseuille flow must increase in order to meet

this reduction in flow rate under the light of mass conservation principles.

The minimum flow rate possible (and hence the minimum film thickness) is

determined by the maximum pressure gradient attainable at the downstream

meniscus. Further studies in this area were performed by Lee & Liu (1992) and

Carvalho & Kheshgi (2000). The latter authors showed that low-flow limit in

cases of high Capillary and Reynolds numbers varies significantly from those

cases of lower ones. They found that at large Capillary and Reynolds numbers,

the coating window is broadened and also the range of applicability of the

coating operation. Still in this path, Romero et al. (2004) analysed the low-

flow limit in the slot coating flow of a non-Newtonian liquid both by theoretical

and experimental approaches. A few years later, Lin et al. (2010) applied a

flow visualization technique to study the positions and shapes of the liquid-gas

interfaces just before and after coating failure and compared their experimental

results with theoretical predictions.

Recently, Maza & Carvalho (2015) extended the work done by Romero

& Carvalho (2008) to determine the amplitude of oscillation of each coated

layer in a two-layer slot coating process. The results showed that variations of

each layer can be minimized by changing geometrical and physical parameters

of the flow. In terms of particle migration mechanisms, as stated earlier in

this work, Min & Kim (2010), Silva (2013), Araújo (2014) and Siqueira (2016)

presented novel results indicating that the particle concentration profile in the

final coated film is not uniform.

1.4
Dissertation goals

Most available studies on slot coating consider the coating liquid as a

Newtonian fluid. In the case of particle suspensions, the available models

are restricted to non-colloidal suspensions, at which the local viscosity is a

function of the local particle concentration and independent of the shear rate.

However, depending on particle size, inter-particle forces may balance with

macroscopic forces so that non-Newtonian behavior may appear. In this sense,

the main goal of this work is to develop a mathematical model to describe slot

coating flows of spherical particle suspensions that takes into account particle

transport mechanisms and also shear-sensitive behavior. In fact, the main

focus is to apply this model to study the effect of liquid rheological properties
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on processes limits and particle distribution in the coated film. With this in

mind, we employ the Diffusive Flux Model (DFM) with a few adaptations to

capture particle diffusion and the viscosity model of Cross (1970) to express the

shear-rate dependency. The final set of coupled differential equations is solved

numerically by using Galerkin/Finite Element Method (GFEM). The results

show the rheological behavior of shear-sensitive particle suspension on particle

distribution and on operating limits of a typical slot coating application.

1.5
Scope of the work

This dissertation is organized as follows. The mathematical formulation

of the problem is presented in Chapter § 2. Chapter § 3 describes the numerical

methodology and issues related to this work. In addition to that, Chapter § 4
shows the main results and discussions of this dissertation. To sum up, Chapter

§ 5 presents a brief conclusion and sheds light to a few important future works.
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2
Mathematical formulation

2.1
Equations of Motion

The physical laws that govern the motion and transfer of momentum between

particles immersed in a liquid medium are Newton’s second law of motion

and the mass conservation principle. The application of those laws in an

infinitesimal control volume of a given fluid gives birth to the mass-conservation

and Navier-Stokes equations, respectively. For incompressible fluids, they are:

∇ · u = 0 , (2.1)

ρ
Du

Dt
= ∇ · σ + ρ g , (2.2)

where ρ is density of the fluid, u is the Eulerian velocity vector, σ is the stress

tensor (Cauchy stress tensor) and g represents a body force per unit of mass

due to the action of the earth’s gravitational field. In Eqs. (2.1) and (2.2) the

notation D/Dt = ∂/∂t + u · ∇ is said to give a time derivative following the

motion of the fluid, or a material derivative. This operator is meaningful only

when applied to a field that varies as a function of time t and position x, such

as, the velocity field (Batchelor, 1967).

Considering the following characteristic scales of length, velocity and

time: H, V and H/V and, also, assuming that the stress tensor scales with

η V/H, Eq. (2.12) can be written in a dimensionless form as

Re

(
∂ũ

∂t̃
+ ũ · ∇̃ũ

)
= ∇̃ · σ̃ + St g̃. (2.3)

where
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x̃ =
x

H
, t̃ =

t

H/V
, ∇̃ = H∇, ũ =

u

V
, σ̃ =

σ

ηV/H
, g̃ =

g

∥g∥
(2.4)

and St = ρgH2/ηV is the Stokes number characterizing the ratio between

gravity and viscous forces. As stated before, Re is the Reynolds number which

represents a ratio between inertial and viscous contributions. The dimensionless

form of the mass conservation equation is ∇̃ · ũ = 0.

In a typical slot coating flow of particle suspensions, a macroscopic

analyses of the flow can be made in order to evaluate the contribution of

each term in Eq. (2.3). In this regard, considering a characteristic length

and velocity proportional to the coating gap (H ≈ 100µm) and substrate

velocity (V ≈ 0.1m/s), respectively; a suspension viscosity η ≈ 10−1 Pa·s
and ρ ≈ 103 kg/m3, the Reynolds and Stokes numbers are O(10−1) which are

significantly low so that inertial and gravity effects can be neglected (Carvalho

& Kheshgi, 2000). Also, assuming a particle radius a ≈ 1µm, the Knudsen

number, Kn = a/H, is O(10−2) and low enough so that the continuum

hypothesis is guaranteed (Batchelor, 1967). In addition to that, coating flows

are laminar and, ideally, steady and two-dimensional (Carvalho, 1996). As a

result, the flow in a typical slot coating application is governed by the Stokes

equations

∇ · u = 0 (2.5)

and

∇ · σ = 0. (2.6)

Newton’s second law of motion defines that the rate of change in linear

momentum of a given body equals the sum of all external forces acting upon

it. Among them, one can highlight body forces per units of mass and surface

forces per units of volume. In Eq. (2.6) the term related to surface forces is

the divergence of the stress tensor, ∇ · σ, and this term reveals the behavior

of a fluid element which is in contact to the surrounding medium. The stress

tensor σ is a second order tensor which can be understood as a sum of an

isotropic or spherical part and a non-isotropic or deviatoric part (Batchelor,

1967). Moreover, an isotropic tensor is one whose components are invariant

in relation to rotation. For instance, the identity tensor I, by definition, is a

second order isotropic tensor that serves as a basis for the calculation of other

isotropic tensors of the same order (Aris, 1962). In this sense, the stress tensor

can be expressed as
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σ = −pI +Σd, (2.7)

in which p = −1/3(tr σ) is a mechanical pressure and Σd is the deviatoric

or non-isotropic part of the stress tensor which is intrinsically related to the

existence of motion in the fluid. From a phenomenological point of view, the

departure from a spherical shape (i.e. equilibrium) of an element of fluid

represents a transport of molecular momentum or internal friction that is

accounted by the deviatoric stress tensor neglecting elastic effects. In this case,

for ideal or stationary fluids, the stress tensor σ reduces to the spherical part

of Eq. (2.7), i.e, σ = −pI.
For an incompressible and inelastic material, the deviatoric stress is a

function of the rate-of-strain tensor given by

γ̇ = ∇u+∇uT (2.8)

so that

Σd = Σd(γ̇). (2.9)

As this work is about shear sensitive particle suspensions, we assume that

the constitutive equation incorporates the concept of a shear-rate-dependent

viscosity. Also, it should be sensitive to local particle concentration, ϕ, so that

η = η(ϕ, γ̇), where γ̇ = |γ̇|/
√
2. More details about the viscosity model used

in this work will be presented in the following subsection. With this in mind,

and treating the suspension as a generalized Newtonian fluid, the deviatoric

stress tensor can be modeled as

Σd = η(ϕ, γ̇) γ̇. (2.10)

In Eq. (2.10) γ̇ = 2E where E is the rate-of-deformation tensor that

corresponds to the symmetric part o the velocity gradient tensor. In fact, a

given second order tensor A may be decomposed as a sum of a symmetric

part and an antisymmetric part, respectively, using the following identity:

A =
1

2
(A+AT ) +

1

2
(A−AT ) (Aris, 1962).

Thereupon, applying this result to Eqs. (2.7) and (2.2), one can obtain

the most common form of the stress tensor and momentum equations of a

generalized Newtonian fluid in a complete form as follows
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σ = −pI + 2 η(γ̇, ϕ)E (2.11)

and

ρ

(
∂u

∂t
+ u · ∇u

)
= ∇ · [−p I + 2 η(γ̇, ϕ)E] + ρg. (2.12)

2.1.1
Viscosity Model

In the flow of suspensions, three main forces coexist in different degrees

according to physical parameters of the flow. Firstly, there are colloidal forces

that act attracting or repealing particles interacting with other particles. In

this sense, repulsion may occur due to the presence of surfactants coated on the

surface of the particle or as a result of electrostatic charges. On the other hand,

attraction might be related to van der Waals forces between particles or due

to opposing charges on different particles. Secondly, for particle sizes a ≤ 1µm

the ever-present Brownian random force is of significant importance (Barnes

et al., 1989). For particle sizes above this threshold, random thermal agitation

of the fluid molecules is not strong enough to overcome inertial effects so that

the particle Peclet, Pea, number is very high. It is important to highlight that

the Peclet number on the scale of the particle is determined by Pea = a2 γ̇c/D
and expresses a ratio between advective and Brownian diffusive contributions.

In this latter relation, D = kBT/6πηa is the Stokes-Einstein coefficient where

kB ≈ 1.380×10−23 J·K−1 is the Boltzmann constant, T ≈ 300 K is the absolute

temperature, a is the particle radius and γ̇c is a typical local shear rate of the

flow. Finally, the last important force acting on the scale of the particles is the

viscous force which is related to hydrodynamic or particle-fluid interactions.

In this work, we consider concentrated suspensions of spherical mono-

dispersed colloidal particles with diameters a ≈ 1µm so that we are in the

limit where Brownian restoring forces are still important. As a result, when

these particles are introduced in a fluid at rest they tend to randomly assume

a state of thermodynamic equilibrium also known as rest state (Larson, 1999;

Macosko, 1994). In a common slot coating flow there are regions of low local

shear rate, such as at the center of the feed slot region, and regions of high

local shear rate near solid walls. Under those circumstances, at regions of low

shear rates the particles tend move around each other in order to make the

overall flow to happen and hence the viscosity is high. As the local Peclet

number in those regions is very low, Brownian motion dominates the forces
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imposed by shear. In this sense, the distribution of particles remains almost the

same and, consequently, the viscosity is approximately constant defining the

so-called low shear-rate Newtonian plateau. On the other hand, at regions of

slightly higher rates of shear, the random and cohesive particle structure tends

to orientate in the direction of the flow in such a way that Brownian forces

cannot restore the previous random state. In this case, the particles experience

a lower resistance to move past each other and, therefore, the viscosity is also

lower. In fact, in regions where the shear rate is even greater, this structure is

so effectively oriented that it is possible to detect layers of particles bounded by

layers of the continuous phase medium (Chen et al., 1994). At this stage, the

viscosity assumes its minimum value (i.e., the suspension shear-thins) and this

well defined structure gives birth to the second well known Newtonian plateau

at high rates of shear. Experiments have shown that at even higher shear

rates the suspension may experience shear-thickening due to a shear-induced

breakup of this layered structure (Hoffman, 1972). Also, shear-thickening may

appear due to a transition from a non-frictional rheology, where particles are

well separated by lubrication layers, to another one dominated by frictional

contacts (Seto et al., 2013; Wyart & Cates, 2014). All of these phenomena put

together show or predict the general viscosity curve of a typical shear sensitive

suspension (Hinch, 2011; Laun, 1984).

In the light of what have been discussed so far, shear sensitive suspensions

of hard spheres have a shear rate dependant viscosity which is also dependent

on local particle concentration. In this case, we consider the viscosity model

proposed by Cross (1970) defined as

η(γ̇, ϕ) = η∞(ϕ) +
η0(ϕ)− η∞(ϕ)

1 + b Pea
. (2.13)

where b and n are rheological fitting parameters and η0(ϕ) and η∞(ϕ) refer

to the asymptotic values of viscosity at very low and very high shear rates,

respectively. Still in Eq. (2.13), Pea is the particle Peclet number calculated

locally as Pea = ηsγ̇a
3/kBT where ηs is the solvent viscosity. Note that

the latter two viscosities depend only on local particle concentration and are

modeled in accordance to the model presented by Krieger & Dougherty (1959)

so that

η0(ϕ) = η0

(
1− ϕ

ϕm−0

)−α0

, (2.14)

and
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η∞(ϕ) = η0

(
1− ϕ

ϕm−∞

)−α∞

. (2.15)

In Eqs. (2.14) and (2.15) α0 and α∞ are material constants and ϕm−0

and ϕm−∞ are the maximum packing fractions or crowding factors for both low

and high shear rate Newtonian plateaus. At particle concentrations above this

limiting value, the particles start to jam and the viscosity diverges. The values

of the rheological parameters in equations (2.13), (2.14) and (2.15) were fitted

according to experimental observations made by Choi & Krieger (1986). In this

regard, we assume that b = 5.7, ϕm−0 = 0.579, ϕm−∞ = 0.631, α0 = 1.85 and

α∞ = 1.67. In addition to that, Cross’ model is able to capture a well defined

shear-thinning pattern between these two Newtonian plateaus as depicted in

Fig. 2.1. It is important to note that this model directly incorporates the effect

of particle size. If the particles are very small or very large such that the

Pea << 10−2 or Pea >> 102, the viscosity is not a function of the local shear

rate and only varies with the local concentration.

Pea = ηs γ a3/kBT

η r

10-3 10-2 10-1 100 101 102 103

2.8

3

3.2

3.4

3.6

3.8

4
_

η0(φ)

_
η∞(φ)

_
φ= 0.3

a = 1 µm

.

Figure 2.1: Cross’ non-Newtonian viscosity model for a concentrated suspen-
sion at ϕ̄ = 0.30 and particle size a = 1µm. Note that ηr = η/ηs is a dimen-
sionless viscosity.
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2.1.2
Boundary Conditions: Momentum Equation

Boundary conditions for the momentum equation can specify either velocity

or traction, or a relationship between both. In the case of coating flows, the

most common boundary conditions are sketched in Fig. 2.2 which are:

1. No-Slip or no-penetration: At solid/liquid interfaces the velocity of the

liquid is the same as the velocity of the surface. In this sense,

u = uw (2.16)

where uw is the velocity of the wall or the solid boundary.

2. Local slip or Navier slip: According to the works presented by Huh &

Scriven (1971) and Silliman (1979), the movement over a solid/liquid/gas

interface violates the adherence of the no-slip condition as this latter

hypothesis leads to infinite high stresses (i.e. velocity gradients) in the

vicinity of the dynamic contact line. In order to overcome this stress

singularity, the no-slip condition can be replaced by the Navier slip

condition so that the velocity discontinuity is proportional to the shear

stress at the wall. With this in mind, this boundary condition can be

written as follows

tw · (u− uw) = β tw · (nw · σ) (2.17)

where β is the slip coefficient, tw and nw are the unit tangential and

normal vectors, respectively. This relation is valid for low Reynolds

numbers situations, typical of coating flows, and, note that, in Eq. (2.17),

if β = 0 the no-slip condition is recovered. The slip coefficient is an

empirical parameter since the flow near a dynamic contact line is still

not fully understood.

3. Contact line/Contact angle: In order to apply this boundary condition,

either the position of the contact line is specified or the inclination of

the free surface at this region is prescribed by an apparent contact angle

given by

nw · nfs = cos(θα) (2.18)
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in which nw and nfs are the unit outward normal vectors to the solid

wall and free surface, respectively, and recall that this angle is applied

at the contact line. Also, the magnitude of the contact angle should

be determined experimentally and this parameter can be related to a

dynamic or static contact line depending on the application.

4. Inflow and Outflow : In typical slot coating operations the region of

study is bounded by inflow and outflow planes. The former, at the die

feeding slot and, the latter, at the end of the final coated film located

downstream. At the inflow plane, the suspension is assumed to have a

uniform concentration profile, i.e. with a constant viscosity η = η(ϕ̄), and

the flow is considered fully developed so that a parabolic velocity profile

is specified:

n · u = −6Q

H

[( x
H

)
−
( x
H

)2
]
, (2.19)

where n is the unit vector normal to the boundary surface, Q is the flow

rate fed into the coating die which defines the thickness t of the liquid

layer deposited onto the substrate, i.e., t = Q/V . On the other hand, at

the outflow plane, the flow is assumed to be fully developed and hence

n · ∇u = 0.

5. Force Balance at liquid/gas interfaces : Considering the gas is inviscid

and free of inertial effects, the shear stress at the liquid/gas interface

is zero and hence the normal liquid stress must be a balance by two

contributions: the gas pressure and capillary pressure at the interface.

Therefore,

n · σ =
1

Ca

dt

ds
− nPamb, (2.20)

where Ca is the Capillary number, s is a given distance over the free

surface, t and n are the unit tangent and normal vectors to the free

surface, respectively.

6. Kinetic Condition: This boundary condition imposes that there is no

flow through a liquid/gas interface in such a way that the free surface

can be treated as a streamline for a steady flow. In this region,
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n · u = 0 . (2.21)

This condition implicitly defines the configuration of the free boundaries

of the flow together with relation (2.20).

1) No-Slip 2/3) Dynamic contact line/angle

4) Inflow and outflow 5) Capillary Pressure

6) Kinematic

n

u

gas

liquid

free surface

n · u = 0

u u=
w

u
w

n · σ

Pamb n

gas

liquid
σ σ

u
w

Inflow Outflow

n ·   u = 0

Δ

Free surface

θ
α

n
w

n
fs

Wall

gas liquid

concavity

Figure 2.2: Boundary conditions for the conservation of momentum equations.

2.2
Particle Migration Equation

In the field of continuum mechanics, many laws state that the total amount of a

certain quantity in a medium is either invariant or varies according to external
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influences such as molecular transport through a control volume surface. In

this manner, consider an arbitrary volume of fluid, υ, bounded by a surface S

and that dS is the area vector normal to a differential area dS. Now, consider

an arbitrary extensive quantity of the fluid per unit of volume given by θ(x, t).

Also, let N θ be the total diffusive flux of this quantity, uθ the transport flux of

θ and ζ the effective density of source strength. In this manner, the conservation

law for this extensive quantity is as follows (Batchelor, 1967),

∂θ

∂t
+∇ · (N θ + uθ) = ζ. (2.22)

In the case that θ is equal to the particle volume concentration ϕ and assuming

that there is no generation or loss of particles in the domain, Eq. (2.22) reduces

to

∂ϕ

∂t
+∇ · (Nϕ + uϕ) = 0. (2.23)

which is the typical equation that describes the transport of particles in a

general flow.

In order to better understand the net migration of particles, it is impor-

tant to briefly explain how they interact with each other. In cases of dilute

regimes, due to the linearity of the equations of motion in the scale of the

particles, kinematic reversible interactions might occur which means that the

particles tend to recover the same trajectory if the flow is reversed. However,

for concentrated suspensions, irreversible interactions may happen in situations

where three-body collisions come into consideration leading to a shear-induced

self-diffusion (Eckestein et al., 1977; Cunha & Hinch, 1996). Leighton & Acrivos

(1987a) have shown experimentally that the difference between theoretical and

experimental predictions for the latter diffusion is approximately of one order-

of-magnitude. In this regard, they proposed that this additional flux is due to

irreversible particle-particle interactions that drives the particles from regions

of high to low local concentrations, against gradients in concentration, and

from regions of high to low collision frequencies, which scales with γ̇ϕ, against

gradients in local shear rate.

With regards to particle migration modelling, we follow the work pre-

sented by Leighton & Acrivos (1987a,b) and Phillips et al. (1992) in which

the total flux of particles Nϕ in Eq. (2.23) is solely accounted for irreversible

particle-particle interactions. This global flux can be understood as a contribu-
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tion of different factors such as: Brownian diffusion, effect of spatially varying

interaction frequency, effect of spatially varying viscosity, migration due to the

curvature of the streamlines, concentration-dependent empirical parameters

and also sedimentation. In the present work we use the hypothesis of neutrally

buoyant particles, so that sedimentation is not important. In this sense, par-

ticle flux is modeled by an extension of the Diffusive Flux Model (DFM) and

more details with respect to different migration mechanisms are presented in

the following subsections.

2.2.1
Effect of spatially varying interaction frequency

A general shear flow can be understood as a combination of shearing surfaces

sliding in relative motion to each other. Then, embedded in these shearing

surfaces are particles that interact with one another in such a way that

irreversible two-body collisions dominates. In fact, as this particle-particle

interactions are irreversible, the particles tend to migrate from a region of

higher frequency of collisions to regions of lower frequency of collisions in the

direction normal to their plane of shear (Fig. 2.3). According to the works

of Leighton & Acrivos (1987a,b) and Phillips et al. (1992), in a concentrated

suspension the collision frequency experienced by a test particle scales with γ̇ϕ

in a typical shear flow. Moreover, the change in those collisions over a distance

O(a) is proportional to a∇(γ̇ϕ) and it is assumed that the particle migration

velocity is linearly proportional to this variation in collision frequency. Also,

considering that an irreversible interaction generates a displacement O(a), the

flux of particles due to spatially varying interaction collision frequency is given

by

N c = −kca2ϕ∇ (γ̇ϕ) , (2.24)

where kc is a diffusive constantO(1) to be determined experimentally. Equation

(2.24), can be rewritten as follows

N c = −kca2
(
ϕ2∇γ̇ + ϕγ̇∇ϕ

)
, (2.25)

so that the two terms on the right-hand side give rise to two opposing mech-

anisms discussed previously. To illustrate, assume a concentrated suspension

with uniform particle concentration. Now, if a varying shear rate is imposed on
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this suspension, a flux of particles will happen due the term ∼ ∇γ̇ from high

to low shear rate regions. At the same time, the particle concentration pro-

file will change, giving birth to a second opposing flux from regions of higher

concentrations to lower concentrations due to the term ∼ ∇ϕ.

γ = constant

Flow

Flow

γ

γ∆

(a)

(b)

Figure 2.3: Irreversible two-body collisions: (a) constant shear rate and (b)
spatially varying shear rate

2.2.2
Effect of spatially varying viscosity

Still under the light of the works developed by Leighton & Acrivos (1987a,b)

and Phillips et al. (1992), another important migration flux is highlighted,

which is related to spatially varying viscosity. By the way, as we are dealing

with shear sensitive suspensions, i.e. η = η(γ̇, ϕ), this additional flux takes into

account gradients in concentration and also shear rate. Furthermore, a gradient

in viscosity can be understood as a resistance to the motion experienced by

a test particle undergoing a two-body irreversible collision. Consequently, it

tends to migrate towards regions in which the resistance to motion is lower

so that this flux of particles is shaped from regions of high to low viscosity as

sketched in Fig. 2.4.

In order to better understand this phenomenon, a scaling analysis is

available in which, during each irreversible interaction, the magnitude of the

displacement O(a) experienced by a given test particle scales with (a2/η)∇η.
In this manner, since the rate of interactions is γ̇ϕ, the drift velocity of each

test particle is proportional to γ̇ϕ(a2/η)∇η which leads to an expression for

the overall effective diffusion when multiplied by ϕ, so that,
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N η = −kηγ̇ϕ2a
2

η
∇η, (2.26)

where kη is a diffusive constant of O(1) to be determined by experiments.

Again, Eq. (2.26) can be rearranged as follows

N η = −kηγ̇ϕ2a
2

η

(
dη

dϕ
∇ϕ+

dη

dγ̇
∇γ̇

)
(2.27)

owing to the fact the viscosity is a function of both local particle concentration

and shear rate.

(a)

(b)

η = constant

Flow

η

Flowη∆

Figure 2.4: Irreversible two-body collision: (a) constant viscosity and (b)
spatially varying viscosity.

2.2.3
Curvature-induced migration

Chow et al. (1994) employed NMR1 imaging to study particle migration in

Couette and parallel plate viscometers. In Couette flow, the authors confirmed

the observations made by Leighton & Acrivos (1987a,b) that the particles

tend to migrate from regions of high to low shear rates due to shear-induced

migration. However, in torsional flow (i.e., parallel plates viscometer) they

verified no change in the particle concentration profile in the radial direction.

In the latter geometry, the shear rate monotonically increases from the center

to the outer part of the parallel plate device so that one should expect to see an

1Nuclear Magnetic Ressonance
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inward particle migration. In an effort to explain this behavior, Krishnan et al.

(1995) suggested that there should be another migration mechanism in the

outward direction to account for this experimental observation and the authors

defined this extra diffusion as a curvature-induced migration. Additionally,

the curvature decreases from the inner to the outer part of the parallel plate

viscometer which induces particle migration in the same direction. As a result,

this curvature-induced migration is then expected to balance with the inward

shear-induced migration and is given by

Nκ = kκκa
2γ̇ϕ2nST (2.28)

in which kκ is a empirical parameter, κ is the local curvature of the streamline

and nST is the unit radially outward vector normal to the streamline. In Eq.

(2.28) it is assumed that the particles migrate in the same direction of the unit

vector normal to a streamline with curvature κ in a frame-invariant formulation

as depicted in Fig. 2.5. The expressions for nST and κ in a steady-state regime

are as follows

nST =
[(u · ∇u) · ∇u]u− |u|2u · ∇u

|u| | (u · ∇u)× u|
(2.29)

and

κ =
| (u · ∇u)× u|

|u|3
. (2.30)

In this work we assume that kκ is equal to kc since these two mechanisms

should be in balance with each other (Krishnan et al., 1995; Kim et al., 2008).

2.2.4
Volume fraction dependency of phenomenological parameters

The volume fraction dependency of the phenomenological parameters kc and

kη was first presented in experimental and theoretical investigations made by

Tetlow et al. (1998) and Graham et al. (1998). The latter authors proposed

that particle roughness might not be the principal source of flux so that

an alternative cause of irreversibility shall occur. With this in mind and

considering that the original DFM proposed by Phillips et al. (1992) takes

into account irreversible two-body collisions, they verified that the empirical

diffusive parameters should be concentration-dependent. In this dissertation,
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n
ST

Nκ

Streamline

Figure 2.5: Direction of the migration due to the curvature of the streamline.

we present an analysis of this approach and follow the predictions shown

by Kim et al. (2008) which developed a set of volume fraction dependent

parameters given by: kc = 1.5ϕkPc , kη = kPη and kκ = 0.75kPc , where k
P
c = 0.41

and kPη = 0.62 are the empirical parameters determined by the seminal work

of Phillips et al. (1992).

2.2.5
Brownian Diffusion

The botanist Robert Brown, in 1827, was the first to observe that colloidal

particles suspended in a viscous fluid are subjected to an isotropic random

movement caused by constant collisions of the molecules of the fluid upon them

also known as Brownian movement in his honor (Brown, 1827). In a pioneering

work, Einstein (1906) apud Gontijo (2013) investigated this phenomena and

determined a analytical relation for the mean squared displacement of a test

particle undergoing Brownian motion as

< x2 >= 2Dt, (2.31)

in which <> denotes an average over a set of numbers, x2 represents the

squared displacement, D is a Brownian diffusion coefficient and t is the

time over which the observation was held. In general, anisotropic diffusion

coefficients can be expressed as a second order tensor D, however, due to the

isotropic nature of the Brownian movement, this tensorial quantity is reshaped

as D = DI. In addition to that, the magnitude of D is proportional to the

molecular agitation of the fluid (i.e., temperature) and to the level o mobility

of a test particle so that
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D = kBTM, (2.32)

where M is a mobility tensor of a solid particle given by

M =
I

6πηa
. (2.33)

Note that the diffusion coefficient represented by Eqs. (2.32) and (2.33) is the

well-known Stokes-Einstein diffusion coefficient so that D = kBT/6πηa. Under

those circumstances, Brownian diffusion of particles can be shaped as

N b = −D∇ϕ , (2.34)

and, in case of colloidal suspensions, Brownian forces tend to restore the

microstructure to a previously random state, as explained before in this

Chapter.

In order to evaluate the importance of this type of diffusion, a comparison

with the others mechanisms of migration must be made. Also, to clarify the

following analysis the transport equation of particles will the presented in its

dimensionless form. In this sense, rearranging Eq. (2.23), the Diffusive Flux

Model reduces to

∂ϕ

∂t
+ u · ∇ϕ+ ϕ∇ · u = −∇ ·Nϕ, (2.35)

where for a stationary regime of an incompressible fluid, ∇ · u = 0 as

Dρ/Dt = 0, so that,

u · ∇ϕ+∇ ·Nϕ = 0. (2.36)

From a simple scaling analysis of all migration mechanisms studied so far, one

shall demonstrate that Nϕ have a scale of velocity. With this in mind, consider

the following characteristic relations for the terms in Eq. (2.36)

∇̃ = H∇, ũ =
u

V
, Ñϕ =

Nϕ

aγ̇c
(2.37)

where aγ̇c is a typical velocity on the scale of the particles and γ̇c = V/H is a
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characteristic shear rate of a typical slot coating flow. In this case, recall that

a is the particle size, V is the substrate velocity and H is the gap between

the feed slot and the moving substrate. After a few algebraic steps, one shall

obtain the dimensionless form of Eq. (2.36) as follows

ũ · ∇̃ϕ+
H

a

1

Pe
∇̃ · Ñϕ = 0, (2.38)

in which Pe = (V H)/a2γ̇c is the Peclet number that denotes a balance between

advection and diffusive contributions. In an alternative form, since γ̇c = V/H,

the Peclet number can be rewritten as Pe = (H/a)2 so that Eq.(2.38) reduces

to

ũ · ∇̃ϕ+
a

H
∇̃ · Ñϕ = 0. (2.39)

Note from Eq. (2.39) that for a fixed coating gap, the overall diffusion of

particles depends on their size. In order words, if the particles are too small,

shear- and curvature- induced particle migration which scale with a2 shall be

very weak and, eventually, Brownian diffusion may dominate since D ∼ 1/a.

On the other hand, for greater particle sizes, such as a ≈ 1µm, those

mechanisms may be of the same order of magnitude. In order to investigate

their contribution separately, recall that the total flux of particles may be

evaluated in terms of Nϕ = N c +N η +N b where N c, N η, N b and Nκ are

given by Eqs. (2.25), (2.27), (2.34) and (2.28). As a result, the Diffusive Flux

Model, in its dimensional form, can be rewritten as

u·∇ϕ+∇·
[
−kca2

(
ϕ2∇γ̇ + ϕγ̇∇ϕ

)
− kηγ̇ϕ

2a
2

η

(
dη

dϕ
∇ϕ+

dη

dγ̇
∇γ̇

)
−D∇ϕ+ kκκa

2γ̇ϕ2nST

]
= 0

(2.40)
and, rearranging the terms in Eq. (2.40) it is possible to show that

u · ∇ϕ+∇ · (Dϕ∇ϕ+Dγ̇∇γ̇ −D∇ϕ+DκnST ) = 0 (2.41)

where Dϕ = −kca2ϕγ̇ − kηγ̇ϕ
2a

2

η

dη

dϕ
, Dγ̇ = −kca2ϕ2 − kηγ̇ϕ

2a
2

η

dη

dγ̇
, D is

the Stokes-Einstein diffusion coefficient and Dκ = kκκa
2γ̇ϕ2 is a curvature-

induced coefficient. Now, considering a colloidal suspension with particle size

a = 1µm and a ratio of kc/kη = 0.66, one can observe that Dϕ, Dγ̇ and Dκ are

O(10−8) and D is O(10−17) so that Brownian diffusion can be neglected. Note

that Brownian diffusion is not considered because its contribution to particle

migration is at least one order of magnitude lower than the other migration
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mechanisms. However, Brownian forces are still present in the scale of the

particles and are important in order to restore a random rest state of the

microstructure which is reflected by a pseudo-plastic behavior of the fluid for

a given range of local shear rate and particle size.

2.2.6
Boundary Conditions: Diffusive Particle Transport

The boundary conditions imposed for the particle migration equation in a

typical slot coating process are:

1. No-flux of particle: It is assumed that there is no-flux of particles at

solid/liquid or liquid/gas interfaces so that,

n · (ϕu+Nϕ) = 0 . (2.42)

2. Inflow and Outflow : At the inflow region, a prescribed concentration

profile is usually imposed. In this work, a uniform concentration profile

is set at the feed slot entrance. At the outflow region, the boundary

condition of no-diffusive flux of particles given by Eq. (2.42) is applied:

n ·Nϕ = 0 . (2.43)

DBD
PUC-Rio - Certificação Digital Nº 1421611/CA



3
Numerical Methodology

In general, the great majority of physical problems can be modeled by

differential equations. In this sense, numerical approaches are usually employed

in order to solve them by discretizing the domain under investigation into

a set of algebraic equations valid in each node or element of the mesh. For

instance, the Finite Difference Method (FDM) is a classical model to solve

differential equations that is simple to implement and accurate mostly in cases

of regular geometries. In parallel, in order to tackle real engineering problems

with complex boundaries, a class of variational methods evolved during the

19th and 20th century due to investigations performed by renowned researches

like Rayleigh, Ritz and Galerkin. Among these methods the Galerkin/Finite

Element Method (GFEM) stems out as an important and efficient option

(Donea & Huerta, 2003).

The Galerkin/Finite Element Method is based on a formulation of

weighted residuals in which the exact solution of a given differential equation,

posed in a infinite space, is projected orthogonally on a finite subspace.

This projection is achieved by a scalar product between the residual of the

differential equation and a given weighting function which, in an integral form,

gives rise to the weak form of the formulation. Therefore, the exact solution is

approximated by a linear combination of piecewise basis functions that spans

this subspace. As a consequence, in principle, the larger the subspace, the more

accurate is the solution. In the Galerkin method, the weighting functions used

in the orthogonal projection are equal to the basis functions that spam the

subspace of approximate solution (Gresho & Sani, 1998).

As shown in Fig. 3.1, a general slot coating flow is as a free-surface

problem since the flow domain has two liquid-gas interfaces, viz. downstream

and upstream of the feed slot die. For this reason, the physical domain where

the conservation equations (i.e. mass, momentum and particle transport) are

posed is also unknown and hence the coordinates of the free surfaces are

likewise part of the solution. In this sense, the original set of partial differential

equations is augmented by an additional couple of diffusive equations used in
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the mapping from an unknown domain to a geometrically simple reference and

known domain. Details related to the solution method of a general free-surface

problem are presented in the following sections.

3.1
Formulation of Free Surface Problems

In order to tackle a typical free-boundary problem efficiently, Christodolou &

Scriven (1992); de Almeida (1995) presented an approach in which the set of all

governing differential equations in the unknown or physical domain, Ω, should

be transformed into a set delineated in an equivalent geometrically simple and

known reference domain, Ω0, as sketched in Fig. 3.1. This procedure is achieved

by the mapping x = x(ξ) that connects both regions. Here, x and ξ are

the position vectors that parameterizes both physical and reference domains,

respectively, and the inverse mapping is given by ξ = ξ(x).

The mapping is arbitrary and a common approach is to adopt quadran-

gular domains composed by unit squares as the reference domain. There are

situations in which the physical domain is highly complex so that the reference

region shall be subdivided into sub-domains connected to each other such as

a slot coating flow depicted in Fig. 3.1. As matter of fact, this mapping must

obey two important constraints: (i) the boundaries of the reference domain

have to be mapped over the boundaries of the physical domain; and (ii) the

mapping must be invertible, which means that

det(∇ξx) ̸= 0 (3.1)

for all ξ belonging to Ω0. In Eq. 3.1, the term ∇ξx is the Jacobian matrix J

of the mapping which, in two-dimensional problems, is given by

∇ξx ≡ J =


∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

 , (3.2)

where det(J) = |J | is the Jacobian of the transformation.

In order to write the set of differential equations posed in the physical

domain in terms of the coordinates of the reference domain, the spatial

derivatives shall be written as follows
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Figure 3.1: Mapping from the unknown physical domain to a given reference
domain. The physical domain is transformed into regions geometrically simple
composed by unit quadrangular domains (Adapted from Siqueira (2016)).


∂α

∂x

∂α

∂y

 = J−1


∂α

∂ξ

∂α

∂η

 (3.3)

where α = α(ξ, η) is an arbitrary quantity. Moreover, area integrals over the

physical domain are written in terms of the reference domain as dΩ = |J |dΩ0.

Again, the differential equations that define velocity, pressure and particle

concentration fields together with the equations that govern the mapping are

solved in the reference domain using the Galerkin/Finite Element method

which will be discussed in detail in the present chapter. The mesh generation

scheme will be presented next.
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3.2
Mesh Generation Scheme

In order to solve a free-surface problem, a mesh generation scheme is the crux of

the matter. With this in mind, boundary conforming meshes can be generated

either from an algebraic or from an elliptical mesh generation approach. The

former one locates the mesh points by using a simple interpolation scheme and,

despite its computational efficiency, this method requires a high interaction

with the user and fails in cases of highly distorted meshes. On the other hand,

the latter scheme relates mesh points of the physical domain to points of

a reference domain and it provides inherent smoothness of the mesh while

requiring less interaction of the user (Christodolou & Scriven, 1992). This

method was also studied and refined by Santos (1991) and later on by Benjamin

(1994) and is usually known as elliptic mesh generation. The main goal of this

approach is to optimize the quality of the mesh by minimizing a functional

which depends on the smoothness, orthogonality and density of the mesh. As

a result, the inverse mapping that minimizes this functional is governed by the

following elliptic differential equations

∇ · (Dξ ∇ξ) = 0 (3.4)

and

∇ · (Dη ∇η) = 0 (3.5)

where Dξ and Dη are diffusion like coefficients of the coordinates potentials

that control the spacing between the curves of constant ξ and η. These

curves tessellate the reference domain into finite elements. The diffusion-like

coefficients are obtained by interpolating prescribed stretching functions f(ξ)

and g(η) along the boundaries, using the following relations:

F (ξ, η) = (1− η

ηmax

)f1(ξ) +
η

ηmax

f2(ξ) (3.6)

and

G(ξ, η) = (1− ξ

ξmax

)g1(η) +
ξ

ξmax

g2(η), (3.7)
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so that Dξ ≡ ∂F/∂ξ and Dη ≡ ∂G/∂η. In an effort to write x = x(ξ), Eqs.

(3.4) and (3.5) must be transformed into the reference domain configuration.

Fig. 3.2 illustrates the stretching functions used in the calculation of the

diffusion-like coefficients of the mesh-generation scheme.

g ( / )1 η ηmax

g ( / )2 maxη η

η ηmax=

η = 0f ( / )1 ξ ξmax

f ( / )2 maxξ ξ
ξ ξmax=ξ= 0

x

y

Figure 3.2: Stretching functions used in the calculation of the diffusion coeffi-
cients Dξ and Dη.

3.2.1
Boundary Conditions: Mesh-Generation Equations

In order to solve the set of partial differential Eqs. (3.4) and (3.5), boundary

conditions must be employed. These conditions are shown in Fig. 3.3 and

defined as follows.

1. Prescribed Geometry : this boundary condition is applied to all fixed

boundaries except for free surfaces. In this sense, an equation that defines

the shape of the boundary as a relation between the coordinates x and

y is given as

y = G(x) , (3.8)

where G is a prescribed function that describe the shape of fixed

boundaries.
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2. Physical Condition: the shape of a free surface is generally determined by

the physics of the problem. For instance, a kinematic condition implies

that the liquid cannot cross the free surface, leading to n·u = 0. However,

extra conditions are required in order to locate the mesh nodes and hence

the position of the isolines of ξ and η over a specific interface. In this

manner, there are three available options:

i Node distribution along boundary : in this case, stretching functions f

and g are imposed in order to distribute the nodes over the boundary

and control their spacing, so that

ξ = f−1(s) (3.9)

or

η = g−1(s) (3.10)

where s is the arch-length coordinate along the boundary. More

details about the shape of these stretching functions can be found

in the work of Benjamin (1994).

ii Prescribed mesh angle at a boundary : the prescribed angle Φ between

the isolines of ξ and η coordinates at the boundary, as shown in

Fig.(3.3), is determined by

n · ∇ξ = |∇ξ|cos(Φ) (3.11)

in which n is the unit normal vector pointing outward the physical

domain. Note that, if the scalar product presented in Eq. (3.11) is

zero, then a orthogonal condition is achieved.

iii Prescribed mesh angle at a corner : this condition is satisfied by

imposing an angle β between the outward unit vectors, n1 and n2,

to both converging lines that meet at the corner as shown in Fig.

3.3. As a result,

n1 · n2 = cos(β) (3.12)

where β = (1800 − α).
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1) Prescribed Geometry 2) Physical Condition

i) Node Distribution ii) Mesh Angle

iii) Corner Angle

y = H(x)

n

u

gas

liquid

free surface

n · u = 0

s = 0

s = 1

ξ = f (s)
--1

η η= max

ξ = 0

ξ ξ= max

η η= max

ξ

∆

ξ = 0

n

Φ

ξ ξ= max

n
1

n
2

2

1

α

β

Figure 3.3: Boundary conditions for the equations (3.4) and (3.5) that denotes
the mapping between the reference and physical domains.

3.3
Interpolated Velocity Gradient

The motivation for the use of an interpolated velocity gradient relies

on the formulation of a general GFEM itself. Since the velocity field is ap-

proximated by a linear combination of Lagrangian biquadratic basis functions

defined in each domain, along their boundaries, the velocity is continuous but

the derivatives are not. In order to deal with the singularity of the weak formu-

lation that has terms proportional to the integral of the second derivative of

the velocity, Szad et al. (1995) proposed that an interpolated velocity gradient

should be used in place of the general velocity gradient as an independent field

in the form

G = ∇u, (3.13)
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in an effort to improve the stability and convergence of the numerical method.

However, in incompressible fluid flows the computed velocity gradient is not

exactly divergence-free (i.e. tr(G) = ∇·u = 0) in every point. The divergence

of the velocity is zero only in a weak sense. With this in mind, Pasquali (2000)

and Pasquali & Scriven (2002) proposed a new formulation for the interpolated

velocity gradient as follows

G = ∇u− (∇ · u) I
trI

, (3.14)

where I is the identity tensor. This relation guarantees that tr(G) = 0 in every

point of the domain.

This last contribution closes the set of differential equations that govern

the phenomenon under study in this research, composed by the equations of

incompressible mass (2.5); momentum (2.6); particle transport (2.36); elliptic

mesh generation (3.4) and (3.5); and, finally, interpolated velocity gradient

(3.14). By means of organization, these equations are rewritten as follows:

• Mass Balance:

∇ · u = 0 ;

• Momentum Balance:

∇ · σ = 0 ,

where σ is given by Eq. (2.11);

• Particle Transport :

u · ∇ϕ+∇ ·Nϕ = 0,

• Elliptic Mesh Generation:

∇ · (Dξ ∇ξ) = 0 ,
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and

∇ · (Dη ∇η) = 0;

• Interpolated Velocity Gradient :

G−∇u+
(∇ · u) I
trI

= 0

This set of differential equations is solved by Galerkin’s method with

finite element basis functions. In order to do so, these equations are written in

an integral weak form, as addressed in the subsequent section.

3.4
Weighted Residual Form

It is important to remember that to employ the weighted residual method

to solve a system of partial differential equations by Galerkin’s approach, the

exact solution is projected on a finite subset spanned by a finite array of basis

functions. As a result, this method requires the residue of this approximation

to be, at least in average, equal to zero along the whole domain under

investigation. In this sense, the generic weighted residual form or weak form

of the problem addressed in this work is given by

Rc =

∫
Ω

(∇ · u)wc dΩ = 0 , (3.15)

Rm =

∫
Ω

(∇ · σ) ·wm dΩ = 0 , (3.16)

Rϕ =

∫
Ω

(u · ∇ϕ+∇ ·Nϕ)wϕ dΩ = 0 , (3.17)

Rξ =

∫
Ω

[∇ · (Dξ ∇ξ)] wξ dΩ = 0 , (3.18)

Rη =

∫
Ω

[∇ · (Dη ∇η)] wη dΩ = 0 , (3.19)

RG =

∫
Ω

[
G−∇u+

(∇ · u) I
trI

]
: wG dΩ = 0 , (3.20)

where w and w are tensor and scalar weighting functions, respectively. In fact,

w can be expressed as a linear combination basis functions so that,
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w(x) =
N∑
i=1

wiψi , (3.21)

where the basis functions ψi span the subspace of dimension N that approxi-

mates the projection space.

Now, consider the following tensorial identities

σ : ∇wm = ∇ · (σ ·wm)− (∇ · σ) ·wm, (3.22)

and

∇ · (ψ a) = a · ∇ψ + ψ∇ · a , (3.23)

where ψ and a are arbitrary scalars and vectors, respectively. Using these

relations and applying the Gauss-Green theorem to Eqs. (3.16), (3.18) and

(3.19) it is possible to show that

Ri
m =

∫
Ω

σ : wm dΩ−
∫
Γ

(n · σ) ·wm dΓ = 0 , (3.24)

Ri
ξ = −

∫
Ω

Dξ ∇ξ · ∇wξ dΩ +

∫
Γ

n · (Dξ ∇ξ)wξ = 0 , (3.25)

Ri
η = −

∫
Ω

Dη ∇η · ∇wη dΩ +

∫
Γ

n · (Dη ∇η)wη = 0 , (3.26)

in which Γ is the boundary of the physical domain Ω, n is the outward unit

vector to the boundary and i = 1, 2, . . . , N .

A special attention is required in order to write Eq. (3.17) in the same

way because the term ∇ · Nϕ presents explicit second derivatives in velocity

in the term ∇γ̇. Since the velocity field is a linear combination of piecewise

polynomials, second derivatives are singular and must be avoided. In this sense,

γ̇ is written in terms of the second invariant of the rate-of-strain tensor, γ̇,

which is now a function of the interpolated velocity gradient, so that,

γ̇ = G+GT . (3.27)

Under the light of the weighted residuals method and using Eq. (2.41)

without the Brownian diffusive term, it follows that
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Ri
ϕ =

∫
Ω

(u ·∇ϕ)wϕ dΩ+

∫
Ω

∇·
(
Dϕ∇ϕ+Dγ̇∇γ̇ +DκnST

)
wϕ dΩ = 0 (3.28)

Using the identity (3.23) on equation (3.28) and applying the Gauss-

Green theorem, the residual for the particle transport equation assumes the

form

Ri
ϕ =

∫
Ω

[
(u · ∇ϕ)wϕ −Dϕ∇ϕ · ∇wϕ −Dγ̇∇γ̇ · ∇wϕ −DκnST · ∇wϕ

]
dΩ

−
∫
Γ

n ·
(
Dϕ∇ϕ+Dγ̇∇γ̇ +DκnST

)
wϕ dΓ = 0 . (3.29)

where, again, nST is the local unit normal vector to a given streamline.

3.4.1
Expansion of the Unknown Fields

Each unknown field of the problem is expanded in a linear combination of a

finite number of basis functions,

u =

[
u

v

]
=


N∑
j=1

Ujφj

N∑
j=1

Vjφj

 , (3.30)

p =
M∑
j=1

Pj χj, (3.31)

x =

[
x(ξ, η)

y(ξ, η)

]
=


N∑
j=1

Xjφj

N∑
j=1

Yjφj

 , (3.32)

ϕ =
N∑
j=1

ϕj φj, (3.33)

G =


∑M

j=1G
j
ux ψj

∑M
j=1G

j
uy ψj

∑M
j=1G

j
vx ψj

∑M
j=1G

j
vy ψj

 . (3.34)
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where Pj, Uj, Vj, Xj, Yj, ϕj and G
j
u,v;x,y are the coefficients used in the linear

combination which are unknown a priori. It is important to note that the

weighting functions used in the mass balance residue are the same as those used

in the interpolation of the approximate pressure field and hence the pressure

is adjusted in order to conserve the mass in each element.

In addition to that, the main feature of these basis functions is that

they are non-zero only over a small part of the domain shedding light to the

concept of an element. As a result, using the elliptic mesh generation, by which

the governing equations are set in a reference domain, an interplay between

elemental and global perspectives is established. From a numerical point of

view, the choice of the right combination of basis functions leads to stable

formulation and, in this research, they obey the Babuska-Brezzi condition

summarized in Table 3.4.1 (Babuska, 1973; Franca & Frey, 1991). In this table,

the indexes n andm refer to the number of basis functions that must be used in

each linear combination in each element. In this work, quadrilateral elements

are adopted to discretize the domain and details relative to this type of element

are presented next.

Table 3.1: Table with different combination of basis functions φ and ψ /χ

Elements φ ψ or χ

Quadrilateral Elements X bilinear (n = 4) X constant (m = 1)
X biquadratic (n = 9) X bilinear (m = 4)
X biquadratic (n = 9) X linear discontinuous (m = 3)
X bicubic (n = 16) X biquadratic (m = 9)

Triangular Elements X biquadratic (n = 6) X linear (m = 6)
X cubic (n = 9) X quadratic (m = 6)

3.4.2
Element Type

The philosophy of the finite element method is to focus on a small patch of

the domain, also known as element, in which the basis functions are non-

zero. The global point of view of a given physical problem is represented

by a global matrix that is made up of an interposition of local or element

matrices. Moreover, the connection between the element nodes and global

nodes is performed by a matrix called connectivity matrix.

In this research, quadrilateral elements are used which are classified

as Lagrangian biquadratic basis functions, φ, for velocity, concentration and

mesh; linear discontinuous basis functions, χ, for pressure and bilinear basis

functions, ψ, for the interpolated velocity gradient as shown in Fig. 3.4.
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34
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Figure 3.4: Node representation of a typical quadrangular element where ξ and
η are local coordinates.

Each element is composed by nine nodes which leads to 64 local degrees

of freedom. The correspondent degree of freedom related to each unknown

variable is summarized in Table 3.4.2. .

Table 3.2: Relationship between local numbering and unknown coefficients
degrees of freedom in each element.

Local degree of freedom Degree of freedom

1 · · · 9 Y1 · · · Y9
10 · · · 18 X1 · · · X9

19 · · · 27 V1 · · · V9
28 · · · 36 U1 · · · U9

37 · · · 45 ϕ1 · · · ϕ9

46 · · · 48 P1 · · · P3

49 · · · 52 G1
ux · · · G4

ux

53 · · · 56 G1
uy · · · G4

uy

57 · · · 60 G1
vx · · · G4

vx

61 · · · 64 G1
vy · · · G4

vy

3.5
Solution Method

The integrals of the residual formulation are solved in the reference domain,

Ω0, using the Gaussian Quadrature Method with three points of integration in

each direction. Thereupon, those integrals are written in the following form

∫
Ω

F (x, y)dΩ =

∫
Ω0

F̃ (ξ, η)|J |dΩ0 , (3.35)
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again, |J | is the Jacobian of the mapping. Also, the weighted residual method

together with a linear interpolation of the unknown fields give rise to a

system of non-linear algebraic equations which is solved with Newton’s method

with a numerical Jacobian. This system can be treated as R(c) = 0, where

c = c(x,u, ϕ,G) is the global solution vector and R is a global residual vector.

Newton’s method linearizes the system of non-linear algebraic equations and

consists in the solution of this linear system by means of the following iterative

procedure:

c = c0

while ∥R(c)∥ > ϵ do

J∆c = −R

c = c+∆c

end while

Here, ϵ is the numerical tolerance of the method, c0 is an initial guess and J

is the Jacobian matrix that denotes the sensibility of each residual equation in

relation to each unknown variable of the problem, in other words,

Jij =
∂Ri

∂cj
. (3.36)

In Eq. (3.36), i, j = 1, · · · , NDof andNDof is the total number of basis functions

coefficients (i.e. degrees of freedom) and residual equations. In this work the

Jacobian matrix is calculated numerically through a central difference scheme

so that

Jij =
Ri(c1, · · · , cj + ε, · · · , cNDof

)−Ri(c1, · · · , cj − ε, · · · , cNDof
)

2ε
(3.37)

where ε is a slight perturbation around an entry j of the solution vector and

this parameter is O(10−6).

A few important remarks about the method are:

• At each iteration of Newton’s method, the linear system J∆c = −R

must be solved. Since the basis functions used in a GFEM are non-zero

only in a few regions of the domain, the Jacobian matrix is sparce. In this

work, each iteration step is performed using a robust LU frontal solver

coupled with a pseudo-arc-length continuation in order to start with a

satisfactory initial guess of the solution. Details about this procedure can

be found in the following works de Almeida (1995); de Almeida et al.

(1999) and Carvalho (1996);
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• If the problem is linear, the method converges in one single iteration;

• The convergence of the method is quadratic as the solution is approached.

3.6
Numerical Aspects

From Eqs. (2.25) and (2.27) it is possible to show that the Diffusive Flux

Model is singular in regions where γ̇ approaches zero such as the centerline of

a tube or channel flow. On one hand, the term ∼ kca
2ϕ2∇γ̇ forces the particles

to migrate to regions of lower shear rate (or zero shear rate if any); on the

other hand, this flux is opposed by a contrary migration proportional to γ̇ϕ

as can be detected in the terms ∼ kcϕγ̇∇ϕ, ∼ kηγ̇ϕ
2a2η−1(∂η/∂ϕ∇ϕ) and

∼ kηγ̇ϕ
2a2η−1(∂η/∂γ̇∇γ̇). As a result, in regions where γ̇ → 0, this opposing

flux vanishes and the model predicts particle concentrations close to or equal

to the maximum packing fraction which leads to a local infinite viscosity.

Consequently, this theoretical inconsistency originates numerical convergence

problems.

In order to overcome this singularity, in this work we employ a modified

version of the non-local stress contribution to the shear rate as presented by

Miller & Morris (2006) and later on adapted by Ahmed & Singh (2011) in

which

γ̇δ = δ
Umax

H
(3.38)

where δ ≈ 10−3 is a numerical parameter, Umax is the maximum suspension

velocity and H is a characteristic length (e.g., in a tube flow H would be equal

to the tube radius). In this sense, the non-local stress contribution is important

in regions where γ̇ → 0 so that γ̇ = γ̇δ. This procedure avoids the divergence

of the viscosity model and improves the numerical results by leading to more

numerically stable problem.
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4
Results and discussion

The results of this work concern to the analysis of a slot coating process in

which the coating liquid is a shear sensitive particle suspension. In this manner,

a shear rate dependant viscosity model is employed which is also sensitive to

local particle concentration. The main goal is to analyze the effect of operating

conditions on the particle distribution in the deposited coated layer. In this

work, particle migration mechanisms were computed in accordance with the

three models: Model I, original DFM proposed by Phillips et al. (1992); Model

II, which is a modified Phillips model with curvature-induced migration; and,

lastly, Model III which is a modified Model II with concentration-dependant

phenomenological diffusive constants following the investigations presented by

Kim et al. (2008). The predictions of the model that consider particle migration

are compared to the solution of the flow problem assuming that the particle

concentration is uniform on the flow.

4.1
Numerical Validation

In an effort to validate the numerical code used in this dissertation, we

compared the numerical results of velocity and particle concentration profiles

with the correspondent analytical solutions presented by Phillips et al. (1992)

for a fully-developed tube flow of a non-colloidal suspension of spherical

mono-modal and rigid particles. The latter authors used a constant ratio

of kc/kη = 0.66 to calculate the exact solutions for velocity and particle

concentration. The analytical particle concentration profile is given by

ϕ =
ϕm

1 + βr̃
(4.1)

where β = (ϕm − ϕw)/ϕw is a numerical parameter, ϕw is the concentration at

the wall and r̃ = r/R is a dimensionless radial coordinate where R is the tube

radius. Still in Eq. (4.1), ϕm = 0.68 is the maximum packing fraction used in

Krieger’s model. In this validation the particle size adopted was a = 10µm (i.e.,
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non-colloidal suspension) so that the viscosity model is a function of particle

concentration only

η(ϕ) = ηs

(
1− ϕ

ϕm

)−1.82

. (4.2)

It is remarkable that the analytical velocity profile is calculated as a

function of the exact concentration profile since the viscosity model varies

with local particle concentration. In order to clarify this assumption, consider

the momentum conservation equation in cylindrical coordinates as follows

1

r

d

dr
(rτrz) =

∂P

∂z
(4.3)

where τrz = γ̇η(ϕ) in which γ̇ = du/dr. Integrating Eq. (4.3) once and using

the relation for τrz, it can be shown that

du

dr
=

1

2

∂P

∂z

r

η
(4.4)

with the boundary condition of no-slip velocity at the tube wall, u(R) = 0.

With this in mind, let G = −∂P/∂z where G is constant for each bulk

concentration in such a way that

du

dr
= −1

2
G
r

η
. (4.5)

Moreover, note that η̃ = η/ηs is a dimensionless viscosity and hence Eq. (4.5)

can be written as

d

dr

(
u

RG/ηs

)
= − r̃

2η̃
(4.6)

where ũ = u/(RG/ηs) is also a dimensionless velocity. Recall that η̃ is a

function of particle concentration which also depends on the radial position.

Hence, a dimensionless velocity profile can be calculated by integrating the

following equation
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dũ

dr̃
= − r̃

2η̃
(4.7)

considering the corresponding boundary condition ũ(1) = 0. Consequently, if

the exact concentration profile given by Eq. (4.1) is used in Eq. (4.7), then

it is possible to determine the analytical velocity profile for a given analytical

particle distribution.

The numerical results were developed by applying the GFEM where the

whole set of residual forms related to the problem (i.e., mass, momentum,

particle migration and interpolated velocity gradient) were solved in cylindrical

coordinates in a two-dimensional flow through a tube. Also, a mesh with 25x30

quadrangular elements was employed in the numerical simulations. The flow

domain is shown in Fig. 4.1 and the boundary conditions used for momentum

and particle migration equations were:

1. Inlet : Prescribed parabolic velocity profile of a Newtonian fluid with

viscosity η = η(ϕ̄) and constant particle concentration profile ϕ(r) = ϕ;

2. Outlet : Fixed pressure and fully-developed velocity and concentration

profiles so that n · ∇u = 0 and n · ∇ϕ = 0;

3. At the wall : no-slip boundary condition for velocity and no-penetration

or flux of particles (n ·Nϕ) = 0;

4. Centerline of the tube: symmetry for the velocity profile and no flux of

particles.

L

r

z

R

Inlet Outlet

Symmetry Line

Tube Wall

Figure 4.1: Flow domain of a cylindrical tube used in the numerical validation.
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The parameters used as input data for the simulations were: particle

radius a = 10µm, tube radius R = 1.0mm, tube length L = 10.0mm and

bulk concentrations ϕ = 0.3, 0.4, 0.5 and 0.6. Figures 4.2 and 4.3 show the

results for both velocity and particle concentration profiles for a set of bulk

concentrations ϕ. As can be seen, the results agree very well with the exact

solutions for velocity and particle concentration profiles given by Eqs. (4.1)

and (4.7), respectively. Also, the imposed flow rate was adjusted such that the

pressure difference was the same for all cases.

Note that for all bulk concentrations, particle concentration increases

from the wall towards the centerline of the tube. As a result, the velocity

profile becomes more blunted in relation to the parabolic Newtonian fluid one

presenting lower centerline velocity. In other words, the flow rate decreases

as the bulk concentration increases. For instance, for ϕ = 0.6 the centerline

velocity is 20% of the maximum velocity of a plain Newtonian fluid.

It is also important to highlight that the numerical predictions for the

particle concentration profiles present small deviations from the analytical

solution, specially, near the centerline of the tube. Recall that, in this region,

γ̇ = γ̇δ and the local particle concentration never reaches the maximum packing

fraction, ϕm = 0.68, as predicted by the original Diffusive Flux Model proposed

by Phillips et al. (1992).
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Profile: φ= 0.0

_

Figure 4.2: Comparison between the numerical results of the velocity profiles
with Phillips’ analytical solutions. The parabolic profile of a typical Poiseuille
flow (i.e. ϕ = 0.0) is plotted as reference.
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Figure 4.3: Comparison between the numerical results of the concentration
profiles with Phillips’ analytical solutions.

Figure 4.4 shows the contours of particle concentration for ϕ = 0.4 and

0.6, respectively. From this results one can observe that at the entrance (i.e.,

x = 0 mm) the concentration is uniform and equal to the corresponding

bulk concentration, as imposed. From the latter region until, approximately,

X = 6.0 mm the concentration profile develops and from this position to

the end of the computational domain, the flow is almost fully-developed. It

is important to highlight that, although Phillips et al. (1992) stated that the

diffusion coefficients kc and kη should be O(1), in this work we employed high

values of those parameters (e.g., kc = 32.8 and kη = 49.6) in order to enhance

particle migration mechanisms, reduce the development entrance length of the

particle concentration profile and maintain a constant ratio of kc/kη = 0.66.

Also, note that the profiles depicted in Figs. 4.3 and 4.2 were taken from the

final section of the tube at X = 10.0mm.
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Figure 4.4: Countors for bulk concentrations 0.40 and 0.60, respectively.

4.2
Slot Coating Analysis

This section presents the results of a slot coating flow in which the coating

liquid is a suspension of rigid and spherical particles. As stated before, in

applications where particle size is small enough so that inter-particle forces

compete with macroscopic contributions of the flow, the suspension becomes

shear sensitive. First, a mesh convergence test is performed in an effort to

define the optimum mesh for this work. After that, an analysis of particle

concentration profiles considering migration Models I, II and III is presented

for a final film thickness equal to half of the coating gap. In addition to that,

a similar investigation is employed with regards to a smaller film thickness

considering three different Capillary numbers. In this work, the Capillary

number is evaluated based on the bulk viscosity of the suspension. Finally,

the effect of particle migration and shear sensitive behavior on the low-flow

limit study is evaluated. All the simulations where done considering a bulk

concentration ϕ = 0.30 and particle size a = 1µm.
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4.2.1
Mesh convergence test

In order to determine the optimum mesh to be used in this work, the

convergence of the solution of a typical slot coating flow of a shear-sensitive

particle suspension was tested for three different meshes. The following meshes

are shown in Figs. 4.5, 4.6 and 4.7 and the main difference between them is the

number of elements in the downstream region where the final film is deposited.

Tables 4.1, 4.2 and 4.3 show the number of elements per regions in each mesh

following the same numbering presented in Figure 3.1. In this sense, Mesh 1 is

composed by 328 elements, with 9, 621 unknowns; Mesh 2 is composed by 418

elements, with 12, , 135 unknowns; and Mesh 3 is composed by 608 elements

with 17, 405 unknowns.

Mesh 1

Figure 4.5: Representative Mesh 1 used to discretize the problem: 328 elements
and 9, 621 unknowns.

Mesh 2

Figure 4.6: Representative Mesh 2 used to discretize the problem: 418 elements
and 12, 135 unknowns.
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Mesh 3

Figure 4.7: Representative Mesh 3 used to discretize the problem: 608 elements
and 17, 405 unknowns.

Table 4.1: Number of elements in each region of Mesh 1.

Region y-direction x-direction

1 8 10
2 8 4
3 7 4
4 8 6
5 12 7
6 8 7

Table 4.2: Number of elements in each region of Mesh 2.

Region y-direction x-direction

1 8 10
2 8 4
3 7 4
4 8 6
5 15 10
6 8 10

Table 4.3: Number of elements in each region of Mesh 3.

Region y-direction x-direction

1 8 10
2 8 4
3 7 4
4 8 6
5 20 15
6 8 15
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The convergence of the solution was tested by comparing the numerical

predictions for particle concentration profiles of each mesh at the final section

of the deposited film. For this purpose, we assumed the following operating

parameters: velocity of the substrate V = 0.4 m/s; bulk concentration ϕ =

0.30; vacuum pressure Pvac = −3.5 kPa; and final film thickness t = H/2,

where H = 100µm is the coating gap. Also, we employed particle migration

Model III which incorporates all the modifications of the original Phillips model

accounted in this work along with the viscosity model of Cross, i.e. η = η(ϕ, γ̇),

with solvent viscosity ηs = 0.02 Pa s.

As an initial analysis, minimum and maximum local particle concentra-

tions for each mesh were computed considering the whole domain and orga-

nized in Table 4.4. Note that all the values are approximately the same with

an agreement O(10−2) which shades light to a convergence of the solution of

interest. With this in mind, in an effort to enhance the investigation and subse-

quent choice of the mesh, particle concentration profiles were plotted along the

final film thickness as shown in Fig. 4.8. From these results one can observe

that the solutions are virtually the same and converge to a master particle

concentration curve.

Table 4.4: Minimum and maximum local concentrations for each mesh.

Mesh ϕmin ϕmax

1 0.1757 0.4912
2 0.1765 0.4913
3 0.1778 0.4915

y/t

φ

0 0.25 0.5 0.75 1
0.28

0.29

0.3

0.31

Mesh 1

Mesh 2

Mesh 3

Figure 4.8: Predictions using three different meshes of the particle concentra-
tion profile at the exit of the deposited film.
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In order to select the most appropriate mesh, we integrated numerically

the numerical particle concentration profile along the final film thickness for

each mesh and evaluated the error in relation to the bulk concentration. Since

there are no source and/or sink terms in the particle migration equation,

the latter integral should recover the bulk concentration under the light of

conservation principles. Thereupon, the relative errors for each mesh are: Mesh

1 = 1.801%; Mesh 2 = 0.236%; and, finally, Mesh 3 = 0.896%, which indicates

that the solution is mesh independent considering the set of meshes under

investigation. In this sense, the predictions presented in this work were obtained

by using Mesh 2 since it presents the lower relative error.

4.2.2
Effect of shear sensitivity

In this subsection, the focus is to investigate the effects of considering or not

a shear-sensitive viscosity model in cases where particle size is small enough

so that colloidal forces are relevant. Thereupon, the following results were

evaluated using the viscosity model of Cross in comparison with the well-

known viscosity model of Krieger. Note that, Krieger’s model is sensitive to

local particle concentration only, i.e. η = η(ϕ), and that, on the other hand,

Cross’ model is sensitive to local particle concentration and local shear rate,

so that η = η(ϕ, γ̇).

Initially, the flow field is obtained numerically by solving the governing

equations presented in Chapter 2 for suspensions of spherical and rigid particles

neglecting any kind of migration mechanisms. This is possible by setting the

diffusion coefficients kc and kη equal to zero. In this case, the suspension can

be understood as a Newtonian liquid with a constant viscosity throughout the

entire domain, and thereby, η = η0(ϕ̄). It is important to recall that η0 is the

viscosity evaluated at the first Newtonian plateau and it is used as a reference

in this work. Figure 4.9 shows the contour of particle concentration for a bulk

concentration ϕ̄ = 0.30, vacuum pressure Pvac = −3.5 kPa, ambient pressure

Patm = 0 kPa, velocity of the substrate V = 400 mm/s, interfacial tension

σ = 60 dyn/cm, dynamic contact angle θDCL = 40◦ and final film thickness

t = H/2 (i.e., t = 50µm). Moreover, the bulk Capillary number for this

simulation was Ca = 0.25. Under those conditions, the numerical parameter

employed to overcome the singularity of the DFM was set to δ ≈ 10−3.
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Figure 4.9: Contour of particle concentration for a suspension in which the
viscosity is a constant function of the bulk concentration, ϕ = 0.30.

The next step was to consider particle migration mechanisms in the sim-

ulations using a fixed ratio of the phenomenological parameters kPc /k
P
η = 0.66

for Models I, II and III. We set kPc = 32.8 and kPη = 49.6 to enhance the

effect of particle migration. All other parameters of the flow such as vacuum

pressure and final film thickness remained the same as the Newtonian simu-

lation which, in turn, was used as an initial guess for simulations considering

particle migration. This part of the work investigates particle concentration

contours and profiles at the final section of the deposited film at X = 1.7 mm

and the position of the upstream meniscus considering both viscosity models

under study: Krieger and Cross, respectively.

Figures 4.10, 4.11 and 4.12 show the contours of particle concentration

considering the three migration models and the viscosity relation of Krieger. It

is clear that particles tend to migrate from regions of high to low shear rates.

For example, this feature is evident near the exit of the feed slot (Y ≈ 0.2

mm). There are regions of high shear rates near the walls and regions of

lower shear rates at the vicinities of the center line. In this sense, due to

overall contributions of particle collision frequency, which scales with ϕ γ̇, and

by means of gradients in viscosity, the particles tend to migrate preferably

towards the center of the feed slot where local particle concentration reaches
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values approximately equal to ϕ = 0.4902 for Model I; ϕ = 0.4897 for Model II;

and ϕ = 0.3878 for Model III. In the feed slot region, since there is no curvature

of the streamlines, Models I and II are the same and should recover the same

values of local particle concentration which happens indeed. Small deviations

between Models I and II shall regarded to particle migration contributions

at Y = 0.1 mm where curvature-induced migration is important. At the same

time, Model III differs considerably from Models I and II since it considers that

the ratio kc/kη is a function of local particle concentration and this dependency

is explicit on kc which is the diffusion parameter related to spatially varying

interacting frequency migration. Again, following the results presented by Kim

et al. (2008), since kc = 1.5ϕkPc , kη = kPη and kκ = 0.75kPc , the spatially

varying interaction frequency is lower and the contribution of the migration

due to gradients in viscosity is greater and, hence, the flux of particles from

regions of high to low viscosities is also magnified. This latter analysis explains

the reason why Model III presents lower concentrations at the center of the

feed slot in comparison with Models I and II.

Figure 4.10: Contour map of particle concentration of the upstream region
considering migration Model I and the viscosity model of Krieger.
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Figure 4.11: Contour map of particle concentration of the upstream region
considering migration Model II and the viscosity model of Krieger.

Figure 4.12: Contour map of particle concentration of the upstream region
considering migration Model III and the viscosity model of Krieger.
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Now, making the transition from the feed slot to the upstream region,

it is clear that particles move away from the die lip towards the region of

high shear rate. Particle migration due to the curvature of the streamlines also

becomes relevant. Recall from Eq. 2.28 that curvature-induced migration drives

the particles in the same direction as the local normal vector to the streamline,

nST . As a consequence, it is expected that regions opposing curved streamlines

should present an increment in local particle concentration, especially, when

comparing Models I and II. Since Model III incorporates a concentration

dependency on the ratio kc/kη, the magnitude of curvature-induced particle

migration shall decrease as kκ = kc and kc = kc(ϕ). Indeed, these assumptions

are confirmed and can be seen at Figs. 4.10, 4.11 and 4.12 where the local

particle concentration at the vicinities of the upstream static contact line for

Models I, II and III are 0.4695, 0.4844 and 0.4325, respectively.

Following the same track, the curvature of the streamlines at the exit

of the feed slot and at the beginning of the downstream meniscus induces a

migration towards the substrate and this behavior explains the difference be-

tween the particle concentration profiles at the final section of the deposited

film for Models I, II and III depicted in Figure 4.13. Moreover, since migration

Model III incorporates a concentration-dependent phenomenological parame-

ter kc = kc(ϕ), then the migration mechanism due to spatially varying viscosity

has a greater contribution so that more particles tend to migrate from regions

of high to low viscosity in an opposing flux due to gradients in shear rate. This

latter analysis explains why the concentration at the center of the final film

is lower and at the extremes higher for Model III in contrast to Models I and

II. As the coating liquid is deposited at the substrate, particle concentration

profile is convected by the flow.
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Figure 4.13: Particle concentration profiles the deposited film (i.e., X = 1.7
mm) for a viscosity model η = η(ϕ) and for migration Models I, II and III.

In order to verify if shear sensitive behavior affects the flow, an exam-

ination of the contours of concentration, positions of the upstream dynamic

contact line and profiles of particle concentration at the deposited film up-

stream is performed. First of all, Figs. 4.15, 4.16 and 4.17 show the contour

maps for migration Models I, II and III. Note that, comparing these results

with Figures 4.10, 4.11 and 4.12 it is possible to detect that the behavior

of particle migration is qualitatively the same, however, the position of the

downstream dynamic contact line is different.

Figure 4.14 illustrates the shift of the upstream meniscus in comparison to

the Newtonian reference for all migration models and both types of viscosity

models under study. Since particles tend to migrate towards regions of low

shear rates, they move away from the upstream die lip and the flow is lubricated

is this region. As a result, the upstream meniscus shifts and this movement

is even greater when the suspension is shear thinning as the local viscosity

reduces with shear rate. To demonstrate this, let QU be the flow rate under

the upstream die for a fixed gap width. The flow rate must be zero in this

region in order to conserve the mass. Since the pressure driven flow rate scales

with (∆PU/L)/η, and assuming that the pressure difference at the upstream

region is approximately constant over a distance L, if the suspension is shear

thinning, than, in order to maintain the zero flow rate, the size of the upstream
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region must increase which happens indeed. In fact, the X-coordinate of the

dynamic contact line for a Newtonian fluid with η = η(ϕ̄) is −0.185 mm and

Table 4.5 shows the respective X-coordinates of the upstream meniscus for

Models I, II and III.
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4.14(b)

Figure 4.14: Graphs of the position and shape of the upstream meniscus when
ϕ̄ = 0.30: (a) using Krieger’s viscosity model and (b) using Cross’ model.

Table 4.5: X-coordinate of the dynamic contact line related to migration models
I, II and III.

Model XDCL [mm] - η(ϕ) XDCL [mm] - η(ϕ, γ̇)

I −0.206 −0.311
II −0.198 −0.290
III −0.190 −0.282

The reason why Models I, II and III do not predict the same meniscus

curve for each viscosity model is that Model II incorporates a curvature-induced

migration which drives the particles towards the upstream free surface which

generates a greater local viscosity in this region in comparison to Model I.

A similar trend is verified for Model III in which the overall concentration

under the upstream lip is slightly uniform so that a greater resistance to flow

is verified leading to an also higher local viscosity. The latter analysis can be

applied for both viscosity models with the respective quantitative differences.

Following the same analysis made for a concentration dependent viscosity

with regards to curvature-induced migration, one can observe that the particles

tend to migrate in the direction of the normal vector to the streamline as

illustrated in Figs. 4.15, 4.16 and 4.17. It is important to highlight that local

particle concentration at the vicinities of the upstream static contact line

is greater for all models of migration considering Cross’ viscosity model in
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contrast to Krieger’s one. In this case, the values of local concentration at the

vicinities of the upstream static contact line for Models I, II and III are 0.5284,

0.5319 and 0.4582, respectively. A plausible reason is that more particles tend

to occupy the upstream region since the size of this part is augmented when

shear-thinning effects are taken into account.

Figure 4.15: Contour map of particle concentration considering migration
Model I and the viscosity model of Cross.

Figure 4.16: Contour map of particle concentration considering migration
Model II and the viscosity model of Cross.
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Figure 4.17: Contour map of particle concentration considering migration
Model III and the viscosity model of Cross.

In addition to that, particle concentration profiles at the deposited film

are shown in Fig. 4.18. Again, the results are qualitatively in agreement with

the results of Fig. 4.13 and it is possible to see that local particle concentration

at the center of the film is higher for a shear sensitive suspension model. This

can be explained by the fact that the shear stress at the die lip walls should

remain the same for both viscosity models since the flow rate is also equal.

Moreover, in these regions local shear rate reaches its maximum value leading

to a shear-thinning behavior. Since τw = ηγ̇, if the viscosity decreases, then

the local shear rate must increase in order to maintain a fixed value of τw. In

this manner, for a shear sensitive coating liquid, gradients in shear rate are

magnified in comparison with a concentration-dependent viscosity model so

that the migration mechanism due to spatially variations in collision frequency

is also augmented. Therefore, more particles tend to migrated towards regions

of lower shear rate reducing the concentration at the wall and increasing it in

lower shear rate regions such as the center of the feed slot. Then, for a film

thickness of H/2 one shall observe that the shear rate under the downstream

die is practically uniform so that the overall contributions of particle migration

mechanisms are weaker. As a result, the shape of the particle concentration

profile that leaves the feed slot is convected to the film formation which explains

the format of the results presented in Figs. 4.18 and 4.13.
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Figure 4.18: Particle concentration profiles at the final section of the deposited
film (i.e., X = 1.7 mm) for a suspension in which the viscosity is a function of
local particle concentration only, η = η(ϕ, γ̇) and for Models I, II and III.

4.2.3
Effects of Capillarity

In this part of the results the goal is to explore how changes in the Capillary

number affects particle concentration profiles at the final deposited film and

the shape of the downstream meniscus. Note from the dimensionless form of

the particle transport equation given by Eq. (2.39), that there is no explicit

dependency on the substrate velocity V so that changes in Capillary number,

performed by changing V , maintain the same balance between convective

and diffusive contributions. Also, since the interfacial tension is assumed

to be constant in this work, variations in the Capillary number are solely

regarded to viscous effects. As the viscosity model depends on the local particle

concentration which also depends on operating conditions, viscous effects were

modeled considering the viscosity of the suspension as a function of the bulk

concentration only so that Ca = η0(ϕ̄)V/σ.

All simulations were held considering three different operating velocities

of the substrate and hence Capillary numbers. In all cases the numerical

parameters were: final film thickness t = 35µm; stabilizing parameter δ =

6 × 10−2; bulk concentration ϕ̄ = 0.30; fixed ratio of diffusion parameters

kPc /k
P
η = 0.66; interfacial tension σ = 60 dyn/cm; dynamic contact angle

θDCA = 40◦ and ambient pressure Patm = 0 kPa. The vacuum pressure was

adjusted in order to keep the upstream meniscus away from the feed slot and
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consequently a stable coating bead. In addition to that, an examination of both

viscosity models (i.e., Krieger and Cross) considering migration Models I, II

and III was performed. At this point, it is important to make clear that, for

a concentration-dependent viscosity approach, only Model I was considered

in the subsequent investigation since an emphasis on shear-sensitive coating

liquids is the main concern herein.

As an illustration, Figs. 4.19, 4.20, 4.21 and 4.22 show the contours of

local particle concentration considering migration Models I and II and both

viscosity relations for three distinct Capillary numbers. Table 4.6 presents the

vacuum pressure used for each Capillary number in order to obtain a stable

coating bead. Note, again, that for a shear sensitive liquid the upstream region

is longer than the corresponding one for a suspension which behaves as a

generalized Newtonian fluid with a concentration-dependent viscosity model.

Table 4.6: Capillary numbers and adjustable parameters for a stable slot
coating flow considering three cases.

Case V Ca PvacH/σ

I 0.1 m/s 0.077 −3.33
II 0.5 m/s 0.386 −11.67
III 1.5 m/s 1.158 −30.0

Figure 4.19: Contours of particle concentration for Capillary number 0.077
using Krieger’s viscosity model and migration Model I.
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Figure 4.20: Contours of particle concentration for Capillary number 0.077
using Cross’ viscosity model and migration Model II.

Figure 4.21: Contours of particle concentration for Capillary number 0.386
using Cross’ viscosity model and migration Model II.
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Figure 4.22: Contours of particle concentration for Capillary number 1.158
using Cross’ viscosity model and migration Model II.

From those figures one can also observe that as the Capillary number

increases, the upstream length and the principal radius of curvature of the

gas-liquid interface decreases. The upstream length decreases due to the force

balance at the free surface in this region. In other words, as the Capillary

number increases, the viscous drag also rises in comparison to the same vacuum

pressure applied at the meniscus so that the upstream dynamic contact line

moves in the down-web direction. In addition to that, the reason for the

reduction of the principal radius of curvature at the downstream gas-liquid

interface relies on the balance of Poiseuille and Couette contributions in this

region as depicted in Fig. 4.23. To put it another way, the flow rate under

the downstream die lip can be modeled as a combination of a Couette and

Poiseuille contributions:

Q = Vwt = QCouette −QPoiseuille (4.8)

in which QCouette = V H/2 and QPoiseuille ∝ P2 − P1 = σ/R, following Young-

Laplace’s equation,
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∆PD = P2 − P1 = σ

(
1

R1

+
1

R2

)
(4.9)

where ∆PD is the pressure difference across the downstream meniscus, R1 = R

and R2 = ∞ are the principal radii of curvature of the downstream meniscus

since this interface is approximated to a cylinder. Note from Fig. 4.23 that, as

the curvature of the deposited film is zero, there is no stress jump across the

free surface, so that P2 = Patm and hence ∆PD = Patm − P1 at the meniscus.

Moreover, ∆PD must be greater than zero since the pressure on the concave

side of a meniscus is always greater than the pressure on the convex side.

H
R

(1)

(2)

P
atm

V

Figure 4.23: Scheme of the Couette and Poiseuille contributions at the down-
stream region of a slot coating flow.

Figures 4.25(b), 4.26(b) and 4.27(b) show the curvature of the streamline

considering three Capillary numbers: 0.0772, 0.3860 and 1.1580, respectively,

corresponding to web velocities equal to 100, 500 and 1500 mm/s. Since the

coating gap width is fixed for all simulations, it is convenient to introduce

here a dimensionless flow rate in order to explain the relationship between the

curvature of the meniscus and the Capillary number. In this manner, let a

characteristic flow rate be Q∗ = V H in such a way that the dimensionless flow

rate can be expressed as Q̃ = t/H. For a fixed film thickness, if the Capillary

number increases (i.e., Couette contribution), then the Poiseuille increment

must increase equivalently in order to maintain a constant dimensionless flow

rate. In other words, the radius of curvature of the downstream gas-liquid

interface decreases and the meniscus becomes more curved.

From Figs. 4.25(a), 4.26(a) and 4.27(a) it is clear that the particles tend

to accumulate at the top of the deposited film in contrast to what have been
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verified in Figures 4.13 and 4.18, where the concentration of particles is higher

at the center of the deposited film. Note that in Figs. 4.13 and 4.18 the final film

thickness is t = H/2 and, in this part of the results, t = 7H/2 ≈ H/3. In this

manner, it is possible to show that for t = H/2, the flow under the downstream

die is mostly determined by a Couette contribution in which the shear rate

throughout this region is nearly constant and approximated by the ratio V/H.

Consequently, particle diffusion is dominated by migrations from regions of

high to low concentrations due to the terms related to ∇ϕ which tends to

smoothen the concentration profile. As the film thickness decreases, the adverse

Poiseuille contribution increases and, as a result, the slope of the velocity profile

at the downstream die wall also reduces. Therefore, a stronger gradient in shear

rate is verified and particles tend to migrate towards the downstream slot die

where the shear rate is small. Subsequently, those particles are convected by

the flow into the deposited film region which explains the shape of the particle

concentration profiles for the given three Capillary numbers examined here.

To illustrate this, Figures 4.24(a) and 4.24(b) show the contour of particle

concentration for film thicknesses t = H/2 and t = 7H/20 considering

migration Model I with a moderate Capillary number Ca = 0.3860 and

viscosity model of Cross. Still regarding to 4.25(a), 4.26(a) and 4.27(a), it is

possible to verify that the particle concentration profile becomes more uniform

following an increase in Capillary number. In that case, as the Capillary number

increases, the residence time of the particles inside the coating bead decreases

and, consequently, there is not enough time for migration mechanisms to evolve

in the same way as in cases of small web velocities.

4.24(a) 4.24(b)

Figure 4.24: Contours of particle concentration for Capillary number Ca =
0.386: (a) for a final film thickness t = H/2 (b) for a final film thickness
t = 7H/20.
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Figure 4.25: Profiles of particle concentration and upstream meniscus (a) and
(b), respectively, for a Capillary number Ca = 0.077.
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Figure 4.26: Profiles of particle concentration and upstream meniscus (a) and
(b), respectively, for a Capillary number Ca = 0.386
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Figure 4.27: Profiles of particle concentration and upstream meniscus (a) and
(b), respectively, for a Capillary number Ca = 1.158
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4.2.4
Low-flow limit

In this section, the main focus is to study the effects of operating parameters

and liquid properties, such as shear sensitivity, on process limits and hence on

particle distribution in the coated film. In other words, a brief investigation

of the coating window for a slot coating flow is performed in order to define

if a specific product can be coated at a prescribed production rate. Since slot

coating is classified as a pre-metered coating operation, the thickness of the

deposited film is defined by the flow rate, set at the feed slot, and by the

velocity of the moving substrate in such a way that the process is independent

of other process variables. For instance, for a fixed substrate speed or Capillary

number, the flow rate may be reduced in order to deliver a thinner coated film.

Likewise, for a fixed flow rate, the web speed can be augmented to increase

production rates. However, those changes are ruled out by an operating limit

known as low-flow limit which is caused by a receding action of the downstream

meniscus.

The low-flow limit corresponds to the maximum web speed possible at a

given flow rate or the minimum film thickness possible at a given web speed

at which the coating flow is steady and two-dimensional (Carvalho & Kheshgi,

2000). Moreover, this stability in defined by a force balance at the downstream

meniscus which is intrinsically related to the opposing contributions of Couette

and Poiseuille flows beneath the downstream die. In this sense, for a given web

speed or, equivalently, Capillary number, if the flow rate and thereby the film

thickness decreases then the adverse contribution given by the Poiseuille flow

must, on the contrary, increase since the flow rate deriving from the Couette

contribution is fixed. On the other hand, for a given film thickness, if the web

speed (i.e., Couette contribution) increases then the adverse Poiseuille flow

must also increase in order to maintain a constant dimensionless flow rate

at the downstream region. As a result, the principal radius of curvature of

the downstream meniscus is reduced to increase the pressure difference across

the coating bead and hence sustain a stable two-dimensional flow. However,

this process cannot be performed indefinitely which means that there is a

maximum pressure gradient possible above which the flow becomes instable

or three-dimensional. Beyond this threshold, the upstream meniscus curves in

the remaining third direction and more fluid is pumped upstream giving rise

to failure mechanisms also known as ribbing and rivulets.

Following the same path, other two important limits define the coating

window in a slice of the n-dimensional space of operating conditions in which

the Capillary number is fixed. These limits are known as high- and low-vacuum
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limits. In this manner, if the vacuum pressure applied upstream is too high,

then the liquid invades the vacuum chamber and pre-metered action is lost. On

the other hand, if the upstream applied vacuum pressure is low, not enough

vacuum is applied to push the upstream meniscus and hence it invades the

feed slot leading to a bead breakup. Figure 4.28 gathers all three important

limits that borders the coating window by defects. Note that for each Capillary

number there is a critical gap-to-thickness ratio or optimum range pressure

difference that must be taken into account by manufactures. As stated before,

in the present work a special attention is dedicated to the low-flow limit so

that the vacuum pressure is adjusted in an effort to avoid both high- and

low-vacuum limits.

LOW-VACUUM LIMIT

STABLE COATING LOW-FLOW LIMIT

HIGH-VACUUM LIMIT

PatmPvac

PatmPvac

Patm

Pvac

PatmPvac

H/tmin

COATING

WITHOUT

DEFECTS

Pressure Difference,

P - Patm vacm

H/t

Ca = V/η σ

Figure 4.28: Coating window of a slot coating process as a function of the
pressure difference (Patm − Pvac), fixed Capillary number Ca and gap-top-
thickness ratio H/t.

Under the light of the latter analysis, one can observe that there is a

maximum pressure gradient possible at the downstream meniscus in order to

guarantee a stable coating bead. In addition to that, recall that the pressure

difference is ruled out by Young-Laplace’s Eq. 4.9 being determined according

to the principal radius of curvature of the downstream meniscus, R, and the

interfacial tension, σ. In this sense, according to Carvalho & Kheshgi (2000),

if the shape of the free surface is assumed to be cylindrical, the smallest radius

of curvature that can be obtained is
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Rmin =
H − t

2
(4.10)

where H is the coating gap and t is the film thickness. Following the works of

Ruschak (1976) and Landau & Levich (1942), the pressure gradient across the

liquid/gas interface can be modeled as

∆P = 1.34Ca2/3
σ

t
. (4.11)

As a result, Eqs. 4.9, 4.10 and 4.11 combined give birth to a relation that sets

ground to the onset of low-flow limit as follows

Ca = 0.65

(
2

(H/t)− 1

)3/2

. (4.12)

Equation 4.12 is also known as the viscocapillar model and this relation is

plotted in Fig. 4.29. Above the solid line, the coating bead is unstable and

a steady two-dimensional flow is not possible. Although the viscocapillary

model is valid only at low Capillary regimes, it is a good approximation for

the threshold of coating stability and is used in this work as a reference.

The analysis of the low-flow limit is performed considering Krieger’s

and Cross’ viscosity relations and Model I (i.e., original DFM) to predict

particle migration. Models II and III are not taken into account due to

numerical convergence problems as the film thickness reaches values below,

approximately, H/3. Under those circumstances, it was verified that curvature-

induced migration leads to very high gradients in concentration especially at

regions of recirculation of the flow which possibly explains the above mentioned

numerical issues.

Figure 4.29 depicts the low-flow limit for three different Capillary num-

bers: 1.158, 0.2316 and 0.0772, respectively. Note that a Newtonian liquid be-

havior is approximated by considering a coating liquid in which the viscosity is

a constant function of the bulk concentration. The Newtonian results deviate

from the viscocapillary model for moderate to high Capillary numbers. In that

case, for Capillary numbers Ca = 1.158 and Ca = 0.2316 this discrepancy can

be explained by the fact the viscocapillary model is only valid at low Capil-

lary numbers which is in agreement with the works presented by Carvalho &

Kheshgi (2000) and Romero et al. (2004). Equally important, note that for
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Ca = 0.0772, the Newtonian result recovers the viscocapillary model, as ex-

pected. Still in the same track, one shall observe that as particle migration

is considered, the zone of stability of the coating flow is broadened. In fact,

for shear sensitive liquids, where a shear thinning behavior is dominant, the

minimum film thickness possible is even smaller for a given web speed.

From Fig. 4.29 one can also observe that the discrepancy between Cross’

model and the Newtonian result apparently decreases as Capillary number

rises. For instance, the absolute difference is around 1.2 for Capillary numbers

0.0772 and 0.2316 and 0.712 for Ca = 1.158. In addition, considering Krieger’s

viscosity model it is possible to detect the same trend in which the absolute

differences are: 0.322, 0.37 and 0.40 for Capillary numbers 0.077, 0.2316 and

1.158.

H/t

C
a

5 10 15 20
10-2

10-1

100

101

Viscocapillar Model

η = η (φ)

η = η (φ,γ)
NewtonianCa = 1.1580

Ca = 0.2316

Ca = 0.0772

_
φ= 0.30

.

Figure 4.29: Low-flow limit predictions by: viscocapillary model and viscosity
models of Krieger and Cross considering migration Model I.

Figure 4.30 shows the meniscus configuration at the critical gap-to-

film thicknesses considering all viscosity models a fixed Capillary number.

Again, note that, as particle migration is taken into account, the region of

stability is broadened. Moreover, if the suspension is shear sensitive, smaller

film thicknesses can be obtained for the same production rate or web velocity.

Figures 4.31 and 4.32 show the contour map of concentration field and

particle concentration profiles at the final deposited film for Ca = 0.2316

and t ≈ H/7. Under those circumstances, a recirculation appears under the

downstream die and a considerable amount of particles tend to be trapped

inside the vortex which is in agreement with the Newtonian results for coating
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simulations for t < H/3 (Silva, 2013). In that case, the adverse flow due to the

pressure difference across the downstream meniscus creates a layer of maximum

negative velocity and thereby vanishing shear rate close to the die lip towards

which the particles migrate by means of shear-induced particle migration. In

this way, particles are convected to the film region by viscous drag which

explains the shape of particle concentration profile at the deposited film in

Fig. 4.32. Again, the concentration of particles at the top of the film is greater

for a shear sensitive liquid in comparison with a concentration-dependant one.

Considering that the dimensionless flow rate is, approximately, constant for

both viscosity models, in order to maintain the same stress at the wall, if the

the viscosity is lower, then higher gradients in shear rate are generated leading

to a stronger flux of particles towards regions of low shear rates such as the

layer of maximum negative velocity under the downstream die.

X

Y

0.7 0.8 0.9 1
0

0.05

0.1
Ca = 0.2316

η = η (φ,γ) , H/t = 7.14

η = η (φ) , H/t = 6.25

η = η (φ) , H/t = 5.88
_

.

Figure 4.30: Downstream free surface at different gap-to-thickness ratio and
Capillary numbers considering concentration-dependent only viscosity.
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Figure 4.31: Contour map of concentration field considering viscosity model of
Cross’ considering a fixed Capillary number Ca = 0.2316.
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Figure 4.32: Particle concentration profiles comparing both viscosity models
considering a fixed Capillary number Ca = 0.2316.
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5
Final remarks

In this work we investigated numerically the effects of liquid rheological prop-

erties (e.g., pseudo-plastic behavior) on process limits and particle distribution

on a typical slot coating flow. In order to capture this non-Newtonian behavior

the viscosity model of Cross (1970) was chosen and the values of the material

constants follow experimental predictions presented by Choi & Krieger (1986).

On the other hand, in an effort to include particle migration mechanisms, three

migration models were studied, namely: Model I, Diffusive Flux Model (DFM)

proposed by Phillips et al. (1992) in which shear-induced particle migration

is the main source of flux; Model II, which is an extension of Model I that

also includes curvature-induced migration; and, finally, Model III, which in

turn is an adaptation of Model II with volume-fraction-dependent parameters.

With all the equations posed, the whole set of non-linear partial differential

equations were solved numerically by using the GFEM coupled with Newton’s

method. However, numerical issues were encountered due to the singularity of

the DFM in regions where local shear rate approaches zero leading to conver-

gence problems. In order to overcome this adversity, we employed a modified

version of the non-local stress contribution to the shear rate in which γ̇ = γ̇δ

when γ̇ → 0 (Miller & Morris, 2006; Ahmed & Singh, 2011).

The results of this work were divided in three main blocks regarding

the study of a typical slot coating flow. First, we analyzed the influence of

considering or not a shear sensitive viscosity model in cases where particle size

is small enough so that colloidal forces compete with macroscopic forces of the

flow yielding a shear thinning behavior. In this way, for a fixed dimensionless

flow rate or final film thickness, we verified that when this pseudo-plastic

behavior is taken into account, the size of the upstream region of the slot

coating flow is augmented in comparison to the case where a concentration-

dependent viscosity model is employed. Also, given that the flow rate and

hence the shear stress at the wall is fixed for both cases, a reduction in local

viscosity generates an increase in shear rate so that the flux of particles towards

regions of low rates of shear is intensified. For instance, in the case where

t = H/2 the particles tend to be concentrated at the center of the coated film.
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Also, an examination of all migration models is performed in this part of the

results. To this end, with regards to Model II, we showed that as curvature-

induced migration is considered, more particles tend to migrate towards regions

opposite to curved streamlines like those ones close to the upstream static

contact line. In addition to that, we also have shown that Model III (i.e.,

with concentration-dependent diffusion parameters) delivers a more uniform

concentration field. Since the ratio kc/kη depends on local concentration, and

this dependency is explicit on kc = kc(ϕ), the migration mechanism due to

gradients in viscosity dominates those related to gradients in shear rate and to

the curvature of the streamlines. This mechanism acts on an opposite direction

of the latter two mentioned fluxes delivering a more uniform concentration

profile.

The second block of results explores the effects of the Capillary number

on particle concentration profiles at the coated film and on the shape of the

downstream meniscus for a fixed film thickness. First of all, in this part of

the results we verified that for a film thickness t ≈ H/3, the velocity profile

under the downstream die is such that the shear rate close at the wall is lower

and a shear-induced particle migration towards this area is pronounced. As

a result, this agglomerate of particles is convected by the flow to the film

formation region so that the particles tend to accumulate at the top of the

coated film. Additionally, for a fixed vacuum pressure, we showed that as the

Capillary number increases, the upstream dynamic contact line moves in the

down-web direction and the downstream meniscus becomes more curved. This

latter phenomenon is due to a receding action of the gas-liquid interface to

cope with an increase of the Couette flow rate under the downstream die.

Again, since the dimensionless flow rate is constant, an increment in Couette

contribution must be followed by an equivalent increase in adverse Poiseuille

contribution that is made possible by a reduction of the radius of curvature of

the downstream meniscus.

Finally, the third block of results focus on a well-established operating

limit for a slot coating application also known as low-flow limit. In this

sense, we presented the minimum film thickness or flow rate possible given

a fixed web speed or Capillary number. With this in mind, a comparison

between the numerical predictions of the onset of low-flow limit considering

both viscosity relations and the viscocapillary model was performed. In the

latter analysis we verified that the region of stability is broadened as particle

migration mechanisms are taken into account. Moreover, it was detected that

even smaller film thicknesses can be obtained if the suspension is considered

shear sensitive. A further investigation is made in order to study the shape of
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the downstream meniscus and particle concentration profile at the deposited

film. In this sense, it follows that for a given viscosity model, the critical gap-

to-thickness ration varies with the Capillary number so that the downstream

meniscus becomes more curved for higher values of web velocity. Alternatively,

for a fixed Capillary number, we verified a similar trend as viscosity model

was changed. For a Capillary number Ca = 0.2316, the meniscus of a shear

sensitive suspension becomes more curved than the one of a concentration-

dependent viscosity yielding a thinner final film thickness. With regards to

particle concentration distribution, one shall observe that, for t = H/7, the

particles tend to be trapped inside the vortex or recirculation region just below

the downstream die. In that case, the adverse Poiseuille flow generates a layer

of vanishing shear rate at the region of maximum negative velocity towards

which the particles are driven due to shear-induced particle migration. Also,

as a final analysis, we compared particle concentration profiles at the deposited

film considering the viscosity models of Cross and Krieger, respectively. Again,

as the dimensionless flow rate is the same for both cases, if the viscosity at the

downstream die decreases, then gradients in shear rate are intensified driving

more particles to regions of lower shear rates. As a result, the concentration

of particles at the top of the deposited film is greater than the case in which

the viscosity is a function of the local concentration only, i.e., neglecting shear

rate dependency.

5.1
Future Works

As suggestions of future works one shall consider:

• Perform experiments in order to better understand the physics of the

problem and confirm the validity of the numerical results presented

in this work. In this manner, confocal microscopy could be a good

experimental technique to investigate particle distribution in the final

film thickness. Also, experimental results are important in an effort to

fit the phenomenological parameters of the DFM in accordance to the

complexities of a typical slot coating flow.

• Improve the numerical formulation in order to overcome numerical issues

related to convergence problems when curvature-induced migration is

taken into account in simulations where the final film thicknesses is lower

than H/3.

• Expand the model to consider effects of sedimentation for colloidal

suspensions where inter-particle forces may assume an important role.
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In addition to that, include effects of drying processes to predict and

understand the final particle distribution on the coated product.

• In addition, consider the particle orientation with respect to the flow in

cases of non-spherical particles. For instance, Siqueira (2016) employed

a modified particle conformation tensor for the orientation of ellipsoidal

particles in complex flows. The same model might be applied but, now,

considering the effects of a shear-sensitive viscosity relation.
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