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Appendix A – Parallel programming and simulation 
dictionary 

Due to the high computational cost involved in the optimization and 

simulation process, this methodology makes use of parallel programming to 

distribute these computationally expensive tasks. We use OpenMPI (the open 

software message-passing interface available on <www.open-mpi.org> distribute 

the tasks related to optimization and simulation to the processors that have been 

assigned to handle such tasks.  

Our software architecture divides the workload into five kinds of tasks:  

 Master 

 OptManager (Optimizer Manager) 

 OptWorker (Optimizer Worker) 

 SimManager (Simulator Manager) 

 SimWorker (Simulator Worker) 

 

 

The manager tasks act as job schedulers that interface with the worker tasks 

to keep them busy but not overloaded, and also manage the packaging and 

unpackaging of sets of jobs that need action. In addition, we maintain a dictionary 

of all simulation results that serves two purposed: firstly, in the event of hardware 

or software failure it facilitates rapid restarts because it eliminates the need to 

resimulate previously obtained results, and secondly, it speeds optimization by 

avoiding repeated simulations. 

The Master process packages the first optimization job and sends it to the 

OptManager, who, in turn sends it to one of the OptWorkers. As an OptWorker 

requires simulations to be performed for evaluation of the objective function, these 

are packaged into simulation jobs that are sent to the SimManager. The 

SimManager unpacks each simulation job into its individual simulation tasks that 

are queued and send to SimWorker as they become available. Once an OptWorker 

completes its task, the resulting forecast measurements are clustered and each 

cluster is used to spawn a new optimization job that is sent to the OptManager to 

begin the next cycle of optimization. This is illustrated at the Figure A.1. Once all 
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time steps be completed optimized OptManager send this message to Master and it 

finish all process.   

 

 

Figure A.1: Proposed MPI architecture 

 

During the optimization process, the same alternative of valve settings can 

be proposed at different periods over the optimization horizon. Thus, in order to 

eliminate the need for repeated simulations during the optimization, we created a 

dictionary of simulation results, saving valves settings, reservoir model ID, their 

respective forecast measurements, and the forecast NPV. Thus, before a simulation 

job is send to a SimWorker, the SimManager checks if the simulation has already 

been performed sometime in the past; if yes, then resimulation is avoided and the 

associated simulation results are sent from the dictionary. This serves two purposes: 

it avoids spending time with repeated simulations, and it allows rapid restarts in the 

event of hardware or software failure.  
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Appendix B – UNISIM model for Eclipse simulator 

 

The simulation model provided with UNISIM-I has been built for CMG’s 

IMEX simulator (CMG, 2015).  To be able to include a more sophisticated handling 

of the completions equipment and to be able to use our existing workflows, it was 

necessary to construct an equivalent model in Eclipse.  Inevitably there are some 

differences between the handling of various properties in the two simulators, 

particularly: 

 Relative permeability curves / saturation functions: By default IMEX 

applies an analytical smoothing at the end points, whereas Eclipse uses only 

the data provided.  The handling of the input of irreducible oil also differs 

between the two simulators; 

 Well indexes: Eclipse uses the Peaceman model (Peaceman, 1983) for 

calculating well indexes (alternatively the well index may be calculated 

externally), this option is available in IMEX but has not been used by the 

UNISIM-I model where instead the areal average formulation is used with 

a fixed value for the IMEX parameter ‘geofac’; 

 PVT properties: The PVT model used in the IMEX model of UNISIM is 

largely equivalent to that obtained from the PVCO keyword in Eclipse, i.e. 

undersaturated oil is assumed to have a constant compressibility and 

viscosibility.  However, the model for the viscosity of undersaturated oil is 

slightly different between Eclipse and IMEX (exponential versus linear). 

To confirm that the Eclipse model was in agreement with the IMEX model, 

a scenario was tested in which the wells NA2 and NA3D were set as water injectors, 

attempting to inject at the maximum permissible rate and wells NA1A and RJS19 

were set as producers with a simulation time frame of 10 years. Converting some 

of the wells to injectors helps to better test the simulator model and prevents us 
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from rapidly reaching the pressure control.  Note that this case is not intended to 

demonstrate an optimized production strategy. 

The Eclipse and IMEX models were in agreement as to the initial total 

volumes of oil, water, and gas in place.  The bottom-hole pressures, production and 

injection rates were also reasonably similar as can be observed in Figure B.1, the 

mnemonics WOPR, WWPR, WWIR and BHP correspond respectively to the oil 

and water production rates, the water injections rates and the bottom-hole pressures. 

The small discrepancies are likely due to the difference in definition of well-index 

and pressure-dependence of viscosity. 

 

  

  

Figure B.1: Liquid production and injection rates along with bottomhole pressures as 

determined by Eclipse and IMEX simulation models. 
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Appendix C - Multi-segment well 

There are some ways of representing the donwhole inflow control devices. In 

this thesis we choose to use the Eclipse simulator to perform the reservoir 

behaviors, because this simulator allow us to represent the smart valves by multi-

segmented wells. Knowing that the type of the valves interfere on the valves 

aperture settings, this appendix describes was divided in two parts, as follow: 

1. Physical description and types of flow control valves; 

2. Multi-segment wellbore model of valves. 

 

All information in this appendix was obtained by Schlumberger employers, 

once this company provides smart valves to many reservoir fields.  

 

 

Physical description and types of flow control valves 

 

Flow control valves allow the creation of a ‘choke’ restriction to the flow with 

a smaller (often much smaller) cross-sectional area than that of the tubing. Flow 

control valves can be installed either as annular flow control valves or inline flow 

control valves.  The annular flow control valve controls the flow into or out of the 

tubing and can be used e.g. for zonal isolation.  The inline flow control valve 

controls the flow along the tubing and can be used e.g. to control flow from 

multilateral wells or along horizontal wells. 

A wide variety of flow control valves are available, with many common 

features and some differences.  The flow control valves available from 

Schlumberger all share the following properties: 

 Tubing retrievable (wireline retrievable available for gas lift applications); 

 Can be used for either production or injection; 

 Can be installed as either annular control valves or inline control valves; 

 Sand control; 

 Suitable for environments with scale deposition. 
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More specific features, relevant to the project, of selected valves are: 

TRFC-HM AP/LP 

 Hydraulic control with a single line; 

 11 discrete choke positions including fully open and closed. 

Here the hydraulic control uses only a single line, with pressure pulses being 

used to cycle through the available positions.  The valve cross-sectional area of the 

choke positions can be customized to the reservoir. 

Odin 

 Hydraulic control with two lines; 

 8 discrete choke positions including fully open and closed; 

 Mechanical override possible. 

Here the hydraulic control uses two lines; it is possible to cycle through the 

choke positions by applying a differential pressure between the two control lines.  

Where multiple flow control valves are to be installed in a single well, one of the 

two control lines can be shared. 

TRFC-E 

 Electrical control with single electrical cable that can be shared with other 

control valves and monitoring equipment; 

 Infinitely adjustable choke. 

Electrical control allows for continuum of valve cross-sectional area, and 

avoids the need to cycle through choke positions. 

In Brazil the Odin valve is being used as part of the intelligent completions 

architecture for the Lula field.  The electrical control valve TRFC-E is a next-

generation technology and has not yet been used in Brazil. 

In addition to the flow control valve it is possible to install a sliding sleeve 

device.  This provides an additional opportunity to mitigate against valve failure, 

although a slickline intervention would be required.  Chemical injection lines 

should also be installed to help prevent/remove scale formation. 

 

 

Multi-segment wellbore model of valves 

 

The multi-segment wellbore model of Eclipse allows for a more detailed 

description of fluid flow through the wellbore.  It is particularly useful for modeling 
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the complicated topology of multilateral wells and gives a more complete model of 

multi-phase flow in horizontal wells.  In this project it is the built-in model of the 

pressure loss due to flow through flow control valves.  Constructing a multi segment 

wellbore model requires us to generate the topology of the flow-paths, this can be 

done either manually or using Petrel to automatically generate this from a 

description of the installed completion equipment. 

The flow control valve model as implemented in Eclipse (through the 

WSEGVALV keyword) can model the pressure loss through the valve due to both 

acceleration of the fluid through the constriction and any frictional loss through the 

valve. 

A simple calculation can give us some insight into the exact relationship 

between the cross-sectional area of the valve and the restriction of the flow that can 

be expected.  An extremely simple model for the (single-phase) production from a 

reservoir is that the flow rate is proportional to some pressure drop between the 

reservoir pressure and the wellbore pressure, i.e. the flow rate, 𝑄 = 𝜆Δ𝑝 for some 

constant 𝜆 that depends on the productivity of the reservoir and on the well 

connectivity and where Δ𝑝 is the pressure difference driving the flow.  The presence 

of the constriction in the valve leads to an additional drop between the pressure in 

the reservoir and the wellbore, and so the restricted flow rate is  

 

 𝑞 = 𝜆 (Δ𝑝 −
𝜌𝑣2

2𝐶2
), 

 

where 𝑣 is the flow velocity through the constriction, 𝜌 is the fluid density, and 𝐶 

is a flow coefficient for the valve.   
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