
4 
Proposed methodology  

In general, there are three alternative or complementary strategies to face 

uncertainty: (1) to be robust; (2) to be knowledgeable; and (3) to be flexible 

(Moczydlower et al., 2012). In Chapter 2, we described these strategies, showing 

the importance of them to make better decisions under conditions of uncertainty. 

Chapter 3 presented a literature review, reporting some related works, focusing on 

showing how they incorporate uncertainty and information to make decisions. 

Within the context of reservoir development, we can summarize the literature 

review saying that the methodologies available do not give a quantitative value of 

flexibility through a realizable flow control strategy to a real situation. 

The principal focus of this work is on defining the correct problem 

formulation, determining an optimal development strategy in light of uncertainty 

and the acquisition of future information, and on the development of efficient 

methods to determine approximate solutions to this problem.  The work does not 

seek to develop a novel optimization routine, but instead uses the appropriate 

existing optimization routines as part of a complete methodology. So, in this 

chapter, we propose a methodology, based on ADP, that is able to define the flow 

control strategy over time, considering uncertainty scenarios, and the possibility of 

incorporating the further information acquired to reduce the uncertainty at the time 

to make decisions. We seek to be robust, knowledgeable and flexible, without 

requiring an astronomically large number of evaluations, making this approach 

practical for expensive optimization problems as well.  

We apply the proposed approach to value the flexibility of smart wells, 

defining the optimal flow control valves, in the presence of significant geological 

uncertainty scenarios, following a combination of both proactive and reactive 

strategies, permitting much greater flexibility over the timing of valve adjustment 

and associated measurement acquisition without a corresponding increase in 

numerical complexity.  
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4.1. 
An approach to value flexibility considering uncertainty and future 
information 

To examine the value of flexibility of smart wells we need first to quantify 

the benefits of this technology, by optimizing the flow control strategy, and then 

comparing the possible gains against an equivalent case without flexibility 

(conventional wells).  The goal is to control the zones at time intervals (e.g. 

monthly, quarterly etc.) in order to achieve assigned maximum production for as 

long as possible. Therefore, in summary the idea of the optimization strategy 

proposed in this thesis is to seek the optimum control settings of the smart wells, 

over all time, maximizing the expected NPV under uncertainties and dynamically 

reacting, adjusting the control settings, with respect of resolution of uncertainties 

through the acquisition of future information. The need to adjust the control settings 

arrives from the fact that the acquisition of information reduce uncertainties and 

consequently alters the ideal control settings. As a result, we have a “playbook” 

describing the management of valve settings over all time, reacting to the 

information acquired, and the optimized expected NPV of this flexibility. This 

playbook also can be used to allow us to value the flexibility in alternative 

scenarios, without spend optimization. 

This approach uses the ideas of ADP (Powell, W., 2010), described in the 

previous chapter, to reduce the computation burden. Despite this methodology 

limits the flexibility somewhat so that not all the value of complete dynamic 

programming is retained – for instance, since the acquired information only affect 

the decision after it has been made, this policy will not remake the early decision in 

order to increase the future value.  That such losses are often small, and will be 

more than offset by the increased flexibility that can be feasibly simulated with this 

approximation. 

It begins by optimizing the valve settings over all time, maximizing the 

expected NPV in the absence of future information. The expectation is made over 

a set of reservoir models representing the reservoir uncertainty. The valve settings 

can be adjusted at a discrete set of times. The result is the set of best settings, over 

all time steps, based only on what is known at time zero, i.e., this is the best 

proactive strategy. 
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These settings are then applied to the entire set of reservoir models and future 

measurements are forecast for the next time step.  We then proceed to the next time 

step, i.e., the next time at which valve adjustments are allowed.  At this time we 

incorporate the information forecast for each reservoir model, potentially reducing 

uncertainty. The procedure for including future information involves applying 

cluster analysis to the forecast measurements. The details for the cluster analysis 

done by the proposed approach are in Appendix A. The notion is that measurements 

falling within a common cluster are associated with models that are 

indistinguishable using only those measurements. In other words, the original set 

of models representing the prior uncertainty is partitioned into smaller sets of 

models that represent the uncertainty after assimilation of measurement data. This 

part of the methodology identifies when measurement data are informative. Within 

each cluster we have reduced uncertainty and should consider a change in valve 

settings going forward. 

For each cluster of models, we determine a new optimal proactive strategy 

for the future valve settings (past valve settings are not adjusted). This creates a 

recursion in which an effective, and realizable, strategy can be obtained that keeps 

the benefits of both proactive and reactive strategies. Since this recursion is 

performed in the forward direction, the number of required simulations is 

exponentially reduced compared to the complete dynamic programming solution. 

Figure 4.1 shows a simplified decision tree for our optimization strategy that 

considers both model uncertainty and future information. In the red box we provide 

an illustration of the first step of our optimization.  

An illustration of the decision tree for the valuation of control valves with 

information is shown in Figure 4.2.  In this case with three decision points and two 

measurement points, corresponding to choosing the initial valve settings at time t0, 

and then possibly changing the valve settings at two future times, t1, t2.  

Measurements are also taken at times t1, t2, with the future valve settings chosen in 

light of this new information.   
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We implemented this procedure, following the optimization routine 

proposed by Yeten et al. (2002), such that the performance of the reservoir for a 

particular set of valve settings can be determined via forward simulations. This is 

accomplished by dividing the entire simulation period into n optimization steps 

(these steps are distinct from the simulator time steps). The valve settings for the 

first period (time 0 to time 1) are then optimized. This optimization is performed 

such that the settings for this period will be the optimum for the entire simulation. 

We note that this strategy can be applied using different optimization algorithms, 

when we seek the valve settings that maximize the objective function.   

 

 

Figure 4.2: Decision tree for a flexible solution with measurement information. 

Figure 4.1 Decision tree of our optimization strategy that considers both model uncertainty 

and future information. The red box is an illustration of the first time step of our optimization. 
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The proposed approach in this thesis is ambivalent about the optimizer used, 

i.e., we can apply the methodology proposed to value flexibility using any optimizer 

method to find the optimum controls. Therefore, we can overcome the disadvantage 

situation about the number of evaluations choosing to use an optimizer that require 

a reduced number of evaluations to find the optimum controls. 

The procedure of re-optimize the settings when information is acquired can 

lead to repeated evaluations. Therefore, we cannot guarantee that a valve setting 

will not require evaluation at more than one time, since it may not be an optimum 

setting at the first time period but could be the optimum setting at the next time 

period. To solve this problem and consequently reduce the number of evaluation 

done we implemented a simulation dictionary that saved evaluated solutions. The 

proposed approach still requiring a large number of evaluations, but most of the 

expensive reservoir simulations can be simulated independently. We therefore 

implement all processes using Parallel Programming (Pacheco, 1997). More details 

about the parallel implementation and simulation dictionary are presented in the 

Appendix A.  

So that we would not require nested optimizations and consequently provide 

a sufficient reduction in the number of simulations required, we investigated several 

valuation policies that allow us to effectively use our optimization schemes. The 

valve settings can be optimized considering different levels of optimization 

flexibility, varying how often each valve are set during the time horizon. The next 

Sections describe their variations. 

 

4.2. 
Timing for optimal control  

The most time-consuming part of the computational effort associated with 

this methodology lies in the reservoir simulations required to determine optimal 

proactive control strategies. Although this proposed approach is ambivalent to the 

optimizer method, we choose to use an optimizer that could be efficient for the case 

of expensive to evaluate functions.   The optimization scheme that we employ is 

based on the Nelder-Mead (downhill simplex) method with the additional use of a 

radial-basis function (RBF) proxy to enhance the rate of convergence. This 
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approach was described in more detail in chapter 3, it was proposed by Rashid et 

al.. (2013) and provided to us as an optimization library. As is usually the case with 

optimization schemes, the number of function evaluations (hence reservoir 

simulations) required for convergence increases as the number of control variables 

increases.  There are a variety of policies that follow this general approach, differing 

by the degree of flexibility that is afforded to the strategy at each step, i.e., differing 

by the number of possibility to valve settings adjustment. We describe them in 

detail in the following sections. 

   

4.2.1. 
Rolling-flexible  

A straightforward strategy allows the valves to be adjusted at each time step 

during optimization. We refer to this strategy as ‘rolling-flexible’. We apply a 

policy that at each step of the optimization process we seek the optimal flexible 

valve settings. So at each step we now seek the optimal non-learning flexible policy 

rather than the optimal static or fixed-valve policy.  The optimal valve settings are 

then given by the follow eq. 4.1-3, with the final valuation given by eq. 4.4. 

 

 

(4.1) 

 

 

(4.2) 

 

 

 

 

(4.3) 

 

 

 

(4.4) 

 

The rolling-flexible policy provides us to plan ahead with our choice of valve 

settings; in particular the optimal non-learning policy can be obtained from rolling-
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flexible which is not possible for the rolling-static policy.  Even the rolling-flexible 

policy limits our flexibility somewhat so that not all value is retained – for instance, 

since the measurements only affect the optimization after the previous valve 

settings have been fixed, this policy will not select valve settings in order to increase 

the future value from measurements.  We suspect that such losses are often small, 

and will be more than offset by the increased flexibility that can be feasibly 

simulated with these approximations. 

This strategy is the most adaptable, but results in a large number of control 

variables as it grows linearly with the number of time steps. This, in turn, greatly 

increases the number of simulations to reach convergence. 

 

 

4.2.2. 
Rolling-static 

An alternative approach allows the valves to be adjusted just once during the 

optimization step, thus rendering them constant from that point in time onwards. 

This approximation was proposed in Yeten et al.. (2002).This approximation 

greatly reduces the number of control variables involved with faster optimizations. 

We refer to this strategy as ‘rolling-static’. Because of the ‘rolling’ nature of this 

strategy, it still allows for flexibility. Note that this strategy is still proactive in that 

it optimizes based on reservoir forecasts, but is also reactive in that it accounts for 

future information.   

When applying the rolling-static valuation policy, we begin with the optimum 

settings for fixed flow control valves, and use this to fix the initial setting of the 

valves.  With the initial valve setting fixed, we can then determine the range of 

values for the measurement information up to the first time that the valve settings 

may be adjusted, and apply the clustering. For each cluster we find the new optimal 

fixed valve setting for the remainder of the simulation, using this value to fix the 

second valve setting.  This process then continues until all the valve settings have 

been determined. 

Some decision trees that represent the steps of the rolling-static policy for the 

3-step problem are shown in Figure 4.3, where we write DS
0-2 for the decision space 

for all possible fixed valve settings at times t0, t1, t2, and similarly DS
1-2 is the decision 
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space for all possible fixed valve settings at times t1, t2.  Under the rolling static 

policy the initial valve setting is given by equation 4.5. 

 

 

(4.5) 

 

The optimal setting for the valves at time t1, after clustering the models 

based on the values of the first measurement is then according to  

 

 

(4.6) 

 

with the final valve settings given by  

 

 
(4.7) 

 

With all of the valve settings determined the final valuation generated by 

following the rolling static policy is according to  

 

 

(4.8) 

 

The rolling-static policy extends naturally should there be more than three 

times at which the valve settings may be adjusted. 

Although at each step the rolling-static policy requires us to optimize a fixed 

valve setting, the resulting optimal valve settings will not be fixed.  The rolling-

static policy allows us to react to future measurement information to maximize the 

value, and since at each step we always choose the optimal static policy, we 

automatically have a solution that is somewhat robust to the possibility of valve 

failure.  However, the rolling-static policy does not allow us to plan ahead with our 

choice of valve adjustments to maximize value and this may lead to an 

undervaluation. The rolling-flexible policy seeks to address these concerns. 
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a) Determine optimal fixed valve settings 

 

b) Fix initial valve setting, determine measurement values M1, and determine optimal 

fixed valve settings for D1, D2. 

 

c) Fix d1, determine measurement values M2, and find optimal valve settings for D2. 

 
 

Figure 4.3: Decision trees used in sequential valuation with rolling static 

 

 

4.2.3. 
Rolling-flexible-k 

 

A compromise between the maximal flexibility (but high computational 

expense) of the rolling-flexible strategy and the reduced number of model 

simulations required by the rolling-static strategy is the so-called ‘rolling-flexible-

k’ strategy. Here, the valve settings can be adjusted at a limited number of times 

(k), with the valve settings being held constant between these times. While k 
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indicates the number of unique valve settings over time, we also need to define how 

to partition the time horizon accordingly. We propose three possible methods:  

• Uniform consecutive: the partitions are the first k-1 time steps followed by 

a partition comprising all of the remaining time steps;  

• Uniform non-consecutive: divides the time horizon into k approximately 

equal partitions; 

• Geometric: divides the time horizon into k partitions where the size of 

successive partitions increases approximately geometrically. 

Figure 4.4 illustrates these three approaches for k=3. Uniform consecutive 

and geometric partitioning both divide the time horizon so that at the beginning, 

when the uncertainties are high, the partition sizes are smaller than in later times, 

when uncertainties are lower. In particular, based on some preliminary tests on 

simple models, we believe that the geometric partitioning may often be the most 

appropriate.  

Figure 4.5 illustrates a comparison between the rolling-static, rolling-flexible 

and rolling-flexible-k (with k=2) strategies. Using the rolling-flexible-k (uniform 

consecutive), the time horizon is divided into 2 parts, and the valve settings can 

change only twice over the entire time horizon. We can easily observe that using 

the rolling-flexible-k strategy provides increased flexibility compared with the 

rolling-static strategy and a reduced number of control variables when compared 

with the rolling-flexible strategy.  

Note that all of these strategies can be considered as special cases of the 

rolling-flexible-k strategy. The rolling-static strategy is equivalent to rolling-

flexible-k strategy with k=1. The rolling-flexible strategy is equivalent to rolling-

flexible-k strategy with k equal to the number of time steps between the 

optimization time and the end of the time horizon. 

 

 

4.3. 
Uncertainty reduction by measurements   

As described previously, the proposed approach uses the information derived 

from measurements to reduce the reservoir uncertainty over time. For that, we 

consider the forecast information from reservoir simulation, applying the valve 
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settings to the entire set of geological model for the next time step, then we apply 

cluster analysis to the forecast measurements. The notion is that measurements 

falling within a common cluster are associated with models that are 

indistinguishable using only those measurements.  

 

 

Figure 4.4: Different methods for partitioning the time horizon when using rolling-flexible-

k (with k=3). The different colors represent time intervals where the valve settings are constant. 

 

 

Figure 4.5: Comparison between strategies for the proactive control of valve settings. Each 

color represents a period of time with constant valve settings 

 

Therefore, we reduce the uncertainty as the original set of models 

representing the prior uncertainty is partitioned into smaller sets of models that 

represent the uncertainty after assimilation of measurement data.  In other words, 

once the prior valve settings are known, there will be as many different 

measurement sets as there are reservoir models describing the uncertainty, thus we 

apply the rolling methodology with production continuing for infinite time and the 

clustering is used to group the uncertainty scenarios, reducing the uncertainty at 

time to make decisions.  

Each measurement has an associated “decision resolution”, representing both 

the accuracy of the measurement and also our policy in how much variation or 
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change is needed in a particular measurement in order to motivate the engineer to 

make a decision. Measurement accuracy limits our ability to use measurement 

information to resolve model uncertainty. Even where the resolution of the 

measurement devices is high, it is unlikely that a decision maker will alter their 

strategy based on small changes to such measurements. This leads to a coarser 

granularity of resolution, which we refer to as the “decision resolution”. This 

denotes the minimum quantum step in a particular measurement needed to make a 

decision (even if that decision is to do nothing). The need to use a decision 

resolution that is coarser than the measurement resolution can also be thought of as 

a consequence of the (by necessity) “limited nature” of the simulation model used 

to define uncertainty. While our uncertainty models may be sufficient for the 

purposes of calculating an expected NPV, it might not be sufficient to represent all 

the possible measurement values with as high a resolution as the measurement 

itself. 

In this approach, we proposed to use the k-midranges clustering (Carroll & 

Chaturvedi, 1998) to partition the uncertainty scenarios. The k-midranges is a 

variation of k-means clustering, where the difference in the clustering result 

originates from the approximation used to find the nearest centroids for the data 

points, using the midrange as the center of the cluster rather than the mean. 

Basically, the k-midranges clustering employ the infinity norm (also referred to as 

the ‘max metric’ and ‘dominance metric’) in finding the range of a cluster, and with 

this distance metric, the distance of a data point from a centroid is calculated by 

taking the dominant feature of the difference vector between the data point and the 

centroid (Malinen, 2015).  

In summary, the k-midranges algorithm starts by initializing the k centroids, 

and a random selection among the data points is made. Then k- midranges consists 

of two repeatedly executed step: Assign each data point to clusters specified by the 

“nearest” centroid. Update step: Calculate the new centroids of each cluster of the 

observations in the new clusters. These steps are repeated until the centroid 

locations do not change anymore.  

To determine the number of clusters required we apply an iterative approach, 

gradually increasing the number of clusters until the greatest distance between two 

data points within the same cluster is less than a given decision resolution. As the 

resulting clustering might still be suboptimal, we apply additional procedures that 
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attempt to reduce the total number of clusters while still maintaining the decision 

resolution requirement. These procedures consist of testing different starting states 

for the k-midranges algorithm, first through randomly selected initial states and then 

through attempting to reduce k by random removal of previously calculated cluster 

centers. 

Despite to k-midranges, as k-means, propose a solution that converge to a 

local optimum and do not guarantee a global optimality, the k-midranges may be 

best suited to isolating outlying clusters (Carroll & Chaturvedi, 1998). The k-

midranges produces clusters that tend to be of a similar size, whereas the k-means 

algorithm tends to produce clusters that contain a similar number of data points. 

 

4.3.1. 
Timing for measurement assimilation  

The previous section considered a means to invoke the timing of valve 

operation for an optimum proactive strategy (considering uncertainty). At the end 

of each optimization, the ensemble of uncertainty models need to be clustered based 

on forecast measurements. This is so that the next optimization step can determine 

the optimal reaction to a future measurement. The number of required optimizations 

in this approach can be reduced significantly by considering whether it is necessary 

to optimize the next time step. If there is only one cluster, then uncertainty has not 

been reduced by the latest forecast measurement and the previously determined 

optimal settings thus remain valid. The forecast measurements for each successive 

time step are clustered without re-optimization until two or more clusters are 

identified, at which time the optimization process is resumed. Thus, the times at 

which optimizations are conducted are determined by forecast measurements and 

only when such information results in some uncertainty reduced that is within the 

resolution of our decision making.  

To illustrate this approach, consider the rolling-flexible policy ahead of some 

future measurement. The valve settings before this future measurement is described 

by some vector x, and the valve settings, after the measurement has been acquired, 

are described by some vector y. Before the future measurement, we must optimize 

the expected NPV (considering all future production), i.e., some function f(x, y), 

and this gives optimal controls x* and y* for x and y respectively.  If the future 
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measurement does not alter the set of models used to calculate the expected NPV 

then we must optimize the same function f, with the only difference being that the 

controls before the measurement are now fixed as x*. Since the value of y that 

optimizes f(x*, y) is still the same y*, the optimal controls do not change. 

The aforementioned paragraph is not an exact statement for the rolling static 

policy, since the controls both before and after the measurement must be equal, and 

even if, say, F(x∗) = f(x∗, x∗) is the optimum of F(x) = f(x, x)  then f(x∗, x∗) is not 

guaranteed to be the optimum of f(x∗, x). It is also not exact for the rolling-flexible-

k policies either. Nevertheless, the approximation in these cases should be similar 

to that which we already make in using these policies in place of rolling-flexible. 

With this simple adjustment, the frequency with which we need to re-

optimize valve settings becomes intrinsically linked to the arrival of informative 

measurement data. This suggests the possibility of determining an optimal reactive 

policy, with an algorithm that imposes no significant constraints on the frequency 

with which decisions should be made.  

Once the prior valve settings are known, there will be as many different 

measurement sets as there are reservoir models describing the uncertainty. Each 

measurement will have an associated “decision resolution”, representing both the 

accuracy of the measurement and also our policy in how much variation or change 

is needed in a particular measurement in order to motivate the engineer to make a 

decision. Measurement accuracy limits our ability to use measurement information 

to resolve model uncertainty. Even where the resolution of the measurement 

devices is high, it is unlikely that a decision maker will alter their strategy based on 

small changes to such measurements. This leads to a coarser granularity of 

resolution, which we refer to as the “decision resolution”. This denotes the 

minimum quantum step in a particular measurement needed to make a decision 

(even if that decision is to do nothing). The need to use a decision resolution that is 

coarser than the measurement resolution can also be thought of as a consequence 

of the (by necessity) “limited nature” of the simulation model used to define 

uncertainty. While our uncertainty models may be sufficient for the purposes of 

calculating an expected NPV, it might not be sufficient to represent all the possible 

measurement values with as high a resolution as the measurement itself. 
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4.4. 
Practical approach 

Due to the huge number of uncertainty geological models that can exist, there 

is a possibility of our optimization model require a number of evaluation that can 

make this approach intractable. For this reason we can make the optimization 

procedure less expensive, allowing to optimize the flow control strategy just 

accounting for representative uncertainty models.  

The basic idea about to use representative models is to select a small set of 

uncertainty scenarios from a large ensemble of uncertainty models, where this 

selected models can represent the variety of all uncertainty models. The most 

famous use of representative models is the optimization optimist, realistic and 

pessimistic where just three uncertainty scenarios are chosen to be optimized 

together. The next section describe how we can make the proposed approach more 

practical using a reduced number of evaluations during the valve settings 

optimization. 

 

4.4.1. 
Using representative models  

 

Once the option about to use representative models is taken we need to define 

the number of representative models that will be used during the optimization 

procedure. This number meaning that each optimization step cannot use more 

uncertainty scenarios on the evaluation process than the amount previously defined. 

To choose the representative models that will be used on the optimization process 

at time 0 we evaluate all uncertainty scenarios using a flow control strategy with 

the valves fully open (as we don’t have a flow control strategy defined yet). So, for 

example, if the number of representative models was defined equal five, so we use 

the NPV of each uncertainty scenario to choose the P-10, P-30, P-50, P-70 and P-

90 and the optimization for time 0 will be done just evaluating this five models. 

Once the optimization at the first time step is done, the uncertainty scenarios must 

be clustered based on the measurement acquisition, so in order to keep the most 

information possible available we use the optimized flow control strategy at time 0 

to simulate and cluster all uncertainty scenarios spare at time 1 (not just the 
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representative models). Then once we split the uncertainty scenarios, each new 

cluster has their own group of uncertainty scenarios to define the new representative 

models to be optimized on the current time step. And we follow this procedure for 

all time steps until the end of the time horizon.  

If the number of uncertainty scenarios inside the cluster is less than the 

number of representative model defined, we can keep the optimization for the 

remaining time steps evaluating all geological models inside the group.  

 

 

4.5. 
Realizable approach 

 

The key failure of some related works, described on chapter 2, is do not 

adequately treat reservoir uncertainty, making impossible to apply the optimum 

control setting in real reservoir development, and consequently making the 

approaches impossible to be validated. In contrast, the valuation methodology that 

we are proposing not only determines a final expected value, but also defines via 

the decision tree an operational plan for future controls (also called by us as 

playbook). It should even be possible to use the decision tree to control the valves 

for a new reservoir simulation model that was not used in the original construction 

of the decision tree, making the proposed approach realizable. 

The value of flexibility is calculated by subtracting the expected net present 

value by the flexible strategy (with smart wells) by the expected net present value 

by the strategy without flexibility (with just conventional wells). This value 

represent the economic benefits of the use of smart wells for the reservoir models 

considered, but how accurate is the final answer?  

In order to answer these questions and validate our approach we can split the 

set of geological scenarios that represent the reservoir model into two groups 

(drawn from the same distribution), that we call an optimization models group and 

a test models group. The optimization models group is a collection of geological 

models, representing the real reservoir uncertainty, used to estimate the value of 

flexibility and create the playbook (with the flow control settings and reservoir 

clusters) that maximize the net present value over the time horizon, allowing us to 
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value flexibility. The test models group is another collection of geological models 

(that was not present on the optimization process), also representing the real 

reservoir uncertainty and that therefore came from the same distribution as the 

optimization models group. The decision strategy defined by the playbook (from 

the optimization process) can be applied to this group of models following the 

control setting previous optimized according to measurements from the reservoir 

over time, and obtaining a new valuation. We call this process of using the test 

models group, a validation test. Such a procedure forms the basis for validation as 

we present. 

Each of the uncertainty scenario from the validation set is simulated up to the 

first decision node using the initial optimized controls. At each decision node, each 

validation set then follows the path of the decision tree that corresponds to the 

cluster whose measurement values are closest to the simulated measurement values 

for that validation model.   

If a particular model has simulated measurement values that differ 

significantly from all of those represented by the clusters, then this is an early sign 

that there may be problems with the application of the methodology. In the context 

of validation we should proceed, with the best course of action possible still being 

to follow the nearest cluster. We justify the idea of fitting the test models into the 

nearest cluster because in so doing we can partition the search space, allowing us 

to always fit a test model into one previous defined cluster. On the other hand, if 

we have a concept to fit each test model into the previous defined clusters, whose 

size depends of the measurements resolution, instead of the closest cluster, we could 

have test models that don’t fit on any cluster, because the holes between them, and 

consequently we wouldn’t have a flow control strategy to apply. Using this concept 

of search space partioning we guarantee that always a test model will fit in one of 

the clusters. 

As in the evaluation of machine learning models, the validation and testing 

can indicate the accuracy of the data. In our approach, if many of the validation 

uncertainty scenarios show measurements that differ significantly from those 

represented by the clusters then it suggests that an insufficient number of scenarios 

were considered during the optimization “training” phase. If we received such 

anomalous measurement values on applying the strategy to a real field case, we 

should reexamine the original valuation procedure. Anomalous measurements in 

DBD
PUC-Rio - Certificação Digital Nº 1212906/CA



74 
Chapter 4. Proposed methodology 

this case could be a sign that either insufficient uncertainty scenarios were 

considered, or that the original model of uncertainty was incorrect.  

Our interest in validation stems from concerns about the choice of the number 

of uncertainty scenarios to be used in training the decision tree (optimizing the flow 

control strategy) and on the impact of the value of the “decision resolution” that is 

used to represent the minimum change in measurement value that prompts a 

“decision” to be taken. The decision resolution must surely be as large as the 

measurement error resolution, but may be much larger. We are then left with the 

question of what value to use for the decision resolution, and how to justify such a 

choice? 

With a small value of the decision resolution and a small number of training 

models we may be able to quickly identify each individual training model, leading 

to clusters that each contain only a single model and yielding an optimal value, as 

an “Optimization with clairvoyance”. But it is not clear that such an approach would 

genuinely yield such a value. The value that we obtain could simply be a 

consequence of an insufficient number of training models leading to `ensemble 

collapse' at the point of determining an optimal control. Conversely, a large decision 

resolution may leave a single cluster for the entire development period, yielding a 

value and strategy identical to that of “Optimization with uncertainty with no use 

for future information”. To address these concerns we need to employ validation. 

 

4.5.1. 
Uncertainty resolution 

 

As we mentioned, during the validation test it is possible that one or more test 

models don’t have a behavior that had been noted/identified during the 

measurements assimilation to cluster the models and in this thesis we solve this 

issue portioning the search space, fitting the test models into the closest cluster. But 

in order to incorporate more robustness on the clusters, allowing us to reduce the 

possible number of outliers, we can avoid the uncertainty reduction at some level, 

i.e., we need to keep such amount of uncertainty in each clustering preventing the 

full cluster split. 
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Determining an appropriate value for the decision resolution for every case, 

reflecting the extent to which the measurements genuinely inform about resolution 

of model uncertainty and relevance to optimal controls, may be difficult. The 

difference between the value obtained for the optimization approach and its 

validation test can be ascribed to ‘ensemble collapse’ in which we are optimizing a 

small group of uncertainty models, or possibly even a single model, that is not 

representative of models that yield similar measurement values. Rather than attempt 

to avoid this ensemble collapse by increasing the number of uncertainty scenarios 

for optimizing, or by carefully tuning the decision resolution, we can instead 

proscribe such small groups of models as a step within the clustering algorithm.  

We need to keep in mind that increasing the number of uncertainty scenarios 

considered during the optimization process to define the flow control strategy is 

possible to get a more robust solution, even with a lower expected value. However 

in the presence of an expensive evaluation function, as reservoir simulations, 

increase the number of uncertainty scenarios do not looks good. On the next section 

we describe how this approach can still being practical even against a large number 

of uncertainty scenarios to evaluate. 

 

4.6. 
Reliability by the technical uncertainty 

 

In this work, we want to optimally value and control the smart wells in the 

presence of uncertainty. Besides geological uncertainty, we also need to plan how 

to account for technical uncertainty, as equipment failure. As we mentioned on 

chapter 2, completion failures reduce the field total profitability through decreased 

revenue and/or increased operational expenditure, consequently when moving into 

deeper water, the economic penalty for delayed/lost production becomes greater.  

If we do not take into account the possibility of such failure when performing 

a flexible optimization, the resulting policy will have two key shortcomings: 1) it 

will assign too high a value to the smart completion, and 2) it will not take 

advantage of the ability of a smart completion to adapt and mitigate when failure 

occurs. Flexible optimization seeks strategies that are robust in the eventuality of 

failure by adjusting other valves so that they reduce the consequences of failure. 
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The reliability is therefore recognized as one of the most important factors for the 

acceptance of smart well technology. Then, during the optimization of flow control 

strategy in order to get more robust answer we must account for geological 

uncertainties and technical uncertainties as well, referring the possibility of 

equipment failure (equipment reliability). 

The exact solution for flexible optimization that includes failure could be 

provided by including the failure as an additional uncertainty in the same manner 

that we treated geological uncertainty, i.e., the expected NPV is an expectation over 

both failure cases and geological uncertainty. The problem with this approach is 

that the total number of possible failure scenarios can be extremely large, being 

sometimes impractical. We therefore consider some other approaches that will 

allow us to examine the impact of valve failure while requiring a feasible number 

of cases to be evaluated. 

The reliable lifetime of many items can be determined statistically from the 

history of a sufficiently large number of similar items in a population (Veneruso et 

al., 2000). One way to account for valve reliability is to assign a probability of 

failure, α, to whenever a valve is adjusted. In our approach, the failure rate of FCVs 

is defined for a distribution in order to capture the failure behavior at all time 

horizon. Yeten et al. (2004) affirmed that a distribution that is very convenient for 

representing the life distribution of components where the failure rate varies over 

time is the Weibull distribution. Nevertheless, our methodology is flexible to use 

any failure distribution, allowing having results more or less conservatives. 

Despite continual improvement, there remains a possibility of valve ‘failure’, 

either due to failure of the valve itself or the control system.  Valve failure leads to 

loss of future control of the valve and should intervention be required the cost is 

likely be much higher than the installation cost of the valve. It is important to 

distinguish between two different modes of valve failure.  The most likely mode of 

valve failure is that the failure occurs before the attempt to alter the valve setting.  

In this case the valve will be stuck in its previous position.  A less likely mode of 

valve failure is that the valve fails during the attempt to alter the valve setting.  In 

this case the valve does not need to be stuck in its previous position, and for the 

hydraulically controlled flow control valves it can be stuck in an undesirable 

position such as fully open or fully closed.  It is also harder to mitigate against this 

mode of failure, since the position at time of failure does not depend on the previous 
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valve settings.  The electrically controlled valve removes the potential for this mode 

of failure as it is not necessary to cycle through the valve positions. In this work we 

consider the use of electrical valves allowing continuous aperture, and we assume 

that the failure just can be known when the valve settings are being changed, being 

stuck at the previous setting.  

We might want to resort to physical intervention on the valves so that the 

losses can be mitigated, paying for the related operation costs, but according 

Drakeley et al. (2003), if the failure consequences are acceptable, the system may 

be left in the faulty state. On this basis, in this thesis we considered appropriate to 

classify the equipment as “no repairable” and to measure its reliability performance 

through survival probability.  

Considering that we account for failure every time that the valves must be 

remotely controlled, we could say that all time steps have some possibility of 

failure. However, when the valves are installed we assume they have their setting 

already adjusted so their do not request for remote control. This means that there is 

no failure possibility at time 0 and for this reason we just account for failure from 

time 1 to the end.  

We divide the approaches to evaluate technical failures in: 1) the approach 

that considers all valves failing at the first time that they will be adjusted, being 

completely pessimist and 2) the approach that includes others failures scenarios that 

can happen with one or more valves in different periods over the time horizon, as 

follow. In order to consider failure scenarios to examine the impact of failure and/or 

mitigate losses due the failed valves by the remaining valves we propose six 

approaches (Figure 4.6): Lucky Optimist, Unlucky Optimist without Learning, 

Unlucky Optimist with Learning, Lucky Pessimist, Unlucky Pessimist without 

Learning, Unlucky Pessimist with Learning. They are distinguished by the way that 

the optimization process are done, including or not possible failures (being 

pessimist or optimist) and if the failures effectively happen during the life time 

(being lucky or unlucky).  

In this work, the terms “lucky” and “unlucky” are related with there is or not 

failure during the reservoir development, i.e., “lucky” means that no valves fail 

during the reservoir lifetime, while “unlucky” means that at least one valve fail at 

some point. In the other hands, “optimist” and “pessimist” are related with a prior 

consideration about the possibility of valve failure at the time to define the optimum 
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flow control strategy. Then, “optimist” means that the flow control strategy will be 

optimized considering that the valves will not fail, while “pessimist” means that the 

flow control strategy will be optimized considering the possibility of any valve fail 

and the remaining others valves are able to mitigate the possible losses. 

Although the previous explanations about the possibility of failure and its 

consequences, a first and simplest approach is to ignore it. The Lucky Optimist 

approach considers an optimistic strategy that do not consider that the valves can 

fail (because it is optimist) and we don’t evaluate the impact of valves fail because 

we also assume that we a lucky, and for that reason the fail never occurs. Follow 

this simple approach is the same as consider a flexible flow control strategy without 

account for failure in any moment.   

On the opposite direction, we have the Unlucky Pessimist with Learning, that 

means define the flow control strategy accounting for failures and then simulate 

that this possible failure already happen trying to generate a new strategy to mitigate 

the possible loses. In that case, if the proactive strategy was right done to consider 

failures we will find a static flow control strategy, as described on section 4.2.2., 

that represent the minimum possible gains that we can have with intelligent 

completion since a fully static strategy do not allows to change the valves for all 

time steps during the optimization. 

The others four remaining approaches are described on the following 

sections.  

 

 

 

Figure 4.6:  Possible approaches that can be incorporate on the proposed approach to 

incorporate technical failures. 
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4.6.1. 
Unlucky optimist without learning 

It is possible to quantify the impact of valve failure by examining the expected 

NPV outcomes for the optimization strategy that does not account for failure. For 

this, we must to simulate what would have happened if one or more valves had 

failed during some point of time horizon.  

In this approach, we perform a flexible optimization while optimistically 

assuming that failure cannot occur. We use the Rolling approach, as described in 

sections 4.2.1-3 with future measurements assimilation to derive the optimal policy 

for the no-failure case. We then apply this no-failure policy to “unlucky cases” in 

which failure does occur, and examine the impact of this failure on expected NPV 

(considering probability of failure with expectation). We name this approach as 

“unlucky optimist without learning” because we provide a flow control strategy 

optimistically (without consider fail) and then we evaluate the impact of failure 

without any reaction on the remaining valves. In summary considering this 

approach, we are unlucky, because the failure happen, we are optimist because we 

don’t prepare for failure, and we don’t learn because we don’t alter valve settings 

after failure.  

The failure scenarios can be simulated either in a stochastic process, as Monte 

Carlo simulation, that allows for various degrees of failure at various times in the 

life of the well, or in a manual process that allows the decision maker to only 

analyze failure scenarios that are of interest, for example the worst case where all 

valves fail. This manual process also allows us to quantify the potential impact of 

failures and to identify all relevant failure modes and consequences without 

simulating all failure cases, however it cannot mitigate any possible losses due to 

failures. An alternative approach is to optimize a policy that accounts for failure, 

allowing the expected NPV losses due to failed valves to be mitigated by the 

remaining valves, as will be describe on the next sections. 
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4.6.2. 
Unlucky optimist with learning 

We recall that to determine the optimal control strategy of flow control valves 

under uncertainty we frequently have to determine the expected NPV defined as 

equation 4.9, where c is a vector of the control settings, X is the random variable 

that describes the uncertainty and V is the resulting NPV determined by reservoir 

simulation. Using Monte Carlo Simulation (MC) at each iteration a full 

optimization process is done considering a valve failure schedule and this schedule 

is defined by the failure probability distribution used.  

 

𝐸𝑁𝑃𝑉(𝑋, 𝑐) (4.9) 

 

In this approach first of all we perform a standard flexible optimization while 

optimistically assuming that failure cannot occur. And for each iteration we 

consider a failure scenario, re-optimizing the remaining valves to mitigate possible 

losses, so even though we be unlucky because the many failure scenarios we have 

a reactive posture re-optimizing the others valves.  

To create a failure schedule we use a quasi-random sampler in order to give 

for each valve a number that represent the valve fail for all time horizons. The quasi-

random (we used Sobol) sampler gives a low-discrepancy sequence of numbers, 

allowing obtaining a controlled sample. The use of quasi-random sampler require 

less iteration to sampler rightly a probability distribution, for this reason this 

sampler allow to accelerate the convergence, reducing the computational cost and 

improving the efficiency of the methodology (Almeida et al., 2010).  

In order to obtain the correct answer using this approach we must to follow 

the same behavior of a real failure situation, i.e., on real situations we can only 

change the actual pre-optimized valve settings if one or more valves fail, otherwise 

we continuing following the pre-optimized strategy. So we use a mask to define the 

optimum valve settings knowing that a failure will happen on the future, we 

unconsciously force the optimizer to try mitigate the future losses by subsequence 

adjustment of the valves. This can make the expected NPV higher and do not return 

the right answer, because on the real situation they just start to mitigate some failure 

when this already occur.  
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In our approach the optimization does not account for failure while this does 

not happen yet, making the results more consistent with the reality. Thus we define 

that the first MC iteration is the no failure case and the others left iterations will use 

the sampler to define the failure schedule. For each iteration we check on the failure 

schedule when the first failure will occur on the time horizon and we assume that 

while the failure does not happen the flow control strategy still being the same of 

the no failure case. Once the one or more valves fail their settings are stuck at the 

previous setting and all others spare valves will have their settings re optimized in 

order to mitigate the possible loss. The use of the no failure optimized settings 

reduces the needless number of evaluations.  

So, for example, if the failure schedule for the iteration i defines that the first 

fail will occur on valve A at time t, all flow control strategy that will be used from 

time 0 to time t are the optimized valves settings by the no failure case. At time t 

we assume that the setting of valve A is stuck at the same aperture set at time t-1, 

and all the apertures from the spares valves are re-optimized from time t to the end, 

trying to mitigate the possible losses. Moreover, as the simulation dictionary also 

described on Appendix B, we create a failure dictionary that save the information 

about failure schedule and the respective forecast expected NPV. So once a failure 

schedule is repeated during the MC iteration this case does not need to be re-

optimized. This is done for all MC iterations (IMC). Nevertheless, we need to keep 

in mind that this approach requires a large number of MC iterations, being 

computationally expensive. The flowchart of this approach is showed in Figure 4.7. 

 

 

4.6.3. 
Lucky pessimist 

 

In the cases where the valve failure has a big impact on the evaluation of 

operation flexibility it is necessary to have an approach that considers the 

optimization of the valves mitigating the possible losses caused by failure. For this 

we must to choose the valve settings that maximize the expected NPV accounting 

for possible failure scenarios in order to mitigate possible losses. So, different of 
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the “Unlucky Optimist”, this approach consider the scenarios of failure during the 

optimization process, not just in the end.   

 

 

Figure 4.7: Flowchart of optimization process using Unlucky Pessimist. 

 

The “Lucky Pessimist”, as we call this approach, adapts the Rolling-flexible 

approach with no failure by including possible failure in the optimization of the 

current time step (being a pessimist), but ignoring those potential failures when 

considering later time steps (being lucky). Then this approach allows the flexible 

optimization to react in the event of failure, possibly modifying the flow control 

strategy to mitigate losses in expected NPV due to failure.  

This approach is identical to consider the Rolling-static approach for 

optimization (described on section 4.2.2), because we are looking for the optimum 

fixed flow control valves, supposing that the no-flexibility for valves adjustment is 

by some equipment or communication failure. For stuck-in-place failure this is the 

optimal strategy when failure likelihood is high. 

As on the unlucky optimist method, we address the reliability for failure either 

in a stochastic process, as Monte Carlo simulation, that allows for various degrees 

of failure at various times in the life of the well, or in a manual process that allows 

the decision maker to only analyze failure scenarios that are of interest. 
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In order to try to find a robust solution under geological and technical 

uncertainties without to ignore the potential failure in later time steps and also react 

to the failures we propose another approach that use Monte Carlo Simulation to 

model the failure through the probability distribution, as will be describe on the 

next section. 

 

 

4.6.4. 
Unlucky pessimist without learning 

As we described previously, in this approach we consider the use of electrical 

valves allowing continuous aperture, and we assuming that the failure just can know 

when the valve settings is being changed, being stuck at the previous setting.  

This approach is similar to “Unlucky Optimist without Learning”, but here 

we are considering that the valves will be optimized accounting for failures. So we 

can associate this impossibility to adjust the valve settings due to failure with the 

inflexibility of the Rolling-Static policy seeking for the optimum static settings to 

maximize the NPV, since the settings do not change over the time until the 

acquisition of information reduce the uncertainties. 

If at all time steps when the valve are adjusted we seek for the optimum static 

settings, this valve settings represent the best control at each time considering that 

all valves can failure later by the lost communication with the valves. So the 

evaluation of the static valve settings at the end of the first time step represent the 

evaluation considering that all valves fail at this early time and the valves will not 

be re-adjusted anymore. 

These considerations allow us to know the minimum valuation of the smart 

control, where the valves aperture are similar to the control of conventional wells, 

i.e., without flexibility to control the production zones independently and 

automatic. Moreover this approach does not require extra evaluations, being this 

evaluation known, because it was included on the optimization process at the first 

time step. But it does not allow evaluate later failures.  
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