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partial fulfillment of the requirements for the degree of Mestre
em Informática.
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Departamento de Informática — PUC-Rio
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Coordinator of the Centro Técnico Cient́ıfico — PUC–Rio

Rio de Janeiro, September 22nd, 2016

DBD
PUC-Rio - Certificação Digital Nº 1512332/CA



All rights reserved.

Daniel dos Santos Marques

Daniel dos Santos Marques graduated from Pontif́ıcia Univer-
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Marques, Daniel dos Santos

A decision tree learner for cost-sensitive binary
classification / Daniel dos Santos Marques; advisor: Eduardo
Sany Laber. — 2016.

46 f. : il. (color.); 30 cm

Dissertação (mestrado) - Pontif́ıcia Universidade Católica
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Abstract

Marques, Daniel dos Santos; Laber, Eduardo Sany (Advisor).
A Decision Tree Learner for Cost-Sensitive Binary
Classification. Rio de Janeiro, 2016. 46p. MSc. Dissertation —
Departamento de Informática, Pontif́ıcia Universidade Católica do
Rio de Janeiro.

Classification problems have been widely studied in the machine

learning literature, generating applications in several areas. However, in

a number of scenarios, misclassification costs can vary substantially, which

motivates the study of Cost-Sensitive Learning techniques. In the present

work, we discuss the use of decision trees on the more general Example-

Dependent Cost-Sensitive Problem (EDCSP), where misclassification costs

vary with each example. One of the main advantages of decision trees is

that they are easy to interpret, which is a highly desirable property in

a number of applications. We propose a new attribute selection method

for constructing decision trees for the EDCSP and discuss how it can be

efficiently implemented. Finally, we compare our new method with two other

decision tree algorithms recently proposed in the literature, in 3 publicly

available datasets.

Keywords
Machine Learning; Decision Tree; Cost-Sensitive learning.
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Resumo

Marques, Daniel dos Santos; Laber, Eduardo Sany. Uma árvore
de Decisão para Classificação Binária Senśıvel ao Custo. Rio
de Janeiro, 2016. 46p. Dissertação de Mestrado — Departamento
de Informática, Pontif́ıcia Universidade Católica do Rio de Janeiro.

Problemas de classificação foram amplamente estudados na literatura

de aprendizado de máquina, gerando aplicações em diversas áreas. No

entanto, em diversos cenários, custos por erro de classificação podem variar

bastante, o que motiva o estudo de técnicas de classificação senśıvel ao custo.

Nesse trabalho, discutimos o uso de árvores de decisão para o problema

mais geral de Aprendizado Senśıvel ao Custo do Exemplo (ASCE), onde os

custos dos erros de classificação variam com o exemplo. Uma das grandes

vantagens das árvores de decisão é que são fáceis de interpretar, o que é

uma propriedade altamente desejável em diversas aplicações. Propomos um

novo método de seleção de atributos para construir árvores de decisão para

o problema ASCE e discutimos como este pode ser implementado de forma

eficiente. Por fim, comparamos o nosso método com dois outros algoritmos

de árvore de decisão propostos recentemente na literatura, em 3 bases de

dados públicas.

Palavras–chave
Aprendizado de máquina; Árvore de decisão; Aprendizado senśıvel ao

custo.
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1
Introduction

Classification problems have been widely studied in the machine learning

literature, generating applications in several areas such as medical diagnosis,

fraud detection and others.

However in a number of scenarios misclassification costs can vary sub-

stantially. Let’s take the example of a bank which needs to decide whether or

not to give a loan to a customer. Clearly lending $1,000,000 to a client which

defaults his/her debt incurs a greater cost to the bank than a $1,000 default

by another client. This generates a big imbalance on misclassification costs

between clients which cost insensitive classification algorithms can’t handle

well.

In this dissertation we study the Example-Dependent Cost-Sensitive

Problem (EDCSP), where misclassification costs vary with each example, for

binary classification.

1.1
Problem Definition

Consider an universe U of samples where each sample is modeled by a set

of attributes A1, . . . , Am. Each attribute Ai can be thought as a function that

maps each sample s ∈ U into a value Ai(s). In addition, we have two classes 0

and 1 and a cost function C : U ×{0, 1} 7→ R+ mapping each pair (s, c) into a

real number that represents the cost of a sample s when it is assigned to class

c.

Our goal is to learn a function f that maps each sample into a class

c ∈ {0, 1} so that
∑

s∈U C(s, f(s)) is minimized. For that, we are given a

subset S, randomly selected from U , and the values C(s, 0) and C(s, 1) for

every s ∈ S.

Here, we restrict our attention to the case where f belongs to the class of

decision tree functions. A decision tree D for a set of samples S is a rooted tree

where each of its nodes is associated with an attribute and each of its leaves

is associated with a class. Each edge e that leaves a node, associated with

an attribute A, is associated with a subset of the values that A may assume.

These subsets must be pairwise disjoint.

To classify a sample s using a decision tree D we follow a root to leaf

path as follows: if the root of D is also a leaf we assign to s the class associated
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Chapter 1. Introduction 8

with the leaf. Otherwise, if the root of D is associated with an attribute R, we

recursively apply the procedure for the sub-tree rooted at the node we reach

following the branch associated with R(s).

In Figure 1.1 we show how we can classify two samples s1 and s2 in a

decision tree using attributes A1 and A2.

Figure 1.1: Decision Tree Example

One of the main motivations for using decision trees, in oppose to other

methods, is that they provide a simple interpretation that is highly desirable

in a number of applications.

1.2
Our Contributions

We propose a new decision tree method for the Example-Dependent Cost-

Sensitive Problem (EDCSP) problem, denoted by PairTree.

Our method is based on a new metric to measure the quality of an

attribute split in a tree node. This new metric considers each pair of examples

and measures how much is gained by splitting them into separate nodes. We

also take into account how a random attribute, one which randomly splits

the dataset, performs on our metric. This way we can measure how good an

attribute is compared to a random attribute. This helps to avoid overfit as we

can stop growing the tree if all attributes perform no significantly better than

a random split.

We discuss our method implementation aspects in order to make its

computation feasible for larger datasets. We use the Binary Indexed Tree

(Fenwick, 1994) data structure to calculate our metric for numerical attributes.

We make an experimental study on three publicly available datasets:

Direct Marketing (Moro et al., 2014), Give Me Some Credit (Kaggle.com,

2011), and PAKDD2009 (PAKDD, 2009). Our method showed superior results
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Chapter 1. Introduction 9

when compared to two other decision tree methods from the cost-sensitive

learning literature proposed in (Aodha and Brostow, 2013) and (Bahnsen et

al., 2015).

We compared our results using the Savings metric which shows how

good a tree is when compared to the strategy of classifying all examples in one

class.

Savings = 1− Tree Cost

Cost of best class

Our PairTree method achieved the best results for both Give Me Some

Credit (50.59%) and PAKDD2009 (29.82%) datasets, an improvement of 6%

and 4% respectively when compared to the best benchmark. While for the

Direct Marketing dataset our results were only 0.4% worse than the best

benchmark.

1.3
Related work

Costs naturally occur in the classification task as it had already been

noticed in Breiman’s seminal book (Breiman et al., 1984). Two common sources

of costs are the attributes and the misclassification. As an example, in a

diagnosis procedure some blood exams may be much more expensive than

others and, still in this context, classifying a patient as healthy when he is

sick may be much more risky than the other direction. For a survey focused

on cost-sensitive decision trees algorithm we recommend (Lomax and Vadera,

2013) in which the authors present over 50 algorithms.

Here, we focus on misclassification costs. This type of cost can be

naturally introduced in 2 different ways: In the most general version, the

Example-Dependent Cost-Sensitive Problem (EDCSP), the cost of classifying

a sample depends on the sample and the predicted class. While in the restricted

version, Class-Dependent Cost-Sensitive Problem (CDCSP), the cost depends

on the true class and the predicted class. The latter is a particular case of the

former as it can be seen as an EDCSP where the misclassification costs are the

same for all examples. Here, however, we focus on the EDCSP.

In (Zadrozny et al., 2003), Zadrozny et al. presents techniques to address

EDCSP that are based on a central theorem that shows how to change

the sample distribution so that traditional classifiers ’become’ cost-sensitive.

These techniques differ mainly on how the samples are drawn from the new

distribution. An experimental study with these methods is carried on the

KDD98 and DMEF-2 datasets.

In (Aodha and Brostow, 2013), a Random Forest for the EDCSP is

proposed. To build the decision trees that are used for the committee they
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Chapter 1. Introduction 10

propose a new impurity measure that takes into account, for each example

s, the difference between the cost of classifying s as i and j for each pair of

classes i and j. They compare their method with two baselines: the Gini-based

Cost-Sensitive Random Forest (GCSRF) and the naive Classification Random

Forest (CLRF). They report improved results for 3 multi-class computer vision

datasets at a price of a modest increase in the training time.

In (Bahnsen et al., 2015), Bahnsen et. al. define a simple cost-based

impurity measure for building decision trees for the example dependent cost

sensitive problem. The method is compared with some state-of-the-art methods

in over 3 datasets. They report that their method outperforms all the others,

including decision trees, logistic regression and random forests trained with the

techniques proposed by Zadrozny (Zadrozny et al., 2003) and Elkan (Elkan,

2001). It must be mentioned that the metric presented in (Bahnsen et al., 2015)

had already been mentioned/proposed in other papers (Pazzani et al., 1994),

(Turney, 1995), (Ling et al., 2004) and (Greiner et al., 2002) in the context of

the CCDCP.

1.4
Dissertation’s Organization

In Chapter 2 we discuss some basic concepts necessary to the under-

standing of our decision tree method which is presented on Chapter 3.

The experimental study is described at Chapter 4 in which we execute

our method on 3 publicly available datasets, and compare it with two other

decision tree benchmarks from the cost-sensitive learning literature.

Chapter 5 holds some final remarks and a conclusion to this work.
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2
Basic Concepts

In this chapter we discuss some concepts that are important to under-

stand our work.

We start by introducing a general framework of decision tree construc-

tion, which will be used later when we discuss our method. We then discuss

how to bound the sum of dependent variables using the edge coloring concept

from graph theory.

2.1
Decision Tree Construction

As described by (Murthy, 1998) there are different ways to construct

a decision tree, but the most commonly used one is the greedy top-down

approach.

On greedy top-down methods we start with the entire dataset and split

it into two or more disjoint subsets, according to some predefined rule. We

then recursively call the method on the generated subsets. We can also use a

stopping rule, to decide whether or not we should continue growing the tree.

We provide a pseud-code below.

Algorithm 1 Greedy Top-Down Tree Creation

1: procedure CreateTree(set of samples S)
2: if S does not meet the stopping conditions then
3: Find a way to split S into two or more subsets
4: Recursively call CreateTree on the generated subsets of S
5: else
6: Stop growing the tree.

It’s worth noticing that this approach can be used both for cost-sensitive

and cost-insensitive classification problems.

2.2
Edge Coloring for Graphs

Let G = (V,E) be a graph. A k-edge coloring for G is a function that

maps each edge into an integer (color) in the set {1, . . . , k} such that edges

that share an endpoint are mapped into different colors.

The chromatic index of a graph G is the minimum integer k∗ for which

G admits a k∗-coloring. It is known (Vizing., 1964) that the chromatic number
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Chapter 2. Basic Concepts 12

of a graph is either ∆(G) or ∆(G) + 1, where ∆(G) is the maximum degree

of the vertices in G. It is also known that for bipartite graphs the chromatic

index is ∆(G).

2.3
Bounding the Sum of Dependent Variables

Let Y = {Y1, Y2, . . . , Yk} be a set of real valued random variables, where

Yi takes values on the interval [ai, bi] for i = 1, . . . , k. A family F of subsets

of Y is a cover for Y if the union of all subsets of F is equal to Y . A subset

Z ⊆ Y is independent if the variables in Z are independent. A cover F for Y is

proper if all subsets of F are independent. Let χ(Y) be the size of the proper

cover for Y with minimum cardinality.

The following theorem was proved by Janson in (Janson, 2004).

Theorem 1. (Janson, 2004) Let X =
∑k

i=1 Yi and let t > 0. Then,

P (X ≥ E[X] + t) ≤ exp

(
−2t2

χ(Y)
∑k

i=1(bi − ai)2

)

For our study, the case where the variables Yi’s can be seen as edges of a

complete bipartite graph G and a set of variables is independent if and only if

the underlying edges correspond to a matching in G is of particular interest.

In this case, every edge coloring for G corresponds to a proper cover for Y
and the size of the minimum proper cover for the set of variables is at most

the chromatic index of G, which is equal to ∆(G). Hence, we can state the

following corollary of Theorem 1

Corollary 1. Let G = (V,E) be a bipartite graph where E = {e1, . . . , em} and

the maximum degree of G is ∆(G). In addition, let Y = {Y1, . . . , Ym} be set of

random variables that satisfies the following property: for all S ⊆ {1, . . . ,m},
the set of variables {Yi|i ∈ S|} is independent if and only if {ei|i ∈ S|} is a

matching in G.

Let X =
∑m

i=1 Yi and let t > 0. Then,

P (X ≥ E[X] + t) ≤ exp

(
−2t2

∆(G)
∑k

i=1(bi − ai)2

)
,
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3
The PairTree Method

In this chapter, we provide a description of our decision tree method for

the two class Example-Dependent Cost-Sensitive Classification problem. The

following notation is helpful for our discussion: for a set of samples S and a

class κ we define

C(S, κ) =
∑
x∈S

C(x, κ)

. In addition, we define

S0 = {x|x ∈ S and C(x, 0) ≤ C(x, 1)}

and

S1 = {x|x ∈ S and C(x, 0) > C(x, 1)}

One of the key issues for designing decision tree learners is to define how

an attribute A splits the set of samples S associated with a node of the tree.

Our method defines partitions for nominal and numeric attributes in different

ways.

Let A be a nominal attribute that takes values on the domain {v1, . . . , vk}
for the samples of set S. In our method, A splits the samples of S into k groups

{G1, . . . , Gk}, where Gi contains all samples s for which A(s) = vi. On the

other hand a numeric attribute with values in the range [a, b], splits S into

two groups (G`
1, G

`
2), where G`

1 contains all samples with values smaller than

or equal to ` and G`
2 contains all samples with values larger than `. The value

` is chosen so as to generate a partition with best possible quality according

to the metric proposed in the next section.

Given a training set S ofN samples {s1, s2, . . . , sN}, our method, outlined

in Algorithm 2, follows a top-down approach. First, it verifies whether the set

S meets a stopping criterion that is also discussed further. In the positive case,

we create a leaf and associate it with class 0 if C(S, 0) < C(S, 1) and with class

1, otherwise. In the negative case, the procedure selects the attribute which

provides the split with best quality for the set S, where the quality of a split

is measured by a new cost-sensitive metric explained in the next section. This

attribute, say A, is set as the root r of the decision tree. Next, for each group
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Chapter 3. The PairTree Method 14

in the partition of S, induced by A, we recursively construct a decision tree

and set it as a child of r.

Algorithm 2 PairTree creation

1: procedure CreateTree(set of samples S)
2: if S does not meet the stopping conditions then
3: Select attribute A with best quality
4: Recursively call CreateTree on all groups generated by A
5: else
6: Create a leaf in the current node and associate it with the class that

provides the minimum cost for set S.

3.1
Evaluating the quality of attributes

In order to explain the quality of an attribute w.r.t. a set of samples S,

we first define the gain G(x, y) of separating two samples x and y as

G(x, y) = min{C(x, 0) + C(y, 0), C(x, 1) + C(y, 1)}

−(min{C(x, 0), C(x, 1)}+ min{C(y, 0), C(y, 1)})
(3.1)

This measure captures the benefit of separating x and y by con-

sidering the minimum possible cost when they are in the same group,

which is min{C(x, 0) + C(y, 0), C(x, 1) + C(y, 1)} and the minimum possi-

ble cost when both are in different groups, which is min{C(x, 0), C(x, 1)} +

min{C(y, 0), C(y, 1)}). Note that if the class of minimum cost for x and y is

the same then G(x, y) = 0 because there is no gain in separating them. This

generalizes the metric proposed in (Golovin et al., 2010; Cicalese et al., 2014).

The gain Gain(A, S) of a nominal attribute A w.r.t. a set of samples S,

is defined as the sum of G(x, y) for all pairs of samples in S that are separated

by A, that is, samples that belong to different groups in the partition of S

induced by A:

Gain(A, S) =
∑

x,y∈S|A(x)6=A(y)

G(x, y) (3.2)

For the sake of a simpler notation, whenever the context is clear we drop

S from Gain(A, S).

To motivate our metric we discuss how it compares with the impurity

metric proposed in (Bahnsen et al., 2015). Let C(S, x) be the cost of classifying

all samples of S as x. The gain of a binary attribute X that splits S into groups

A and B is given by
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Chapter 3. The PairTree Method 15

min{C(S, 0), C(S, 1)}−min{C(A, 0), C(A, 1)}−min{C(B, 0), C(B, 1)} (3.3)

One potential advantage of our metric with respect to this one is that it is

more sensible to capture the progress made by an attribute for the classification

task.

As an example, consider a set of 1000 samples formed by two groups, say

X and Y , where X has 100 samples and Y has 900. The costs are either 0 or

1 where for all samples x ∈ X, C(x, 0) = 0 and C(x, 1) = 1 while for all y ∈ Y
we have C(y, 0) = 1 and C(y, 1) = 0.

Let us consider an attribute A that splits the samples in X ∪ Y into two

groups X ∪ Y ′ and Y − Y ′, where Y ′ is a subset of Y containing 150 samples,

according to the figure below.

Figure 3.1: Metric Example

Attribute A does a very good job in separating samples from X and Y .

However, since the minimum cost of both children and parent is achieved when

using class 1, the metric of equation (3.3) is equal to 0 indicating there is no

gain in using A.
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Figure 3.2: Metric Costs Example

For this example the metric proposed here can be written as the sum of

G(x, y) for the separated samples:∑
x∈X

y∈Y−Y ′

G(x, y) =
∑
x∈X

y∈Y−Y ′

1 = 750× 100 = 75000

While the best possible attribute would’ve achieved a gain of 900 · 100 =

90000.

3.2
Adjusting the quality of attributes

One problem with our metric is that it tends to favor attributes that may

assume a large number of distinct values. This effect has been reported in the

literature and there are some methods available to cope with this problem.

To illustrate this issue let’s consider a database of 3650 people, with 1825

men and 1825 women, that were born in a given year. Each person is modeled

by two attributes: IsTall and DayofBirth. The attribute IsTall is TRUE if

the person has height larger than 1.80m and FALSE, otherwise. The attribute

DayofBirth is a number in the set {1, . . . , 365}.
Our task is to classify people according to gender: male/female. Which

attribute provides the best split?

The misclassification costs are either 0 or 1, where we have C(x, 0) = 0

and C(x, 1) = 1 for a all men x and for all women y follows C(y, 0) = 1 and

C(y, 1) = 0. Table 3.1 illustrates an example of this dataset.
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Index DayOfBirth IsTall · · · C(s, 0) C(s, 1)

1 64 TRUE · · · 0 1

2 105 FALSE · · · 1 0
...

...
...

...
...

...

3650 342 FALSE · · · 0 1

Table 3.1: Example Dataset

Clearly, we expect the attribute IsTall to be more effective than

DayofBirth. Let’s assume there is no correlation between the day of birth

and gender, and we observe exactly 5 men and 5 women with the same birth

date for every day of the year. So attribute DayofBirth splits the 3650 people

on the dataset according to figure 3.3

Figure 3.3: Attribute DayofBirth

To calculate our Gain metric for the DayofBirth attribute we need to

count how many pairs of men and women were separated after the split. By

Figure 3.3 we can see a man is separated from all women except for the 5 in

his node (1820 in total). Since we have 1825 men in the datset we can write

our Gain as:

Gain(DayofBirth) = 1820× 1825 = 3321500

To calculate the Gain for attribute IsTall let’s assume 30% (1%) of

men (women) are taller than 1.80m. In our dataset this gives a total of 548 tall

men, and 2 tall women. Figure 3.4 shows a split formed by attribute IsTall.
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Chapter 3. The PairTree Method 18

Figure 3.4: Attribute IsTall

We can calculate the Gain of IsTall using a similar approach as we used

for DayofBirth, which gives us:

Gain(IsTall) = 548× 1823 + 2× 1277 = 1001558

Thus, according to our metric DayofBirth is better than IsTall.

To prevent the bias towards attributes with large number of values we

adjust the Gain of the partition P(S,A) induced by an attribute A on the set

of samples S by comparing it with the Gain of a ’random partition’ R that

has properties similar to P(S,A).

We say partition P(A, S) is a split, on S, formed by k disjoint groups Gi.

Where a group Gi is the set of all samples in S that assume the k-th value in

attribute A.

Let R be a partition of the set of samples S generated according to the

following process:

For i=1,...,|S|
Assign sample i to group j with probability |Gj|/|S|

End For

Informally, A is a good split if the probability of a random partition R,

obtained by the above process, generates a gain larger than that of A is small.

Let

α(S,A) = Pr[Gain(R) ≥ Gain(A)] (3.4)

where R is sampled according to our process.

We would like to select the attribute A such that α(S,A) is minimum.

A problem with this approach is that is not clear how to calculate α(S,A)

efficiently.
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Chapter 3. The PairTree Method 19

As an example, one approach for estimating α(S,A) might consist of

randomly generating several partitions, according to our process, and counting

how many had a Gain greater than or equal to Gain(A). This is naturally a

very slow solution, as it requires a great number of random draws.

Our approach to this problem makes use of Corollary 1 of Theorem 1.

We need some definitions.

For a partition R, generated by our process, and two samples x and y,

we define the variable

Yx,y =

{
G(x, y), If x and y belongs to different groups in R

0, Otherwise

By using the fact that G(x, y) = 0 if either x, y ∈ S0 or x, y ∈ S1 we get

that

Gain(R) =
∑
x,y∈S

Yx,y,

Thus,

α(S,A) = Pr[Gain(R) ≥ Gain(A)] = (3.5)

Pr[
∑
x,y

Yx,y ≥ Gain(A)] (3.6)

The difficulty of bounding Pr[
∑

x,y Yx,y ≥ Gain(A)], and as a conse-

quence α(S,A), relies on the fact that the variables Yx,y are not independent

so that Chernoff/Hoeffding’s bounds cannot be used. However, Theorem 1

allows to deal with the sum of dependent variables.

To understand the dependence between our variables Yx,y’s it is useful to

identify the variables Yx,y’s as edges of a complete bipartite graph G with

bi-partition (S0, S1). It is not difficult to realize that a set of variables is

independent if and only if the underlying edges correspond to a matching

in the graph. Thus, it follows from Corollary 1 that

α(S,A) = Pr[Gain(R) ≥ E[Gain(R)] + t] ≤ exp

(
−2t2

max{|S0|, |S1|}
∑

x,y∈S G(x, y)2

)
where t = Gain(A)− E[Gain(R)]

Let

α̂(S,A) = exp

(
−2t2

max{|S0|, |S1|}
∑

x,y∈S G(x, y)2

)
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be the right-hand side of the equation above.

Instead of selecting the attribute A with minimum α(S,A), our method

selects the attribute A with minimum α̂(S,A).

3.3
Stopping Conditions

Our method uses two parameters MaxProb and MinSamples to determine

whether the decision tree construction is pruned at a given node ν. In fact, the

tree is pruned if one of the following conditions occurs:

i There is no attribute A with α̂(S,A) ≤ MaxProb;

ii The size of a set of samples associated with ν is smaller than MinSamples

iii All samples of S are in S0 (or S1)

Condition (i) requires that there is an attribute that produces a rare gain

in the sense that it should be much better than that of a random partition. This

condition could be used alone to prune the tree because it is not reasonable to

keep growing the tree if all attributes produce ’random’ gains.

The reason why we also use condition (ii), however, is because we do not

have a sharp estimation for α(S,A). To understand this issue, assume that

we set MaxProb = 0.1. Because the bound is not sharp it may happen that

we are just accepting attributes whose gains are extremely rare, that is, the

probability of occurring them is much smaller than 0.1. This way we are being

too restrictive.

One attempt to handle this situation is using large values for MaxProb.

However, this is also risky because we could be accepting attributes that behave

as random partitions, which could lead to data overfitting. Using a lower bound

on the number of samples reduces the risk of overfitting the data when we are

working with large values for MaxProb.

If condition (iii) is met then it’s useless to make any further splits as all

the samples are best classified in the same class. Therefore node v should be

a leaf.

At this point our method is completely specified as shows Algorithm 3.

In the sequel we discuss how to implement it in an efficient way.

condition (iii) is not met
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Algorithm 3 PairTree creation

1: procedure CreateTree(set of samples S, parameter MaxProb, parame-
ter MinSamples )

2: Select attribute A such that α̂(S,A) is minimum
3: if α̂(S,A) ≤ MaxProb and |S| ≥MinSamples and S ∩ S0 6= ø and
S ∩ S1 6= ø then

4: Recursively call CreateTree on all splits generated by A
5: else
6: Create a leaf in the current node and associate it with the class that

provides the minimum cost for set S.

3.4
Implementation aspects

For an efficient implementation of our decision tree construction we

need to evaluate α̂(S,A) quickly. For that we need to calculate Gain(A),∑
x,y∈S G(x, y)2 and E[Gain(R)].

First, we consider the computation of E[Gain(R)]. Recall that A induces

the partition P(A, S) = (G1, . . . , Gk) when applied to set of samples S. Let

pi = |Gi|/(|G1|+ · · ·+ |Gk|). We have that

E[Gain(R)] = E

[∑
x,y∈S

G(x, y)

]
=
∑
x,y∈S

E[G(x, y)] =

∑
x,y∈S

k∑
i=1

G(x, y) · pi · (1− pi) =

(∑
x,y∈S

G(x, y)

)(
k∑
i=1

pi · (1− pi)

)
, (3.7)

where the product pi(1 − pi) is the probability that in a random partition

sample x belongs to i-th group and sample y does not belong it.

To evaluate E[Gain(R)] we need to compute
∑

x,y∈S G(x, y), which can

be seen as the gain of a ’perfect’ attribute, say P , that splits the set S into

S0 and S1. Thus, if we compute Gain(P ) efficiently we manage to compute

E[Gain(R)] efficiently as well.

In the sequel we discuss how to efficiently compute the gain of any

attribute, in particular the attribute P , and how to compute
∑

x,y∈S G(x, y)2.

The latter calculation is pretty straightforward given that we know how to

compute Gain(P ). We first consider nominal attributes and then numeric

attributes.
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3.4.1
Nominal Attributes

We wish to calculate the Gain of a nominal k-valued attribute A for a

set of N samples S in an efficient manner. There is a direct algorithm which

consists of trying all pairs of samples taking O(N2) time. We wish to speed up

this process as a time complexity of O(N2) can be prohibitive for some large

datasets.

We rewrite the Gain of an attribute A in a way that will make the

computation faster. First, we define the absolute difference D(s) of a sample

s ∈ S as
D(s) = |C(s, 0)− C(s, 1)| (3.8)

For simplicity whenever we refer to a sample x(y) we’re dealing with a

sample from the set S0(S1). The following propositions turns out to be useful.

Proposition 1. G(x, y) = min{D(x), D(y)}

Proposition 2.

Gain(A) =
∑
x∈S0

D(x) · |{y|A(x) 6= A(y) ∧D(x) ≤ D(y)}|

+
∑
y∈S1

D(y) · |{x|A(x) 6= A(y) ∧D(x) > D(y)}|
(3.9)

We develop a procedure to calculate the quantities |{y|A(x) 6= A(y) ∧
D(x) ≤ D(y)}| for every x ∈ S0 and |{x|A(x) 6= A(y) ∧ D(x) > D(y)}| for

every y ∈ S1, described in Proposition 2, in linear time after an O(n log n)

time preprocessing.

For that we create an array DIFF containing all samples s ordered in

ascending order by D(s). If two samples x and y have the same D(x) and D(y)

we put x first in the order.

Using vector DIFF we define two new variables:

TCi
0 = number of samples in S0 in the subarray DIFF [i : N ]

TCi
1 = number of samples in S1 in the subarray DIFF [i : N ]

We note that, for c = 0 and c = 1,

TCi
c =

{
TCi−1

c − 1 if sample s in position i− 1 of vector DIFF is in Sc

TCi−1
c Otherwise
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In addition, we define the set of variables

TCV i
c,j = number of samples in Sc valued j in attribute A in the subarray DIFF [i : N ]

We note that

TCV i
c,j =

{
TCV i−1

c,j − 1 if sample s in position i− 1 of vector DIFF is in Sc and A(s) = j

TCV i−1
c,j Otherwise

If x ∈ S0 corresponds to the i-th element of DIFF we have that

|{y|A(x) 6= A(y) ∧D(x) ≤ D(y)}| = TCi+1
1 − TCV i+1

1,A(x).

Similarly, if y ∈ S1 corresponds to the i-th element of DIFF we have that

|{x|A(x) 6= A(y) ∧D(y) > D(x)}| = TCi+1
0 − TCV i+1

0,A(y)

By using the expressions above and Proposition 2, we can rewrite

Gain(A) as:

Gain(A) =
N∑
i=0

D(si)(TC
i
c − TCV i

c,A(si)
), (3.10)

where si is the sample in position i of vector DIFF and si ∈ Sc.
We can now present the following algorithm to calculate Gain(A):

Algorithm 4

1: function NominalGain(samples S, attribute A)

2: Sort vector DIFF

3: gain← 0

4: for i = 1 to N do

5: Let s be the sample in position i of DIFF

6: Let c such that si ∈ Sc
7: Let c such that si /∈ Sc
8: gain← gain+D(s)× (TCi

c − TCV i
c,A(s))

9: Update TC and TCV
return gain

In the algorithm we can sort vector DIFF in O(N logN) time so that

the overall time complexity is O(N logN), which is a clear improvement over

the O(N2) time spent by a brute force solution.

We can make one additional speed up by noting that the O(N logN)

sorting of vector DIFF only needs to be made once for the whole tree

construction. We can create the DIFF vector on a given non-root node
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X in O(N) time if we use the sorted DIFF vector for the parent of X.

The time complexity to analyze all nominal attributes in the tree becomes

O(N · logN +Depth(T ) ·K ·N), where K is the number of nominal attributes

in the tree and Depth(T ) is the depth of the tree T .

Finally, we note that
∑

x,y∈S G(x, y)2 can be also calculated in

O(N logN) time by running a slight variation of Procedure 4 in which D(s) is

replaced with D(s)2 in line 8. This variation must be executed for an attribute

P that splits S into S0 and S1.

3.4.2
Numeric Attribute

Numeric attributes present an additional difficulty as they can generate

a large number of different partitions. Let’s say we have a numeric attribute

A ranging in the interval [a, b] for the set of N samples S. If all samples have

distinct values for attribute A then we have N possible choices for the splitting

parameter `. Every choice of ` gives us a different binary partition P(`) formed

by groups {Left(`), Right(`)} with an associated Gain.

If we try all possible values for the splitting parameter ` and use the

method proposed on the last subsection for each of the induced partitions, we

end up with an O(N2) time complexity solution.

We propose an alternative solution to calculate the gain of a numeric

attribute, taking O(N logN) time.

As we mentioned before, there are at most N possible choices for the

splitting parameter `. For simplicity whenever we say ` on this section we are

referring to one of the possible values `1 < `2 < · · · < `N that the attribute

under consideration may assume.

Let’s pick one possible splitting parameter `i (i = 1 . . . N) and take a

deeper look on how the samples are organized. The parameter `i generates a

binary split where all samples valued less or equal to `i go to the left child

(group Lefti) and the others to the right child (group Righti).

A sample in the left (right) child can be from either S0 or S1. A sample

s in the parent node appears on exactly one of the following groups:

– Lefti0: Set of all samples s such that s ∈ S0 and A(s) ≤ `i.

– Lefti1: Set of all samples s such that s ∈ S1 and A(s) ≤ `i.

– Righti0: Set of all samples s such that s ∈ S0 and A(s) > `i.

– Righti1: Set of all samples s such that s ∈ S1 and A(s) > `i.
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For a fast implementation we wish to efficiently compute Gain(A, `i+1)

forGain(A, `i). To construct {Lefti+1, Righti+1} from {Lefti, Righti} we need

to move all samples s where A(s) = `i+1 from Righti to Lefti+1. Hence,

Lefti+1 = Lefti ∪M

Righti+1 = Righti −M,
(3.11)

where M = {s|s ∈ Righti ∧ A(s) = `i+1}.
We wish to examine how moving a sample s ∈M from Righti to Lefti+1

changes the gain of the attribute.

The gain Gain(A, `i) of numeric attribute A when using the splitting

parameter `i is the sum of all G(x, y) such that x and y are separated in

partition P(`i). We have:

Gain(A, `i) =
∑

x∈Lefti0∧y∈Righti1

G(x, y) +
∑

x∈Righti0∧y∈Lefti1

G(x, y) (3.12)

For the sake of a simpler presentation, we assume that s is best classified

as class 0, that is, s ∈ S0. In addition, we also assume that there is only one

sample s in set M . We discuss how to drop this assumption by the end of this

section.

In order to write Gain(A, `i+1) from Gain(A, `i) we need to remove all

contributions G(y, s) from samples y ∈ Lefti1 and add all contributions G(s, y)

from samples y ∈ Righti1. More formally, we can write:

Gain(A, `i+1) = Gain(A, `i)−
∑

y∈Lefti1

G(y, s) +
∑

y∈Righti1

G(s, y) (3.13)

This gives us the following pseudo-code to calculate the gain of attribute

A for all `i.
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Algorithm 5

1: function NumericGain(samples S, attribute A)

2: Create sorted values `1 < `2 < · · · < `N

3: gain← Vector of size N + 1

4: gain[0]← 0

5: for i = 1 to N do

6: Let s be the sample such that A(s) = `i

7: removed← CalcRemoved(s)

8: added← CalcAdded(s)

9: gain[i]← gain[i− 1]− removed+ added
return max{gain[1 . . . N ]}

The time complexity of the above procedure heavily relies on how fast

we can calculate the sums of removed and added contributions, represented

by functions CalcRemoved and CalcAdded, respectively, on the pseudo-code

above.

So let’s examine closely the term
∑

y∈Lefti1
G(s, y), representing the

removed contributions on 3.13. At this point the reader should recall the

definition of D(s) given by equation 3.8. We can rewrite the sum as follows:

∑
y∈Lefti1

G(s, y) =
∑

y∈Lefti1∧D(y)≤D(s)

G(s, y) +
∑

y∈Lefti1∧D(y)>D(s)

G(s, y) (3.14)

Let sj be the sample at position j of DIFF . The following vectors will

help us calculate the above sums:

DLeft1[j] =

{
D(sj) if sj ∈ Lefti1
0 Otherwise

IndLeft1[j] =

{
1 if sj ∈ Lefti1
0 Otherwise

Using the vectors above we can rewrite 3.14 as:

∑
y∈Lefti1

G(s, y) =

pos−1∑
j=1

DLeft1[j] +D(s) ·
N∑

j=pos+1

IndLeft1[j], (3.15)

where pos is the index of sample s in vector DIFF .

Let GetSum(V,i,j) be a a function that receives an array V of real numbers

and two positions i and j and returns
∑j

k=i V [k]. The following pseudo-code

calculates the removed contributions:
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Algorithm 6

1: function CalcRemoved(sample s)

2: Let c̄ such that s /∈ Sc̄
3: Let pos the index of sample s in vector DIFF

4: return GetSum(DLeftc̄, 1, pos-1)+D(s)· GetSum(IndLeftc̄, pos+1, N)

Note that the time complexity of CalcRemoved function depends on how

fast we evaluate GetSum function.

Now we’ll use a similar idea to write CalcAdded as a function of GetSum.

We expand the added contributions term
∑

y∈Righti1
G(s, y), rewriting it as

follows:∑
y∈Righti1

G(s, y) =
∑

y∈Righti1∧D(y)≤D(s)

G(s, y) +
∑

y∈Righti1∧D(y)>D(s)

G(s, y) (3.16)

Again, we create 2 vectors as follows:

DRight1[j] =

{
D(sj) if sj ∈ Righti1
0 Otherwise

IndRight1[j] =

{
1 if sj ∈ Righti1
0 Otherwise

We then have∑
y∈Righti1

G(s, y) = D(s) ·
N∑

j=pos+1

IndRight1[j] +

pos−1∑
j=1

DRight1[j], (3.17)

where pos is the index of sample s in vector DIFF .

Finally, in pseudo-code:

Algorithm 7

1: function CalcAdded(sample s)

2: Let c̄ such that s /∈ Sc̄
3: Let pos the index of sample s in vector DIFF

4: return D(s)· GetSum(IndRightc̄, pos+1, N) + GetSum(DRightc̄, 1,

pos-1)

Again, the efficiency of CalcAdded relies on how fast we evaluate GetSum

function.

Before proceeding the discussion, we recall that we assumed s ∈ S0. The

case s ∈ S1 can be addressed in a similar way and it requires the usage of
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vectors DLeft0, IndLeft0, DRight0, IndRight0 that are defined analogously

to DLeft1, IndLeft1, DRight1, IndRight1

Back to our discussion, right after calculating Gain(A, `l+1), we have

to update the vectors DLeft0, IndLeft0, DRight0, IndRight0 as follows:

DLeft0[pos] ← D(sj), IndLeft0[pos] ← 1, DRight0[pos] ← 0 and

IndRight0[pos]← 0.

The vectors DLeft1, IndLeft1, DRight1, IndRight1 are not updated

because by assumption s ∈ S0 so that they are not affected.

Algorithm 8 presents the full pseudo-code for calculating the gain of a

numeric attribute.

Algorithm 8

1: function NumericGain(samples S, attribute A)

2: Create sorted values `1 < `2 < · · · < `N

3: gain← Vector of size N + 1

4: gain[0]← 0

5: for i = 0 to N − 1 do

6: Let s be the sample such that A(s) = `i+1

7: removed← CalcRemoved(s)

8: added← CalcAdded(s)

9: gain[i+ 1]← gain[i]− removed+ added

10: Update(IndLeft0, DLeft0, IndRight0, DRight0)

11: Update(IndLeft1, DLeft1, IndRight1, DRight1)
return max{gain[1 . . . N ]}

For an efficient implementation all the vectors IndLeftc, DLeftc,

IndRightc, DRightc, for c ∈ {0, 1}, are stored using a BIT data structure

(Fenwick, 1994). Given a vector A[1..n] of n real numbers this data structure

requires O(n) space and supports the following operations in O(log n) time.

– UPDATE(i,x): it replaces the values of A[i] with x;

– SUM(i,j): Return
∑j

k=iA[k]

Thus, both GetSum and Update can be executed in O(logN) time while

only using an extra O(N) storage.

In our discussion we have assumed that there is only one sample s such

that A(s) = `i+1 In the more general case where there are multiple samples

with the same value we can execute the same algorithm with the difference

that instead of returning the maximum gain among all indexes in the set

{1, 2, . . . , n}, we return the maximum gain in the set {i|`i < `i+1 ∨ i = n}.
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This way we avoid partitions that separate samples that have the same value

for attribute A.

In summary, we have presented an O(N logN) time algorithm to calcu-

late the gain of a numeric attribute.

3.5
Parameters Estimation

Let Dα,M be the tree constructed by PairTree when it is executed with

parameters MaxProb = α and MinSamples = M . In order to estimate good

parameter’s values we define a list of candidates C = (α1 < α2 < · · · < αk) for

MinProb and a list of candidates C ′ = (M1 < M2 < · · · < M`) for MinSamples.

Next, we execute a cross-validation to estimate the cost of Dα,M , for each

(α,M) ∈ C ×C ′, and then pick the combination that yield the minimum cost

(possibly after running some smoothing procedure). This approach may be very

expensive for large datasets because we need to run k × ` cross validations.

However, this procedure can be significantly accelerated by using the

following simple observation:

Proposition 3. For each (α,M) ∈ C × C ′, the tree constructed by PairTree

for tree Dα,M is a sub-tree of Dαk,M1

Let’s look at an example to clarify Proposition 3. Assume we want

to create the trees for parameters MaxProb = {0.1} and MinSamples =

{100, 500}. Figure 3.5 represents the tree D0.1,100.

Figure 3.5: Tree for MaxProb = 0.1 and MinSamples = 100
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It’s simple to see we can recreate D0.1,500 from D0.1,100 simply by removing

some nodes, resulting in Figure 3.6.

Figure 3.6: Tree for MaxProb = 0.1 and MinSamples = 500

The approach for speeding up the k × ` cross-validations consists of

building an augmented version of tree Dαk,M1 , denoted by Daug. The trees

Daug and Dαk,M1 have the same nodes but for each node ν in Daug we store

three additional information:

i |samples(ν)|: the number of samples associated with ν;

iii class(ν), the class with minimum cost for the samples associated with ν;

iii α̂(ν) = min{α̂(samples(ν), A)|A is an attribute}.

This augmented tree contains all the information required to quickly

classify a sample s for every tree Dαi,Mj
.

For storing Daug we need 3 additional integers/floats per node and the

additional time to build Daug is O(Depth(Dαk,M1)N), which is negligible when

compared with the time complexity to build Dαk,M1 .

In order to classify a sample s for the different trees Dα,M we follow a

root-to-leaf path in tree Daug maintaining pointers p1 and p2, where:

– p1 stores the largest i for which we have already visited some node ν ′

with α̂(ν ′) > αi and

– p2 stores the minimum integer j for which we have already visited some

node ν ′ with N(ν ′) < Mj.

Let pa1 and pa2 be, respectively, the values of p1 and p2 right before visiting

node ν. Thus, we can conclude that every tree Dαi′
,Mj′ with i′ ≤ pa1 or j′ ≥ pa2

is pruned at an ancestor of ν (including ν)

Let pb1 and pb2 be, respectively, the values of p1 and p2 right before visiting

node ν.

Thus, we assign class(ν) to sample s for every tree Dαi,Mj
that simulta-

neously satisfies the formula
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(i > pb1) ∧ (j < pb2) ∧ (i ≤ pa1 ∨ j ≥ pa2)

We initialize p1 = 0 and p2 = `+ 1 and it should be clear that pa1 and pa2

can be easily obtained given pb1 and pb2.

For classifying a sample s we incur an additional O(k × `) time with

regards to the time require to classify s using tree Dαk,M1 . Since the most

expensive part of the cross-validation process, in general, is the construction

of the decision trees rather than the classification of the samples, we can

conclude that the time spent by k × ` cross-validations to estimate the best

parameters should be slightly larger than that required for executing a single

cross validation with parameters αk and M1.
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4
Experiments

We make an experimental study of our PairTree method on 3 publicly

available datasets. As way of comparison we present our results along with

other decision tree benchmarks found on the literature for those datasets.

We restrict our analysis to decision tree methods as they are easily

interpretable, a highly desirable quality in some applications.

4.1
Data Sets

The datasets were not originally cost-sensitive, however we were able to

calculate the misclassification costs using methods described in the literature.

These methods are based on each dataset characteristics and are described

below.

4.1.1
Direct Marketing

This dataset contains records from clients of a Portuguese bank who were

contacted by phone and offered to sign up for a financial product. The clients

could either accept or deny the offer. If a client decides to adopt the product

the Bank would gain an amount of cash that would depend on the client.

To calculate the cost of classifying a client in either class we use a cost

matrix proposed in (Bahnsen et al., 2015) which we show here in table 4.1.

Predicted

Accept Deny

Accept Ca Inte

Deny Ca 0

Table 4.1: Cost matrix for sample e

We call the cost of contacting any client Ca and Inte the amount the

bank would make if client e accepts the offer.

This dataset was proposed in (Moro et al., 2014) and is publicly available

on the UCI Machine Learning Repository (Lichman, 2013). The dataset

originally contained 45211 instances, some of which had missing attributes.

After removing instances with missing values we generated a dataset with
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37932 instances with 16 attributes which can be either nominal or numeric. In

total 12.6% of clients accepted the offer.

4.1.2
Give Me Some Credit

This dataset contains records on clients of a bank and an indicator of

whether or not they default their debt in the next 2 years. The cost for the

bank of a client default (classified as bad) depends on each client.

To calculate the financial cost of a client default we used the framework

proposed by (Bahnsen et al., 2015) generating a table shown 4.2.

Predicted

Good Bad

Good 0 re + Ca

Bad Cl(e) · Lgd 0

Table 4.2: Cost matrix for sample e

The cost of classifying a good client as bad is given by the amount the

bank would’ve gained with that client re plus the expected gain of lending

the requested amount to another client Ca. In order to calculate the cost of

classifying a bad client as good we use the assumption that clients don’t default

their entire debt however they only default a percentage of it, which is given

by Lgd. So the cost of classifying a bad client as good is given by the amount

of money requested Cl(e) times the average default percentage Lgd.

This dataset was provided in the Kaggle competition Give Me Some

Credit (Kaggle.com, 2011) and was divided into a training set and a test set.

As the competition did not provide the real classification for the test set, we

can only use the training set in this work. The dataset originally contained

150000 instances, some of which had missing attributes. We removed the

instances with missing values, generating a dataset with 112000 instances with

10 numerical attributes each. In total 6.74% of the clients asked for a default.

4.1.3
PAKDD 2009

This dataset contains records of a Brazilian credit card operator regard-

ing their clients monthly payments. Clients that delayed any monthly pay-

ments were labeled as bad, and their misclassification costs were specific for

each client.
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To calculate the cost of classifying a client in either class we selected the

same cost matrix by (Bahnsen et al., 2014) used in dataset Give Me Some

Credit 4.2.

This dataset was provided as part of the PAKDD 2009 competition

(PAKDD, 2009). The dataset originally contained 40000 instances, some of

which had missing attributes. We removed the instances with missing values,

generating a dataset with 38938 instances and 26 attributes which can be either

nominal or numeric. In total 19.8% of the clients are labeled as bad.

Table 4.3 presents a summary of our datasets. The column Numeric and

Nominal present, respectively, the number of Numeric and Nominal attributes.

The column Class Distrib. is the percentage of samples in the least frequent

class.

Dataset Samples Numeric Nominal Class Distrib.

DirectMarketing 37932 3 7 12.6%

GiveSomeCredit 150000 10 0 6.74%

PAKDD2009 38938 11 9 19.8%

Table 4.3: Summary of Datasets

4.2
Benchmarks

In order to compare our method and enrich our analysis we selected two

decision tree algorithms from the Example-Dependent Cost-Sensitive Learning

literature.

The methods in this section were originally proposed to be used only

with binary splits. So to use them in datasets containing k-valued nominal

attributes we used two approaches.

The first approach is to adapt each Benchmark to be used with non-

binary splits. We explain how this is done in each method below.

The second approach is to transform a k-valued nominal attribute An

into k new 0-1 attributes {An1, An2, . . . , Ank} where Ani(e) = 1 if and only

if An(e) = i. This technique might prove too slow, and impractical, for large

datasets.

4.2.1
Aodha

In (Aodha and Brostow, 2013), it is discussed how to use Random Forest

to address the EDCSP for multiple classes. For that, they defined a cost-

sensitive impurity measure for building the trees that compose the ensemble.
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For a sample s and two classes i and j, define dsi,j = C(s, i) − C(s, j) if

C(s, i)− C(s, j) ≥ 0 and dsi,j = 0, otherwise

In addition, define

f(i, j) =

∑
s∈S(dsi,j)

2∑
s∈S(dsi,j + dsj,i)

The impurity measure for two classes is defined as

ICS(S) =
f(0, 1)(1− f(0, 1)) + f(1, 0)(1− f(1, 0))

2

The information gain for a binary attribute A that splits the set S into

SL and SR is given by

Einf (S,A) = ICS(S)−
(
|SL|
|S|

ISC(SL) +
|SR|
|S|

ISC(SR)

)
We can make a natural modification and define the information gain for

a k-valued attribute An which splits S into {S1, S2, . . . , Sk}.

Einf (S,An) = ICS(S)−
(
|S1|
|S|

ISC(S1) + · · ·+ |Sk|
|S|

ISC(Sk)

)
In their proposal, the attribute with maximum information gain is

selected. As a pruning criteria they use the height of the tree and the number

of samples per leaf.

We do not use the Random Forest proposed by (Aodha and Brostow,

2013). However we use the decision tree induced by the impurity measure

defined above as a benchmark.

4.2.2
Bahnsen

This method was proposed by (Bahnsen et al., 2014) and defines an

impurity measure, similar to the one proposed by (Pazzani et al., 1994), which

takes into account the cost-sensitive nature of the problem. It uses a top-down

approach where in each node the attribute which maximizes a gain metric is

selected to make a split, the method then recursively continues on all children.

This algorithm only uses binary splits, where for a numeric attribute A

in the range [a, b] it tries all possible splitting parameters l ∈ [a, b] and selects

the one maximizing a gain metric, defined later.

For simplicity we use the notation C(S, c) to denote the cost of classifying

all samples in set S as class c, where c ∈ {0, 1}.
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Given a set of samples S an impurity measure, which gives the minimum

cost of classifying all samples in S on the same class, is defined:

I(S) = min{C(S, 0), C(S, 1)}

Using I(S) the gain of a binary attribute A which splits the set S into

SL and SR is defined, by the authors, as:

Gain(A) = (I(S)− (I(SL) + I(SR)))/I(S)

We can extend the authors Gain definition for a k-valued nominal

attribute An which splits S into {S1, S2, . . . , Sk}.

Gain(An) = (I(S)− (I(S1) + · · ·+ I(Sk)))/I(S)

The tree stops growing when no attribute generates a Gain greater than

some user defined parameter MinGain.

We will not use the pruning technique proposed in (Bahnsen et al., 2014)

as the authors argued the pruning gave no improvement on their results.

4.3
Testing Environment

All experiments were executed under the following configurations of

hardware and software:

Processor Intel Core i7-4500U

Memory 16GB

OS Windows 10

Table 4.4: Enviroment specs

All decision tree methods presented in this work were implemented in

C++.

4.4
Results

To carry on our experiments we randomly split our dataset into a training

set, with 80% of the samples, and a test set containing the remaining 20%.

For evaluating the quality of our methods we used the savings metric

employed in (Bahnsen et al., 2015). It is defined as the ratio between the

cost achieved by a tree T on the set of samples S and the minimum cost of

classifying all samples of S on the same class. In formulae,
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Savings(S, T ) = 1− CostT (S)/min{Cost(S, 0), Cost(S, 1)}, (4.1)

where CostS(T ) is the total cost achieved by tree T on set S.

4.4.1
PairTree Parameter’s estimation

Before executing our decision tree method on the test set we need to

decide the value of parameters α and M . This is done by following the

procedure described in Section 3.5, using the list of values α ∈ {0.05, 0.1, . . . , 1}
and M ∈ {30, 50, 100, 300, 500, 1000, 2000, 3000, 5000}, on a 10-fold cross-

validation on the training set of each dataset.

For each combination of α and M we calculate the average Savings of

the folds validation sets.

Tables 4.5, 4.6 and 4.7 shows the Savings obtained on some (α,M)

combinations. With the highest value of each table in bold letters.

α/M 30 50 100 200 300 500 1000 2000 3000 5000

0.1 46.03 46.03 46.03 46.03 46.03 45.88 45.89 45.10 44.87 43.04

0.2 46.12 46.12 46.12 46.12 46.12 45.79 45.80 44.96 44.74 43.04

0.3 46.30 46.30 46.30 46.30 46.29 45.96 45.95 44.96 44.74 43.04

0.4 46.45 46.45 46.45 46.46 46.46 46.13 46.15 44.96 44.74 43.04

0.5 46.77 46.80 46.82 46.83 46.84 46.36 46.36 44.96 44.74 43.04

0.6 47.38 47.44 47.46 47.46 47.40 46.84 46.36 44.96 44.74 43.04

0.7 47.44 47.48 47.50 47.58 47.48 47.17 46.36 44.96 44.74 43.04

0.8 46.30 46.83 47.34 47.43 47.26 47.07 46.31 44.96 44.74 43.04

0.9 44.51 45.83 46.74 47.04 47.24 47.15 46.42 44.98 44.76 43.04

1 30.50 38.57 44.04 46.47 46.92 47.29 46.61 44.98 44.76 43.04

Table 4.5: Cross-Validation for Direct Marketing
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α-M 30 50 100 200 300 500 1000 2000 3000 5000

0.1 49.97 49.97 49.97 49.97 49.97 49.97 49.97 49.97 49.97 48.19

0.2 50.52 50.52 50.52 50.52 50.52 50.52 50.53 50.53 50.53 48.72

0.3 50.54 50.54 50.54 50.54 50.54 50.48 50.51 50.52 50.58 48.72

0.4 50.3 50.3 50.29 50.29 50.35 50.25 50.4 50.41 50.62 48.72

0.5 50.01 50.03 49.95 49.99 49.98 49.9 50.1 50.23 50.49 48.65

0.6 49.16 49.26 49.14 49.09 49.15 49.35 49.94 50.16 50.55 48.7

0.7 47.45 47.47 47.37 47.61 47.87 48.42 49.51 50.02 50.43 48.66

0.8 45.46 45.63 45.86 47.13 47.93 48.65 49.76 49.95 50.41 48.66

0.9 41.43 42.81 43.99 46.78 47.91 48.89 49.96 49.96 50.39 48.66

1 39.08 41.71 43.5 46.31 47.65 48.89 49.93 49.96 50.39 48.66

Table 4.6: Cross-Validation for GiveMeSomeCredit

α/M 30 50 100 200 300 500 1000 2000 3000 5000

0.1 27.31 27.31 27.31 27.31 27.31 27.31 27.31 27.23 27.23 24.59

0.2 27.20 27.20 27.20 27.20 27.20 27.20 27.26 27.23 27.23 24.59

0.3 27.50 27.50 27.51 27.51 27.72 27.63 27.54 27.21 27.23 24.59

0.4 27.42 27.41 27.44 27.54 27.75 27.67 27.59 27.24 27.23 24.59

0.5 27.62 27.60 27.71 27.59 27.87 27.98 27.60 27.30 27.23 24.59

0.6 26.77 26.79 27.05 26.94 27.37 27.99 27.60 27.30 27.23 24.59

0.7 23.82 24.55 26.23 26.77 27.40 28.15 27.79 27.30 27.23 24.59

0.8 20.31 21.86 25.16 25.88 27.61 28.32 27.91 27.30 27.23 24.59

0.9 16.09 18.79 24.15 25.42 27.64 28.30 27.91 27.30 27.23 24.59

1 15.79 18.91 24.11 25.41 27.64 28.30 27.91 27.30 27.23 24.59

Table 4.7: Cross-Validation PAKDD 2009

It’s interesting to observe the impact of parameters α and M by looking

at their smallest and largest values.

Large values of α means we are only using our Gain metric and the

probability bounds proposed in Chapter 3 to select attributes in a node. But

not as a way to stop growing the tree when we think the attributes are not

better than the ”‘random attribute”’, which probably causes an overfit. While

for small values of α we might be too strict and stop growing the tree too soon,

causing an underfit.

Large values of M have particularly worst impact on smaller datasets

such as Direct Marketing and PAKDD2009 as those combinations often create

the same small tree.
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Another important aspect to look at is how the Savings on a cell behaves

when compared to it’s neighbors. We want to select a combination (αi,Mj)

with high Savings on it and around it. This shows the region shall be stable

and without much random noise.

We define a simple smoothing rule to make the parameters selection.

Smooth(i, j) =
Sv(i, j) + 0.8 · (Sv(i− 1, j) + Sv(i+ 1, j) + Sv(i, j − 1) + Sv(i, j + 1))

4.2
,

where Sv(i, j) is the Savings of combination (αi,Mj).

As a future work it makes sense to consider the effect of applying a more

sophisticated procedure such as a Gaussian smoothing.

Table 4.8 shows the selected parameters using the smoothing rule for

each dataset.

Dataset α M

Direct Marketing 0.65 200

Give Me Some Credit 0.25 200

PAKDD2009 0.9 500

Table 4.8: PairTree best parameters

Table 4.9 presents the elapsed time to execute a 10-fold cross-validation

for estimating the best parameters in the training set.

Dataset Samples Numeric Nominal Time (sec)

DirectMarketing 37932 3 7 20

GiveSomeCredit 112000 10 0 180

PAKDD2009 38938 11 9 53

Table 4.9: Time required for parameter estimation

The Give Me Some Credit dataset showed to be the slowest one as it has

the largest number of samples. This result is expected as we showed before on

Section 3.4 the cost of calculating Gain of each numeric and nominal attributes

is O(N logN), where N is the number of samples.

4.4.2
Benchmark Parameter’s estimation

To estimate the benchmarks parameters we used the same approach

previously discussed for our PairTree method. The only difference being the

estimated parameters.
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We believe this to be a fair approach as the authors don’t mention how

to make the parameter selection for their methods.

For Aodha’s tree we only had one parameter in which to optimize,

the minimum number of samples in each node M . While Bahnsen had two,

MinGain which gives the minimum Gain necessary to continue growing the

tree, and the minimum number of samples per node M .

After executing the parameter estimation procedure we used the smooth-

ing function described in the last subsection, to get the best parameter combi-

nation. This combination was then used on the test set to get the final results.

Table 4.10 shows the selected parameters for the benchmarks using binary

splits.

Aodha Bahnsen

M MinGain M

Direct Marketing 1000 0.009 200

Give Me Some Credit 1000 0.0015 3000

PAKDD2009 1000 0.005 50

Table 4.10: Benchmarks parameters

4.4.3
Results on the Testing Set

Here we present our results on the test set along with the Benchmarks

for comparison.

Table 4.11 shows the Savings for fitting our decision tree method on

the training set, and testing it on the test set. In each dataset we show

results using only binary splits labeled as ”‘Binary”’ and using binary splits for

numeric attributes and k-valued splits for nominal attributes labeled as ”‘All”’.

The Give Me Some Credit dataset was composed of only numeric attributes,

therefore we always used binary splits.

Dataset Split Bahnsen Aodha PairTree

DirectMarketing Binary 47.24% 47.36% 47.16%

DirectMarketing All 47.16% 46.82% 46.49%

GiveSomeCredit All 47.51% 45.41% 50.59%

PAKDD2009 Binary 28.37% 28.64% 29.82%

PAKDD2009 All 28.37% 28.65% 29.82%

Table 4.11: Results on testing set
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The Direct Marketing dataset showed the least difference in Savings

among the three methods and was the only dataset in which our method lost

to both benchmarks.

Our method, PairTree, showed the best results for Give Me Some Credit,

6% lead over second best, and PAKDD2009 with a 4% lead.

In Table 4.12 we show the times, in seconds, necessary to create each tree

before testing it on the test set.

Dataset Split Bahnsen Aodha PairTree

DirectMarketing Binary < 1 2 8

DirectMarketing All < 1 1 2

GiveSomeCredit All 2 4 14

PAKDD2009 Binary < 1 2 10

PAKDD2009 All < 1 2 5

Table 4.12: Tree creating times on testing set in seconds

Although our method is slower than the others, it is still fast enough to

address relatively large datasets. Our metric also has the added advantage of

protecting against overfit.
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5
Final remarks

On this dissertation we discussed the Example-Dependent Cost-Sensitive

Problem, focusing on decision tree methods. We presented recent results from

the literature and how it compared to our proposed method.

Our PairTree method is based on a Gain metric which tries to capture the

potential of an attribute to separate pairs of examples. We used a bound on the

sum of random dependent variables, proposed on (Janson, 2004), to estimate

how an attribute’s Gain performs when compared to random attributes.

We achieved superior results when compared to the decision tree bench-

marks (Bahnsen et al., 2015) and (Aodha and Brostow, 2013) on two datasets

Give Me Some Credit and PAKDD2009. And similar results on the third

dataset Direct Marketing.

As future work it’s natural to think of an extension of our PairTree

method to work on a multi-class classification tasks. This can probably be

achieved with some changes to our Gain measure and an update on the

implementation aspects in order to keep the time complexity low.

Another interesting extension to consider is the application of the

PairTree method on Random Forests. This idea has the potential to increase

the Savings metric.
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A
Proofs

Proposition 1. G(x, y) = min{D(x), D(y)}

Proof.Assuming x ∈ S0 and y ∈ S1 we can rewrite G(x, y) as

G(x, y) = min{C(x, 0) + C(y, 0), C(x, 1) + C(y, 1)}

−C(x, 0)− C(y, 1)
(A.1)

Let’s consider two cases:

i)
D(x) ≤ D(y) (A.2)

C(x, 1)− C(x, 0) ≤ C(y, 0)− C(y, 1) (A.3)

C(x, 1) + C(y, 1) ≤ C(y, 0) + C(x, 0) (A.4)

Applying A.4 to A.1

G(x, y) = C(x, 1) + C(y, 1)− C(x, 0)− C(y, 1)

G(x, y) = C(x, 1)− C(x, 0) (A.5)

As x ∈ S0 therefore C(x, 1) > C(x, 0), follows

G(x, y) = D(x) (A.6)

ii)
D(x) > D(y) (A.7)

C(x, 1)− C(x, 0) > C(y, 0)− C(y, 1) (A.8)

C(x, 1) + C(y, 1) > C(y, 0) + C(x, 0) (A.9)

Applying A.9 to A.1

G(x, y) = C(x, 0) + C(y, 0)− C(x, 0)− C(y, 1)

G(x, y) = C(y, 0)− C(y, 1) (A.10)

As y ∈ S1 therefore C(y, 0) > C(y, 1), follows

G(x, y) = D(y) (A.11)
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Now we can write G(x, y) as

G(x, y) = min{D(x), D(y)} (A.12)

Proposition 2.

Gain(A) =
∑
x∈S0

D(x) · |{y|A(x) 6= A(y) ∧D(x) ≤ D(y)}|

+
∑
y∈S1

D(y) · |{x|A(x) 6= A(y) ∧D(x) > D(y)}|
(A.13)

Proof.Assuming x ∈ S0 and y ∈ S1.

Gain(A) =
∑

A(x)6=A(y)

G(x, y) (A.14)

= 1/2 ∗ (
∑
x

∑
y|A(x) 6=A(y)

G(x, y) +
∑
y

∑
x|A(x) 6=A(y)

G(x, y)) (A.15)

We’ll consider pairs (x, y) where D(x) ≤ D(y) in the first sum and the other

pairs on the second sum

=
∑
x

∑
y|A(x) 6=A(y)∧D(x)≤D(y)

G(x, y) +
∑
y

∑
x|A(x) 6=A(y)∧D(x)>D(y)

G(x, y) (A.16)

Applying Proposition 1

=
∑
x

∑
y|A(x)6=A(y)∧D(x)≤D(y)

D(x) +
∑
y

∑
x|A(x)6=A(y)∧D(x)>D(y)

D(y) (A.17)

=
∑
x

D(x) · |{y|A(x) 6= A(y) ∧D(x) ≤ D(y)}|

+
∑
y

D(y)cdot|{x|A(x) 6= A(y) ∧D(x) > D(y)}|
(A.18)
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